Examen

Durée 3h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1. Questions de cours

1. Enoncer le Lemme de Fatou et le Théorème de convergence dominée. (1pt)

Théorème 0.1 Lemme de Fatou. Soit (X, \mathcal{A}, μ) un espace mesuré, soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions $X \to \overline{\mathbb{R}}_+$ mesurables positives définies sur X. On a

$$\int_{X} \liminf_{n \to +\infty} (f_n) d\mu \leqslant \liminf_{n \to +\infty} \left(\int_{X} f_n d\mu \right).$$

Théorème 0.2 Théorème de convergence dominée de Lebesgue (CDL). Soit (X, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions intégrables sur X. On suppose que

- (i) Convergence simple. Il existe $f: X \to \mathbb{C}$ telle $\forall x \in X, \lim_{n \to +\infty} f_n(x) = f(x)$. (ii) Domination. Il existe $g: X \to \mathbb{R}_+$ intégrable telle que $\forall n \in \mathbb{N}, \ \forall x \in X, \ |f_n(x)| \leqslant g(x)$.

Alors, f est intégrable sur X et on a $\int_X f d\mu = \lim_{n \to +\infty} \int_X f_n d\mu$ et $\lim_{n \to +\infty} \int_X |f_n - f| d\mu = 0$.

2. Pour $f \in L^1(\mathbb{R})$ et $y \in \mathbb{R}$, donner la définition de la translatée $\tau_y f$ et montrer que $\tau_y f \in L^1(\mathbb{R})$. Démontrer une expression qui relie la transformée de Fourier de $\tau_y f$ et la transformée de Fourier de f. (1pt)

On a $(\tau_u f)(x) = f(x - y)$ et en utilisant un changement de variable,

$$\widehat{\tau_a f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x - a) e^{-ix\xi} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(y) e^{-i(y + a)\xi} dy$$
$$= \frac{e^{-ia\xi}}{\sqrt{2\pi}} \int_{\mathbb{R}} f(y) e^{-iy\xi} dy = e^{-ia\xi} \widehat{f}(\xi).$$

3. Soit $f, g \in L^1(\mathbb{R})$ démontrer que $\widehat{f * g}(\xi) = \sqrt{2\pi} \widehat{f}(\xi) \widehat{g}(\xi)$. (1.5pt)

Comme $f,g\in L^1(\mathbb{R}),\,f*g(x)$ est bien définit presque partout et $f*g\in L^1(\mathbb{R}).$ Donc $\widehat{f*g}(\xi)$ est bien défini pour tout ξ et

$$\widehat{f * g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x - y) g(y) dy \right) e^{-ix\xi} dx.$$

Par le théorème de Tonelli on obtient

$$\int_{\mathbb{R}^2} |f(x-y)g(y)e^{-ix\xi}| dxdy = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x-y)||g(y)| dx \right) dy$$
$$= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x-y)|| dx \right) dy$$
$$= ||f||_1 \int_{\mathbb{R}} |g(y)| dy$$
$$= ||f||_1 ||g||_1 < +\infty.$$

Donc $(x,y) \mapsto f(x-y)g(y)e^{-ix\xi}$ est intégrable sur \mathbb{R}^2 et le théorème de Fubini donne

$$\widehat{f * g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) \Big(\int_{\mathbb{R}} f(x - y) e^{-ix\xi} dx \Big) dy.$$

Pour y fixé, le changement de variable z = x - y donne

$$\widehat{f * g}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) \Big(\int_{\mathbb{R}} f(z) e^{-i(z+y)\xi} dz \Big) dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) e^{-iy\xi} \Big(\int_{\mathbb{R}} f(z) e^{-iz\xi} dz \Big) dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(y) e^{-iy\xi} \sqrt{2\pi} \widehat{f}(\xi) dy$$

$$= \sqrt{2\pi} \widehat{f}(\xi) \widehat{g}(\xi).$$

4. Donner un exemple de fonction $f: \mathbb{R} \to \mathbb{R}$ telle que $f \in L^p(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1)$ pour tout p > 1 et $f \notin L^1(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1)$. Donner un exemple de fonction $g: \mathbb{R} \to \mathbb{R}$ telle que $g \in L^1(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1)$ et $g \notin L^p(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda_1)$ si p > 1. (1pt)

L'idée est de "jouer" avec les cas limites des critères de Bertrand. Pour le premier exemple, on peut prendre $f(x) = \begin{cases} \frac{1}{1+x} & \text{si} x \in \mathbb{R}_+ \\ 0 & \text{sinon} \end{cases}$. Pour le deuxième exemple, on peut prendre $g(x) = \begin{cases} \frac{1}{x \log(x)^2} & \text{si } x \in]0, \frac{1}{2}[\\ 0 & \text{sinon} \end{cases}$.

