
Representing and Mapping 3D Imaging and Spatial-omics Data
Simultaneously Across Scales with Image-Varifold

Benjamin Charlier (MIAT, INRAE)
Shape Seminar, Paris — September, 16th 2025.

Introduction

• Context: Analysis of spatial transcriptomics data, characterized by multiple
modalities and scales, high dimensionality, incomplete observations, and limited
sample sizes.

• Collaborators: (1) CIS, JHU (Baltimore): M. Anant, J. Fan, M. Miller, K. Stouffer, L.
Younès; (2) ENS (Paris-Saclay), INRAE (Toulouse)): B. C., A. Trouvé; (3) Allen institute
(Seattle): X.Chen, M. Kunst, L. Ng, M. Rue, H. Zeng;

• Topic: Presentation of cross-modality Mapping implemented in the
cross-modality image-varifold LDDMM (xIV-LDDMM) toolbox.
https://github.com/kstouff4/xIV-LDDMM-Particle

1

https://github.com/kstouff4/xIV-LDDMM-Particle

Dataset: Spatial transcryptomics data

Data at molecular scale :

• BARseq: 32–40 coronal brain sections, identifying 39 or 52 cell types, based on raw
expression of 104 genes. Hemibrain and full brain.

X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2024.

• MERFISH: 56 coronal brain sections, profiling 500 genes.

Partial acquisitions (censored data). Feature space is denoted F .

2

Dataset: Spatial transcryptomics data

Data at molecular scale :

• BARseq: 32–40 coronal brain sections, identifying 39 or 52 cell types, based on raw
expression of 104 genes. Hemibrain and full brain.

• MERFISH: 56 coronal brain sections, profiling 500 genes.

L. Han et al. Single-cell spatial transcriptomic atlas of the whole mouse brain. Neuron, 2025.

https://mouse.digital-brain.cn/spatial-omics/singleCellData

Partial acquisitions (censored data). Feature space is denoted F .

2

https://mouse.digital-brain.cn/spatial-omics/singleCellData

Dataset : Brain Atlases

• Data at tissue scale: Allen Common Coordinate Framework (CCFv3), Franklin and
Paxinos Atlas, etc…

Wang, Q., et al. The allen mouse brain common coordinate framework: a 3d reference atlas. Cell 181(4), 936–953 (2020)

• Feature space: atlas regions (ontology) denoted L. Assume a spatial homogeneity
inside each region: for each ` ∈ L, gene distributions (on set F) are similar at
every sites belonging to `.

3

Global Alignment of Spatial Transcriptomics and Brain Atlas

• Black dots: BARseq spatial transcriptomics data (104 genes)
• Colored regions: Allen CCFv3 brain atlas (around 700 anatomical regions)

Stouffer KM, Trouvé A, Younès L, et al. Cross-modality mapping using image varifolds to align tissue-scale atlases to

molecular-scale measures with application to 2D brain sections. Nat Commun. (2024)

Stouffer KM, Chen X, Zeng H, et al. xIV-LDDMM Toolkit: A Suite of Image-Varifold Based Technologies for Representing and Mapping

3D Imaging and Spatial-omics Data Simultaneously Across Scales. Prepint. (2025) 4

Keys ingredients

1. RKHS and Non-rigid deformations: Large Deformation Diffeomorphic Metric
Mapping (LDDMM) for flexible geometric alignment.

2. Data representation and distances: Use of the (image) varifold framework to
define geometry-aware similarity measures.

3. Cross-modality data integration: A registration formulation that accommodates
differences in modality and spatial scale.

5

Non-Rigid Deformation with LDDMM

Varifold norms

Cross modalities Mapping Using Varifolds

Geometrical deformations: RKHS of vectors fields

• Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel KV : RD × RD → RD×D such that

Span{δαx = KV(x, ·)α, x ∈ RD, α ∈ RD}

is dense in V . In practice, D = 2, 3 and

KV(x, y) = e−
‖x−y‖2

σ2 IdD.

x1
α1

x2
α2

x3
α3

7

Geometrical deformations: RKHS of vectors fields

• Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel KV : RD × RD → RD×D such that

Span{δαx = KV(x, ·)α, x ∈ RD, α ∈ RD}

is dense in V . In practice, D = 2, 3 and

KV(x, y) = e−
‖x−y‖2

σ2 IdD.

