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Introduction

- Context: Analysis of spatial transcriptomics data, characterized by multiple
modalities and scales, high dimensionality, incomplete observations, and limited
sample sizes.

- Collaborators: (1) CIS, JHU (Baltimore): M. Anant, J. Fan, M. Miller, K. Stouffer, L.
Younés; (2) ENS (Paris-Saclay), INRAE (Toulouse)): B. C., A. Trouvé; (3) Allen institute
(Seattle): X.Chen, M. Kunst, L. Ng, M. Rue, H. Zeng;

- Topic: Presentation of cross-modality Mapping implemented in the
cross-modality image-varifold LDDMM (xIV-LDDMM) toolbox.
https://github.com/kstouff4/xIV-LDDMM-Particle


https://github.com/kstouff4/xIV-LDDMM-Particle

Dataset: Spatial transcryptomics data

Data at molecular scale :

- BARseq: 32-40 coronal brain sections, identifying 39 or 52 cell types, based on raw
expression of 104 genes. Hemibrain and full brain.
A

Decoded genes Segmentation

@ X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2024.

- MERFISH: 56 coronal brain sections, profiling 500 genes.

Partial acquisitions (censored data). Feature space is denoted F.



Dataset: Spatial transcryptomics data

Data at molecular scale :

- BARseq: 32-40 coronal brain sections, identifying 39 or 52 cell types, based on raw
expression of 104 genes. Hemibrain and full brain.

- MERFISH: 56 coronal brain sections, profiling 500 genes.

B L. Han et al. Single-cell spatial transcriptomic atlas of the whole mouse brain. Neuron, 2025.

https://mouse.digital-brain.cn/spatial-omics/singleCellData

Single-cell resolved Spatial atlas of 308 cell clusters in the mouse brain
spatial transcriptome ce .
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Partial acquisitions (censored data). Feature space is denoted F.


https://mouse.digital-brain.cn/spatial-omics/singleCellData

Dataset : Brain Atlases

- Data at tissue scale: Allen Common Coordinate Framework (CCFv3), Franklin and
Paxinos Atlas, etc...

@ Wang, Q. et al. The allen mouse brain common coordinate framework: a 3d reference atlas. Cell 181(4), 936-953 (2020)
- Feature space: atlas regions (ontology) denoted £. Assume a spatial homogeneity

inside each region: for each £ € £, gene distributions (on set F) are similar at
every sites belonging to .



Global Alignment of Spatial Transcriptomics and Brain Atlas

Before Alignment Single Section

After Alignment

- Black dots: BARseq spatial transcriptomics data (104 genes)
- Colored regions: Allen CCFv3 brain atlas (around 700 anatomical regions)

@ Stouffer KM, Trouvé A, Younes L, et al. Cross-modality mapping using image varifolds to align tissue-scale atlases to

molecular-scale measures with application to 2D brain sections. Nat Commun. (2024)

@ Stouffer KM, Chen X, Zeng H, et al. xIV-LDDMM Toolkit: A Suite of Image-Varifold Based Technologies for Representing and Mapping

3D Imaging and Spatial-omics Data Simultaneously Across Scales. Prepint. (2025) &



Keys ingredients

1. RKHS and Non-rigid deformations: Large Deformation Diffeomorphic Metric
Mapping (LDDMM) for flexible geometric alignment.

2. Data representation and distances: Use of the (image) varifold framework to
define geometry-aware similarity measures.

3. Cross-modality data integration: A registration formulation that accommodates
differences in modality and spatial scale.



Non-Rigid Deformation with LDDMM



Geometrical deformations: RKHS of vectors fields

- Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel Ky : RP? x RP — RP*D such that

Span{d® = Ky(x,)a,x € R?, o € RP}
is dense in V. In practice, D = 2,3 and

_lx=yi?

K\/(X,y) =e o° IdD
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Geometrical deformations: RKHS of vectors fields

- Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel Ky : RP? x RP — RP*D sych that
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Geometrical deformations: flow of time varying smooth vector field

* Flow: let v = (Vi)iepo,q € V be a time dependant vectors field of RO, Let
¢ :[0,1] x R — RP:
{w) = vi(e(x)

te[0,1 and x € RP
wo(X) = x.