Exercice 2. Linéarité de l'intégrale

Soient μ_1 et μ_2 deux mesures sur l'espace mesurable (E, \mathcal{T}) .

- 1. Montrer que $\mu_1 + \mu_2$ est une mesure sur (E, \mathcal{T}) . (1pt)
- 2. Montrer que si $f: E \to \mathbb{R}$ est une fonction mesurable positive, on a :

$$\int_{E} f d(\mu_{1} + \mu_{2}) = \int_{E} f d\mu_{1} + \int_{E} f d\mu_{2}.$$

(2pt)

Nous allons démontrer le résultat en trois étapes.

(a) Si f est une fonction indicatrice i.e. $f = \mathbb{1}_A$ avec $A \in \mathcal{T}$. On a

$$\int_{E} \mathbb{1}_{A} d(\mu_{1} + \mu_{2}) = (\mu_{1} + \mu_{2})(A) = \mu_{1}(A) + \mu_{2}(A) = \int_{E} \mathbb{1}_{A} d\mu_{1} + \int_{E} \mathbb{1}_{A} d\mu_{2}.$$

Donc le résultat est vrai pour les fonctions indicatrices.

(b) Si f est une fonction étagée positive i.e. $f = \sum_{i=1}^n a_i \mathbb{1}_{A_i}$ (où $a_i \ge 0$ et $A_i \in \mathscr{T}$ et $A_i \cap A_j = \emptyset$ si $i \ne j$ alors

$$\int_{E} \left(\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}} \right) d(\mu_{1} + \mu_{2}) = \sum_{i=1}^{n} a_{i} \int_{E} \mathbb{1}_{A_{i}} d(\mu_{1} + \mu_{2})
= \sum_{i=1}^{n} a_{i} \left(\int_{E} \mathbb{1}_{A_{i}} d\mu_{1} + \int_{E} \mathbb{1}_{A_{i}} d\mu_{2} \right)
= \sum_{i=1}^{n} a_{i} \int_{E} \mathbb{1}_{A_{i}} d\mu_{1} + \sum_{i=1}^{n} a_{i} \int_{E} \mathbb{1}_{A_{i}} d\mu_{2}
= \int_{E} \left(\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}} \right) d\mu_{1} + \int \left(\sum_{i=1}^{n} a_{i} \mathbb{1}_{A_{i}} \right) d\mu_{2}.$$

Le résultat subsiste donc pour les fonctions étagées.

(c) Si f est une fonction mesurable positive, alors il existe une suite croissante $(u_n)_{n\in\mathbb{N}}$ de fonctions étagées positives qui converge simplement vers f et le théorème de la convergence monotone s'applique. Ainsi l'étape précédente entraînent

$$\int_{E} fd(\mu_{1} + \mu_{2}) = \lim_{n \to +\infty} \int_{E} u_{n} d(\mu_{1} + \mu_{2})$$

$$= \lim_{n \to +\infty} \left(\int_{E} u_{n} d\mu_{1} + \int_{E} u_{n} d\mu_{2} \right)$$

$$= \lim_{n \to +\infty} \int_{E} u_{n} d\mu_{1} + \lim_{n \to +\infty} \int_{E} u_{n} d\mu_{2}$$

$$= \int_{E} f d\mu_{1} + \int_{E} f d\mu_{2}.$$

Donc le résultat est démontré pour toute fonction mesurable positive.