δ
α1
x1 δ

α2
x2 δ

α3
x3

7

Geometrical deformations: RKHS of vectors fields

• Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel KV : RD × RD → RD×D such that

Span{δαx = KV(x, ·)α, x ∈ RD, α ∈ RD}

is dense in V . In practice, D = 2, 3 and

KV(x, y) = e−
‖x−y‖2

σ2 IdD.

δ
α2
x2 δ

α1
x1 + δ

α2
x2 δ

α1
x1 + δ

α2
x2 + δ

α3
x3

7

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 0

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 1/5

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 2/5

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 3/5

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 4/5

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 1

• Group action : GV = {ϕv1 : RD → RD, v ∈ L2([0, 1], V)} are C1-difféomorphism of
RDwith distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

8

Advertisement

Generating deformations requires:

• Fast convolutions with kernels (e.g., Gaussian, Matérn, etc.)
• Their corresponding derivatives

Since 2017, with J. Glaunès, J. Feydy we are developing KeOps (kernels on

GPU with CUDA)

• developped for Deep Learning framework (NeurIPS 2020)
• autodiff with kernels for optimisation (JMLR 2021)

• Downloads:
800k

• Github stars: 1k

• Dependency: 400

• Citations: 170

Prix science ouverte 2023

$ pip install pykeops

> remotes::install_github("getkeops/keops", subdir = "rkeops")

9

Advertisement

Generating deformations requires:

• Fast convolutions with kernels (e.g., Gaussian, Matérn, etc.)
• Their corresponding derivatives

Since 2017, with J. Glaunès, J. Feydy we are developing KeOps (kernels on

GPU with CUDA)

• developped for Deep Learning framework (NeurIPS 2020)
• autodiff with kernels for optimisation (JMLR 2021)

• Downloads:
800k

• Github stars: 1k

• Dependency: 400

• Citations: 170

Prix science ouverte 2023

$ pip install pykeops

> remotes::install_github("getkeops/keops", subdir = "rkeops")

9

Offline Scale-Space Resampling

The full resolution acquisition is µ =
∑

i∈I δxi ⊗ wipi .

• Series of scales: Let σ1 = 200µm > σ2 = 100µm > σ3 = 50µm > . . . and

µσ =
∑
i∈Iσ

δxi ⊗ wipi, {xi, i ∈ Iσ}, for σ = σ1, σ2, . . .

• Closest approximation in varifold norm. Each µσ is defined by

min
xi,wi,pi,i∈Iσ

‖µσ − µ‖M

• Practical problem: µ do not fit in GPU memory (tiled optimization procedure).

10

Multi Gpu: by hands

import torch

1. Create a random tensor on CPU (to avoid OOM before splitting)
x = torch.randn(8192, 8192)

1. Split into 8 chunks along the first dimension
chunks = torch.chunk(x, 8, dim=0)

2. Process each chunk on a different GPU
results = []
for i, chunk in enumerate(chunks):

device = torch.device(f"cuda:{i}")
Move chunk to GPU
chunk = chunk.to(device)
Apply sine
chunk = torch.sin(chunk)
Move back to CPU for reaggregation
chunk = chunk.to("cpu")
results.append(chunk)

3. Concatenate results back into a single tensor
final_tensor = torch.cat(results, dim=0)

Calling are sequential.

11

Multi Gpu: by hands

import torch

1. Create a random tensor on CPU (to avoid OOM before splitting)
x = torch.randn(8192, 8192)

1. Split into 8 chunks along the first dimension
chunks = torch.chunk(x, 8, dim=0)

2. Process each chunk on a different GPU
results = []
for i, chunk in enumerate(chunks):

device = torch.device(f"cuda:{i}")
Move chunk to GPU
chunk = chunk.to(device)
Apply sine
chunk = torch.sin(chunk)
Move back to CPU for reaggregation
chunk = chunk.to("cpu")
results.append(chunk)

3. Concatenate results back into a single tensor
final_tensor = torch.cat(results, dim=0)

Calling are sequential.