- Group action: Gy = {¢¥ : R — RP, v € 1?([0, 1], V)} are C'-difféomorphism of
RPwith distance

1
(1d, o) = (I, = [ Il e = vo o = o}
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- Group action: Gy = {¢¥ : R — RP, v € 1?([0, 1], V)} are C'-difféomorphism of
RPwith distance
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Geometrical deformations: flow of time varying smooth vector field

* Flow: let v = (Vi)iepo,q € V be a time dependant vectors field of RO, Let
¢ :[0,1] x R — RP:

{g‘;t(x) = Vi(pt(x)) te[0,1 and x € RP
o) = x. |
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- Group action: Gy = {¢¥ : R — RP, v € 1?([0, 1], V)} are C'-difféomorphism of
RPwith distance

1
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Geometrical deformations: flow of time varying smooth vector field

* Flow: let v = (Vi)iepo,q € V be a time dependant vectors field of RO, Let
¢ :[0,1] x R — RP:
{w) = vi(e(x)

te[0,1 and x € RP
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- Group action: Gy = {¢¥ : R — RP, v € 1?([0, 1], V)} are C'-difféomorphism of
RPwith distance

1
(1d, o) = (I, = [ Il e = vo o = o}



Geometrical deformations: flow of time varying smooth vector field

* Flow: let v = (Vi)iepo,q € V be a time dependant vectors field of RO, Let
¢ :[0,1] x R — RP:
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- Group action: Gy = {¢¥ : R — RP, v € 1?([0, 1], V)} are C'-difféomorphism of
RPwith distance

1
(1d, o) = (I, = [ Il e = vo o = o}



Advertisement

Generating deformations requires:

- Fast convolutions with kernels (e.g,, Gaussian, Matérn, etc.)
- Their corresponding derivatives



Advertisement

Generating deformations requires:

- Fast convolutions with kernels (e.g,, Gaussian, Matérn, etc.)
- Their corresponding derivatives

Since 2017, with J. Glauneés, ). Feydy we are developing ‘ KeOps (kernels on
GPU with CUDA)

- developped for Deep Learning framework (NeurlPS 2020)
- autodiff with kernels for optimisation (JMLR 2021)

' gg(\;vknloads: - Dependency: 400 Prix science ouverte 2023
- Citations: 170 OG Quurir

- Github stars: 1k

$ pip install pykeops

> remotes::install_github("getkeops/keops", subdir = "rkeops")



Offline Scale-Space Resampling

The full resolution acquisition is u = 3¢, ox; ® W;p;.
- Series of scales: Let o1 = 200 um > o, = 100 um > o3 =50 um > ... and

fo =Y 6 @Wipi, {X,i € Io}, foro = 01,0,
i€l,

- Closest approximation in varifold norm. Each p. is defined by

min_ [[uo — pllm
X, Wj,Pisi€le

- Practical problem: 4 do not fit in GPU memory (tiled optimization procedure).

Full Resolution 50 100 ym 200 ym




ulti Gpu: by hands

import torch

# 1. Create a random tensor on CPU (to avoid OOM before splitting)
x = torch.randn(8192, 8192)



Multi Gpu: by hands

import torch

# 1. Create a random tensor on CPU (to avoid OOM before splitting)
x = torch.randn(8192, 8192)

# 1. Split into 8 chunks along the first dimension
chunks = torch.chunk(x, 8, dim=0)

# 2. Process each chunk on a different GPU
results = []
for i, chunk in enumerate(chunks):
device = torch.device(f"cuda:{i}")
# Move chunk to GPU
chunk = chunk.to(device)
# Apply sine
chunk = torch.sin(chunk)
# Move back to CPU for reaggregation
chunk = chunk.to("cpu")
results.append(chunk)

# 3. Concatenate results back into a single tensor
final_tensor = torch.cat(results, dim=0)

Calling are sequential.



ulti Gpu: Data Parallel

import torch.nn as nn

# 1. Define a simple module that applies sine
class SineModule(nn.Module):
def forward(self, x):
return torch.sin(x)

# 2. Wrap it with DataParallel across all 8 GPUs

device = torch.device("cuda:0") # main device

model = SineModule()

model = nn.DataParallel(model, device_ids=list(range(8)))
model.to(device)