3. Que dire pour une fonction mesurable de signe quelconque? Démontrer ou donner un contre-exemple. (1pt)

D'après la première question, nous avons les équivalences suivantes pour une fonction $f: E \to \overline{\mathbb{R}}$ mesurable,

$$f \in L^{1}(\mu_{1} + \mu_{2}) \Leftrightarrow \int_{E} |f| d(\mu_{1} + \mu_{2}) < +\infty$$

$$\Leftrightarrow \int_{E} |f| d\mu_{1} + \int_{E} |f| d\mu_{2} < +\infty$$

$$\Leftrightarrow \int_{E} |f| d\mu_{1} < +\infty \text{ et } \int_{E} |f| d\mu_{2} < +\infty$$

Pour une telle fonction, on a alors

$$\int_{E} f d (\mu_{1} + \mu_{2}) = \int_{E} f^{+} d (\mu_{1} + \mu_{2}) - \int_{E} f^{-} d (\mu_{1} + \mu_{2})$$

$$= \left(\int_{E} f^{+} d \mu_{1} + \int_{E} f^{+} d \mu_{2} \right) - \left(\int_{E} f^{-} d \mu_{1} + \int_{E} f^{-} d \mu_{2} \right)$$

$$= \left(\int_{E} f^{+} d \mu_{1} - \int_{E} f^{-} d \mu_{1} \right) + \left(\int_{E} f^{+} d \mu_{2} - \int_{E} f^{-} d \mu_{2} \right)$$

$$= \int_{E} f d \mu_{1} + \int_{E} f d \mu_{2}.$$

Exercice 3. Convergence uniforme Soit (E, \mathcal{T}, μ) une espace mesuré tel que $\mu(E) < +\infty$. Soit $(f_n)_{n \ge 1}$ une suite de fonctions à valeurs réelles qui converge uniformément vers $f: E \to \mathbb{R}$.

1. Montrer que

$$\lim_{n \to +\infty} \int_E |f_n - f| \, d\mu = 0.$$

(1pt)

Soit $\varepsilon > 0$, il s'agit de montrer qu'il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \in \mathbb{N}^*$ et $n \ge n_0$, on ait

$$\int_{E} |f_n - f| \, d\mu \leqslant \varepsilon$$

Comme la suite $(f_n)_{n\geqslant 1}$ converge uniformément vers f, il existe alors $n_0\in\mathbb{N}^*$ tel que pour tout $n\in\mathbb{N}^*$ et $n\geqslant n_0$, on ait

$$\sup_{x \in E} |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{\mu(E)}$$

Donc pour tout $n \ge n_0$,

$$\int_{E} |f_n - f| \, d\mu \leqslant \varepsilon$$

2. Montrer sur un contre-exemple que le résultat est faux si $\mu(E)=+\infty$. (0.5pt)

Pour le contre-exemple, prenons $(E, \mathcal{T}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ et $f_n = \frac{1}{n} \mathbb{1}_{[n, +\infty[}$. Comme $\sup_{x \in \mathbb{R}} |f_n(x)| = \frac{1}{n}$, la suite $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément vers 0 sur \mathbb{R} mais

$$\int_{\mathbb{R}} |f_n| \, d\lambda = \frac{1}{n} \lambda([n, +\infty[) = +\infty.$$

Autrement dit, la suite $(f_n)_{n \leq 1}$ ne converge pas vers la fonction nulle dans $(L^1(E), \|\cdot\|_1)$.

Exercice 4. Intégrale à paramètre On considère l'application définie sur \mathbb{R}_+ par

$$F(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1 + t^2} dt.$$

1. Montrer que F est continue sur \mathbb{R}_+ et déterminer $\lim_{x\to +\infty} F(x)$. (1pt)

On pose pour tout $(x,t) \in [0,+\infty[^2, f(x,t) = \frac{e^{-xt^2}}{1+t^2}]$. L'Intégrale impropre $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converge donc la fonction $t \mapsto \frac{1}{1+t^2}$ est intégrable sur $[0,+\infty[$.

- Comme pour tout $(x,t) \in [0,+\infty[^2,\,0\leqslant f(x,t)\leqslant \frac{1}{1+t^2},\,F$ est bien définie $[0,+\infty[$.
- De plus, pour tout $t \in [0, +\infty[$, $x \mapsto f(x, t)$ est continue sur $[0, +\infty[$ donc F est continue sur $[0, +\infty[$.
- Soit $(x_n)_{n\in\mathbb{N}}$ une suite quelconque qui tend vers $+\infty$. Le théorème de la convergence dominée entraîne que

$$\lim_{x_n \to +\infty} F(x_n) = \int_0^{+\infty} \lim_{x_n \to +\infty} f(x_n, t) dt = 0.$$