11

Multi Gpu: Data Parallel

import torch.nn as nn

1. Define a simple module that applies sine
class SineModule(nn.Module):

def forward(self, x):
return torch.sin(x)

2. Wrap it with DataParallel across all 8 GPUs
device = torch.device("cuda:0") # main device
model = SineModule()
model = nn.DataParallel(model, device_ids=list(range(8)))
model.to(device)

3. Apply the model (DataParallel will split, scatter, gather automatically)
y = model(x)

Work on a single node.

12

Multi Gpu: Distributed Data Parallel

def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def cleanup():
dist.destroy_process_group()

def run_worker(rank, world_size, x, return_dict):
setup(rank, world_size)

Slice the pre-created tensor (each rank gets a row block)
local_chunk = x.chunk(world_size, dim=0)[rank].to(f"cuda:{rank}")

Compute sine locally
local_result = torch.sin(local_chunk)

Gather results back to rank 0
...

cleanup()

Work on multi-nodes. Beware of blocking barrier when transferring data.

13

Non-Rigid Deformation with LDDMM

Varifold norms

Cross modalities Mapping Using Varifolds

Geometric measure theory to compare shapes

Data with geometrical information with (possibly) a feature attached (genes mix,
label, orientation, etc.)

Glaunès, Vaillant. Surface Matching via currents. (2006)

Charon, Trouvé. The Varifold representation of non-oriented shapes for diffeomorphic
registration. (2013)

Kaltenmark et al. A general framework for curve and surface comparison and registration
with oriented varifolds. (2017)

15

Geometric objects as measures

X is curve or surface in R3 .

• A varifold µX is a distribution on R3 × S2 , i.e. (position × tangent space
orientation).

X Y

• A Dirac δ(x,t) is a singular mass located at position x ∈ R3 in the direction of t ∈ S2 .

Remark: invariance to parametrization. Use kernel based distances.

16

Varifolds

Definition
A varifold on Rd is a distribution (or measure) on the space

Rd × Gk(Rd),

where Gk(Rd) is the set of k-dimensional subspaces of Rd (Grassmannian).

RKHS: Let W generated by kernel kpos ⊗ kor : (R3 × S2)2 → R induces scalar product
on shapes:

〈µX , µY〉W′

=

∫
X×Y

kpos(x, y)kor(TxX, TyY)dH2(x)dH2(y)

≈
∑
i

∑
j
kpos(xi, yj)kor(

−→n i,
−→m j)

Distance: ‖µX − µY‖2W′ = 〈µX , µX〉W′ + 〈µY , µY〉W′ − 2 〈µX , µY〉W′ .

Remark: if the chosen kernels are smooth…varifold norms are differentiable.

17

Varifolds

Definition
A varifold on Rd is a distribution (or measure) on the space

Rd × Gk(Rd),

where Gk(Rd) is the set of k-dimensional subspaces of Rd (Grassmannian).

RKHS: Let W generated by kernel kpos ⊗ kor : (R3 × S2)2 → R induces scalar product
on shapes:

〈µX , µY〉W′

=

∫
X×Y

kpos(x, y)kor(TxX, TyY)dH2(x)dH2(y)

≈
∑
i

∑
j
kpos(xi, yj)kor(

−→n i,
−→m j)

Distance: ‖µX − µY‖2W′ = 〈µX , µX〉W′ + 〈µY , µY〉W′ − 2 〈µX , µY〉W′ .

Remark: if the chosen kernels are smooth…varifold norms are differentiable.

17

Varifolds

Definition
A varifold on Rd is a distribution (or measure) on the space

Rd × Gk(Rd),

where Gk(Rd) is the set of k-dimensional subspaces of Rd (Grassmannian).

RKHS: Let W generated by kernel kpos ⊗ kor : (R3 × S2)2 → R induces scalar product
on shapes:

〈µX , µY〉W′

=

∫
X×Y

kpos(x, y)kor(TxX, TyY)dH2(x)dH2(y)

≈
∑
i

∑
j
kpos(xi, yj)kor(

−→n i,
−→m j)

Distance: ‖µX − µY‖2W′ = 〈µX , µX〉W′ + 〈µY , µY〉W′ − 2 〈µX , µY〉W′ .

Remark: if the chosen kernels are smooth…varifold norms are differentiable.

17

Varifolds

Definition
A varifold on Rd is a distribution (or measure) on the space

Rd × Gk(Rd),

where Gk(Rd) is the set of k-dimensional subspaces of Rd (Grassmannian).

RKHS: Let W generated by kernel kpos ⊗ kor : (R3 × S2)2 → R induces scalar product
on shapes:

〈µX , µY〉W′

=

∫
X×Y

kpos(x, y)kor(TxX, TyY)dH2(x)dH2(y)

≈
∑
i

∑
j
kpos(xi, yj)kor(

−→n i,
−→m j)

Distance: ‖µX − µY‖2W′ = 〈µX , µX〉W′ + 〈µY , µY〉W′ − 2 〈µX , µY〉W′ .

Remark: if the chosen kernels are smooth…varifold norms are differentiable.

17

Implementation with KeOps

Gaussian-Linear kernel (K(x, y, u, v)b)i =
∑

j exp(−σ‖xi − yj‖2)〈ui, vj〉bj

from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
x, y, u, v, b = Vi(0, 3), Vj(1, 3), Vi(2, 3), Vj(3, 3), Vj(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum()
return (K * b).sum_reduction(axis=1)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K=GaussLinKernel):
"""VS, VT: vertices coordinates of target surface,

FS, FT: face connectivity of source and target surfaces
K: kernel"""

CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ((LT * K(CT, CT, NTn, NTn, LT)).sum()

+ (LS * K(CS, CS, NSn, NSn, LS)).sum()
- 2 * (LS * K(CS, CT, NSn, NTn, LT)).sum())

Compatible with torch autodiff:

L = lossVarifoldSurf(q0, FS, VT, FT, GaussLinKernel(sigma))
L.backward()

Returns the gradient of the varifold norm with respect to the vertex coordiantes of the
source shape.

18

Implementation with KeOps

Gaussian-Linear kernel (K(x, y, u, v)b)i =
∑

j exp(−σ‖xi − yj‖2)〈ui, vj〉bj

from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
x, y, u, v, b = Vi(0, 3), Vj(1, 3), Vi(2, 3), Vj(3, 3), Vj(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum()
return (K * b).sum_reduction(axis=1)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K=GaussLinKernel):
"""VS, VT: vertices coordinates of target surface,

FS, FT: face connectivity of source and target surfaces
K: kernel"""

CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ((LT * K(CT, CT, NTn, NTn, LT)).sum()

+ (LS * K(CS, CS, NSn, NSn, LS)).sum()
- 2 * (LS * K(CS, CT, NSn, NTn, LT)).sum())

Compatible with torch autodiff:

L = lossVarifoldSurf(q0, FS, VT, FT, GaussLinKernel(sigma))
L.backward()

Returns the gradient of the varifold norm with respect to the vertex coordiantes of the
source shape.

18

Implementation with KeOps

Gaussian-Linear kernel (K(x, y, u, v)b)i =
∑

j exp(−σ‖xi − yj‖2)〈ui, vj〉bj

from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
x, y, u, v, b = Vi(0, 3), Vj(1, 3), Vi(2, 3), Vj(3, 3), Vj(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum()
return (K * b).sum_reduction(axis=1)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K=GaussLinKernel):
"""VS, VT: vertices coordinates of target surface,

FS, FT: face connectivity of source and target surfaces
K: kernel"""

CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ((LT * K(CT, CT, NTn, NTn, LT)).sum()

+ (LS * K(CS, CS, NSn, NSn, LS)).sum()
- 2 * (LS * K(CS, CT, NSn, NTn, LT)).sum())

Compatible with torch autodiff:

L = lossVarifoldSurf(q0, FS, VT, FT, GaussLinKernel(sigma))
L.backward()

Returns the gradient of the varifold norm with respect to the vertex coordiantes of the
source shape.