- 2. Montrer que F est dérivable sur $]0,+\infty[$ et déterminer $\lim_{x\to 0^+}F'(x)$. (1.5pt) Indication : On pourra montrer dans un premier temps que F est dérivable sur $]a,+\infty[$ pour tout a>0.
 - Montrons que F est dérivable sur] $0, +\infty[$. Pour tout $t \ge 0$, l'application $x \mapsto f(x, t)$ est dérivable et

$$\frac{\partial f(x,t)}{\partial x} = \frac{-t^2 e^{-xt^2}}{1+t^2}.$$

Soit $a \in]0, +\infty[$ fixé, on a pour tout $x \ge a$,

$$\left| \frac{\partial f(x,t)}{\partial x} \right| \le \frac{t^2}{1+t^2} e^{-at^2} \le e^{-at^2}.$$

Or la fonction $t \mapsto e^{-at^2}$ est intégrable sur $[0, +\infty[$. Donc le théorème de dérivabilité sous le signe intégral entraı̂ne que F est dérivable sur $[a, +\infty[$. Comme a est arbitraire, F est dérivable sur $[0, +\infty[$ et on a

$$F'(x) = \int_0^{+\infty} \frac{-t^2 e^{-xt^2}}{1+t^2} dt$$

• Déterminons $\lim_{x\to 0^+} F'(x)$.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs tendant vers 0, et posons $f_n(t)=\frac{t^2e^{-x_nt^2}}{1+t^2}$. Chaque fonction f_n est continue (donc borélienne) et positive, et la suite $(f_n)_{n\geqslant 0}$ converge simplement vers la fonction $t\mapsto \frac{t^2}{1+t^2}$. Donc le lemme de Fatou implique que

$$\liminf_{n \to +\infty} \int_0^{+\infty} f_n(t)dt \geqslant \int_0^{+\infty} \liminf_{n \to +\infty} f_n(t)dt = +\infty,$$

et donc

$$\lim_{n \to +\infty} -F'(x_n) = \lim_{n \to +\infty} \int_0^{+\infty} f_n(t)dt \geqslant +\infty$$

d'où
$$\lim_{n\to+\infty} F'(x_n) = -\infty$$
.

3. Vérifier que pour tout x > 0,

$$F(x) - F'(x) = \frac{I}{\sqrt{x}}$$
 où $I = \int_0^{+\infty} e^{-t^2} dt$.

(1pt)

Pour tout x > 0, on a $F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$. En effectuant le changement de variable $u = t\sqrt{x}$, on obtient

$$F(x) - F'(x) = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du.$$

4. Établir que, pour tout x > 0,

$$F(x) = e^x \left(\frac{\pi}{2} - 2I \int_0^{\sqrt{x}} e^{-t^2} dt \right)$$

et en déduire la valeur de I. (1.5pt)

L'équation différentielle précédente a pour solution $F(x) = e^x C(x)$ avec $C'(x) = -\frac{e^{-x}}{\sqrt{x}}I$, c'est-àdire que

$$C(x) = C(0) - I \int_0^x \frac{e^{-u}}{\sqrt{u}} du = C(0) - 2I \int_0^{\sqrt{x}} e^{-t^2} dt.$$

Par ailleurs $C(0)=F(0)=\int_0^{+\infty}\frac{1}{1+t^2}dt=\frac{\pi}{2},$ d'où

$$F(x) = e^x \left(\frac{\pi}{2} - 2I \int_0^{\sqrt{x}} e^{-t^2} dt \right)$$

Comme $\lim_{x\to+\infty} F(x)=0$ d'après la question 1, nécessairement $\frac{\pi}{2}-2I^2=0$, soit $I=\frac{\sqrt{\pi}}{2}$.

Exercice 5. Transformée de Fourier Dans cet exercice, les variables x et t sont à valeurs réelles. Le but est de calculer la Transformée de Fourier de $x \mapsto \frac{1}{1+x^2}$.