18

Varifold norm are robust to noise

Observation Reconstruction True shape

19

Varifold norm are robust to noise

Observation Reconstruction True shape

19

Varifold norm are robust to noise

Observation Reconstruction True shape

19

Varifold norm are robust to noise

Observation Reconstruction True shape

19

Varifold norm are robust to missing data

O
bs
er
va
tio
n

Re
co
ns
tr
uc
tio
n

20

Varifold norm are robust to missing data

O
bs
er
va
tio
n

Re
co
ns
tr
uc
tio
n

20

Varifold norm are robust to missing data

O
bs
er
va
tio
n

Re
co
ns
tr
uc
tio
n

20

Varifold norm are robust to missing data

O
bs
er
va
tio
n

Re
co
ns
tr
uc
tio
n

20

Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, feature) at:

• location: x ∈ Rd . Typically d = 2, 3

• feature distribution: wp ∈ M(F), where w ≥ 0 is a weight and p is a probability
distribution over feature space F. Typically F = F ,L.

• BARseq: F is the set of cell type (|F| ∼ 30)
• w is total cells at location x
• p ∈ M(F) is the probability distribution on cell type.

21

Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, feature) at:

• location: x ∈ Rd . Typically d = 2, 3

• feature distribution: wp ∈ M(F), where w ≥ 0 is a weight and p is a probability
distribution over feature space F. Typically F = F ,L.

• MERFISH: F is the set of gene type (|F| ∼ 700)
• w is total mRNA at location x,
• p ∈ M(F) is the probability distribution on gene.

21

Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, feature) at:

• location: x ∈ Rd . Typically d = 2, 3

• feature distribution: wp ∈ M(F), where w ≥ 0 is a weight and p is a probability
distribution over feature space F. Typically F = F ,L.

• CCFv3 atlas: L ontology labels
• w = 1 for location x in foreground tissue
• p = δ`x ∈ M(L) is the dirac probability distribution on ontology label at the label `x of
x (with |L| ∼ 500).

21

Image varifold framework

• Image Varifold: Full acquisition is a linear combination of Dirac indexed by i ∈ I:

µ =
∑
i∈I

δxi ⊗ wipi.

with varifold norm

〈µ, µ〉M =
∑
i,j∈I

wiwjKσ(xi, xj)
∑
f ,g∈F

KF(f , g)pi(f)pj(g).

where Kσ is spatial kernel (Gaussian), KF is a def pos matrix (identity)
• Computational intensity: Depending on application we have:

• |I| ∼ 104, 105, 106, 107 (resolution)
• |F|, |L| ∼ 10, 100, 1000 (feature size)

Resampling adjust data resolution to kernel bandwidth

• Cross modality: allow us to define distance between objects in the same varifold
space. But what’s happened when the feature spaces are different ?

22

Non-Rigid Deformation with LDDMM

Varifold norms

Cross modalities Mapping Using Varifolds

Overview of the xIV-LDDMM toolkit

• Green: input. Red: output. Gray: technologies

24

Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)

The single modality spatial deformation ϕ : Rd → Rd acts as

ϕ · µ =
∑
i∈I

δϕ(xi) ⊗
(
|Dϕ|xiwi

)
pi,

where determinant of the Jacobian capture expansion/contraction.

µ ϕ · µ

Minimize pen(ϕ) + ‖ϕ · µSource − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Hamiltonian formulation (Geodesic shooting) is adapted to update the weight

25

Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)

The single modality spatial deformation ϕ : Rd → Rd acts as

ϕ · µ =
∑
i∈I

δϕ(xi) ⊗
(
|Dϕ|xiwi

)
pi,

where determinant of the Jacobian capture expansion/contraction.

µ ϕ · µ

Minimize pen(ϕ) + ‖ϕ · µSource − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Hamiltonian formulation (Geodesic shooting) is adapted to update the weight

25

Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)

The single modality spatial deformation ϕ : Rd → Rd acts as

ϕ · µ =
∑
i∈I

δϕ(xi) ⊗
(
|Dϕ|xiwi

)
pi,

where determinant of the Jacobian capture expansion/contraction.

µ ϕ · µ

Minimize pen(ϕ) + ‖ϕ · µSource − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Hamiltonian formulation (Geodesic shooting) is adapted to update the weight

25

Cross modality Registration

Source: Atlas with location and atlas ontology L at tissue scale (feature)

Target: MERFISH with location and gene type F at molecular scale (feature)

Spatial homogeneity assumption: there exists a (latent) dictionary (π`)`∈L where
each π` ∈ M(F).