1. Calculer pour tout a > 0 la transformée de Fourier de $\ell_a(x) = e^{-a|x|}$. (1pt)

On a

$$\begin{split} \int_{\mathbb{R}} e^{-ix\xi} e^{-a|x|} dx &= \int_{\mathbb{R}_{-}} e^{-ix\xi} e^{a} x dx + \int_{\mathbb{R}_{+}^{*}} e^{-ix\xi} e^{-ax} dx \\ &= \int_{\mathbb{R}_{-}} e^{-ix\xi} e^{a} x dx + \int_{\mathbb{R}_{+}^{*}} e^{-ix\xi} e^{-ax} dx \\ &= \int_{\mathbb{R}_{-}} e^{x(a-i\xi)} dx + \int_{\mathbb{R}_{+}^{*}} e^{-x(a+i\xi)} dx \\ &= \frac{1}{a-i\xi} + \frac{1}{a+i\xi} = \frac{2a}{a^2 + \xi^2}. \end{split}$$

On a donc $\hat{\ell}_a(\xi) = \frac{1}{\sqrt{2\pi}} \frac{2a}{a^2 + \xi^2}$.

2. Soit a>0 et $f_a(t)=\int_{\mathbb{R}}\frac{e^{-itx}}{1+x^2}e^{-a|x|}dx$. Calculer la limite de $\lim_{a\to 0}f_a(t)$. (1pt)

Tout d'abord remarquons que

- $\begin{array}{l} \bullet \quad \left| \frac{e^{-itx}e^{-a|x|}}{1+x^2} \right| \leqslant \frac{1}{1+x^2} \in L^1(\mathbb{R}), \\ \bullet \quad \frac{e^{-itx}e^{-a|x|}}{1+x^2} \underset{a \to 0}{\longrightarrow} \frac{e^{-itx}}{1+x^2} \end{array}$

si bien que par convergence dominée on a $f_a(t) \xrightarrow[a\to 0]{} \sqrt{2\pi} \mathscr{F}\left(x\mapsto \frac{1}{1+x^2}\right)(t)$ (i.e. f_a est, à un facteur $\sqrt{2\pi}$ près, la transformée de Fourier recherchée évaluée en t).

3. Donner une expression de $\frac{1}{1+x^2}$ en fonction de la transformée de Fourier de ℓ_1 pour aboutir à l'égalité $f_a(t) = \int_{\mathbb{R}} \frac{a}{a^2 + (y+t)^2} e^{-|y|} dy$. (1pt)

D'après la question précédente

$$\frac{1}{1+x^2} = \frac{1}{2} \int_{\mathbb{R}} e^{-|y|} e^{-ixy} dx$$

si bien que

$$f_a(t) = \int_{\mathbb{R}} \frac{e^{-itx}e^{-a|x|}}{2} \left(\int_{\mathbb{R}} e^{-|y|}e^{-ixy}dy \right) dx.$$

Puisque

$$\frac{1}{2} \int_{\mathbb{D}^2} e^{-a|x|} e^{|y|} dy dx < +\infty,$$

il vient finalement par le théorème de Fubini et la question précédente

$$f_a(t) = \frac{1}{2} \int_{\mathbb{R}} e^{-|y|} \left(\int_{\mathbb{R}} e^{-ixy} e^{-itx} e^{-a|x|} dx \right) dy$$
$$= \int_{\mathbb{R}} \frac{a}{a^2 + (y+t)^2} e^{-|y|} dy.$$

4. En déduire la transformée de Fourier de $x\mapsto \frac{1}{1+x^2}$. (2pt) On pourra utiliser le changement de variable : $s=\frac{y+t}{a}$.

D'après la question précédente, et en utilisant le changement de variable suggéré, on a y=as-t

$$f_a(t) = \int_{\mathbb{R}} \frac{a}{a^2 + (y+t)^2} e^{-|y|} dy$$

$$= \frac{1}{a} \int_{\mathbb{R}} \frac{1}{1 + (\frac{y+t}{a})^2} e^{-|y|} dy$$

$$= \frac{1}{a} \int_{\mathbb{R}} \frac{1}{1 + s^2} e^{-|as-t|} a ds$$

$$= \int_{\mathbb{R}} \frac{e^{-|as-t|}}{1 + s^2} ds.$$

On remarque cette fois ci que

et donc par convergence dominée, $f_a(t) \xrightarrow[a \to 0]{} \pi e^{-|t|}$, et on en déduit finalement

$$\mathscr{F}\left(x \mapsto \frac{1}{1+x^2}\right)(t) = \sqrt{\frac{\pi}{2}}e^{-|t|}.$$