The cross modality spatial deformation (ϕ, π) acts as

(ϕ, π) · µA = (ϕ, π) ·
∑
i∈IA

δxi ⊗ wAi p
A
i︸ ︷︷ ︸

∈M(L)

Remember that since µA is an atlas, wAi = 1 and pi is a Dirac at `xi (“one hot”).

(ϕ, π) · µA .
= ϕ ·

∑
i∈IA

δxi ⊗ π`xi︸︷︷︸
∈M(F)

=
∑
i∈I

δϕ(xi) ⊗ |Dϕ|xiπ`xi︸ ︷︷ ︸
∈M(F)

.

where determinant of the Jacobian capture expansion/contraction.

Warning: notation switch between the 2 papers...

26

Cross modality Registration

Source: Atlas with location and atlas ontology L at tissue scale (feature)

Target: MERFISH with location and gene type F at molecular scale (feature)

Spatial homogeneity assumption: there exists a (latent) dictionary (π`)`∈L where
each π` ∈ M(F).

The cross modality spatial deformation (ϕ, π) acts as

(ϕ, π) · µA = (ϕ, π) ·
∑
i∈IA

δxi ⊗ wAi p
A
i︸ ︷︷ ︸

∈M(L)

Remember that since µA is an atlas, wAi = 1 and pi is a Dirac at `xi (“one hot”).

(ϕ, π) · µA .
= ϕ ·

∑
i∈IA

δxi ⊗ π`xi︸︷︷︸
∈M(F)

=
∑
i∈I

δϕ(xi) ⊗ |Dϕ|xiπ`xi︸ ︷︷ ︸
∈M(F)

.

where determinant of the Jacobian capture expansion/contraction.

Warning: notation switch between the 2 papers...

26

Deformations of varifolds

Minimize pen(ϕ) + pen(π) + ‖(ϕ, π) · µA − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Feature correspondence: (π`)`∈L where each π` ∈ M(F) is a (latent)
distribution over F which should be similar to the wipi’s (of the target) in region `.

• KL penalty: pen(π`) =
MA`∑

f∈F MTargetf

∑
f∈F

π`(f) log
(

π̄`(f)
1/|F|

)
where MA` (resp. M

Target
f)

is total mass in region ` (resp. feature f), π̄`(f)
.
= π`(f)∑

f∈F π`(f)
.

27

CCFv3 and BARseq: Global Geometric Alignment

• Black dots: ∼ 30 coronal hemi-sections of BARseq spatial transcriptomics data
• Regions denoted by color CCFv3
• Good overlap of low cell density area (BARseq) with CCFv3 corpus callosum (CC),
and layer 2/3 cells (BARseq) with CCFv3 layer 2/3.

28

CCFv3 and BARseq: : Local Geometric Alignment

• Small spheres: BARseq cell center colored according to layer-specific cell type
(L2/3 (green), L4/5 (blue), L5 (purple), L6 (grey))

• Plain circles color: CCFv3 Region
• Boundaries between cell types align to cortical layer delineations in the CCFv3,
and both corpus callosum (CC) and layer 1 (L1) accurately align with low cell
density areas.

29

CCFv3 and MERFISH

20 selected variable genes. Resolution is 200µm

30

User Difficulties

• Understanding the basic principles of kernel-based LDDMM methods

• Calibrating the set of parameters

• Assessing the quality of a deformation

31

31

Cross-Modality Data Comparison

• Task: Compare different spatial scales (tissue-level vs. molecular-level) and
feature types (anatomical ontology vs. gene expression) …

“The expression patterns of representative genes in Allen Brain Atlas (left half) compared to
the current dataset (right half).”

X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2014.

• Goal: Automate the comparison and quantify similarity across data modalities.

• Idea: Embed all data types (transcriptomics and atlases) into a shared (kernel)
varifold space for unified analysis.

32

	Non-Rigid Deformation with LDDMM
	Varifold norms
	Cross modalities Mapping Using Varifolds