# 3. Apply the model (DataParallel will split, scatter, gather automatically)
y = model(x)

Work on a single node.



ulti Gpu: Distributed Data Parallel

def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355"
dist.init_process_group("nccl", rank=rank, world_size=world_size)

def cleanup():
dist.destroy_process_group()

def run_worker(rank, world_size, x, return_dict):
setup(rank, world_size)

# Slice the pre-created tensor (each rank gets a row block)
local_chunk = x.chunk(world_size, dim=0)[rank].to(f"cuda:{rank}")

# Compute sine locally
local_result = torch.sin(local_chunk)
# Gather results back to rank 0

cleanup()

Work on multi-nodes. Beware of blocking barrier when transferring data.



Varifold norms



Geometric measure theory to compare shapes

)

y

Data with geometrical information with (possibly) a feature attached (genes mix,
label, orientation, etc.)

B Glaunés, Vaillant. Surface Matching via currents. (2006)

@ Charon, Trouvé. The Varifold representation of non-oriented shapes for diffeomorphic
registration. (2013)

B Kaltenmark et al. A general framework for curve and surface comparison and registration
with oriented varifolds. (2017)



Geometric objects as measures

X is curve or surface in R3.

- Avarifold py is a distribution on B° x S?, ie. ( x tangent space
orientation).

X

* ADirac 4,y Is a singular mass located at in the direction of t € S%.

Remark: invariance to parametrization. Use kernel based distances.



Definition
A varifold on RY is a distribution (or measure) on the space

X Gk(Rd)v

where G(RY) is the set of k-dimensional subspaces of R? (Grassmannian).
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where G(RY) is the set of k-dimensional subspaces of R? (Grassmannian).

RKHS: Let W generated by kernel ® kor : (R® x S?)? — R induces scalar product
on shapes:

(s By Y

- / Ror (TeX, Ty V) dH2 () dH2(y)
XxXY

Remark: if the chosen kernels are smooth..varifold norms are differentiable.
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Definition

A varifold on RY is a distribution (or measure) on the space
X Gk(Rd)v
where G(RY) is the set of k-dimensional subspaces of R? (Grassmannian).

RKHS: Let W generated by kernel

® kor = (
on shapes:

x $?)? — R induces scalar product
{x, oy Ywr

- / Ror (TeX, Ty V) dH2 () dH2(y)
XxXY

DI Ror (777, 1))
i

Distance: [[ux — v I3, = (s ix) e + oy iy hyyr — 2 (s oy Dy

Remark: if the chosen kernels are smooth..varifold norms are differentiable



Implementation with KeOps

Gaussian-Linear kernel (K(x,y, u,v)b); = 3=; exp(—o|[X; — Yill?)(uj, v;)b;
from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
X, ¥y, u, v, b =vi(e, 3), vj(1, 3), vi(2, 3), Vi3, 3), Vi(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u = v).sum()
return (K * b).sum_reduction(axis=1)



Implementation with KeOps

Gaussian-Linear kernel (K(x,y, u,v)b); = 3=; exp(—o|[X; — Yill?)(uj, v;)b;
from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
X, ¥y, u, v, b =vi(e, 3), vj(1, 3), vi(2, 3), Vi3, 3), Vi(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum()
return (K * b).sum_reduction(axis=1)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K=GaussLinKernel):
"""VS, VT: vertices coordinates of target surface,
FS, FT: face connectivity of source and target surfaces
K: kernel"""
CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ( (LT = K(CT, CT, NTn, NTn, LT)).sum()
+ (LS = K(CS, CS, NSn, NSn, LS)).sum()
-2 % (LS = K(CS, CT, NSn, NTn, LT)).sum() )



Implementation with KeOps

Gaussian-Linear kernel (K(x,y, u,v)b); = 3=; exp(—o|[X; — Yill?)(uj, v;)b;
from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
X, ¥y, u, v, b =vi(e, 3), vj(1, 3), vi(2, 3), Vi3, 3), Vi(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum()
return (K * b).sum_reduction(axis=1)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K=GaussLinKernel):
"""VS, VT: vertices coordinates of target surface,
FS, FT: face connectivity of source and target surfaces
K: kernel"""
CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ( (LT = K(CT, CT, NTn, NTn, LT)).sum()
+ (LS = K(CS, CS, NSn, NSn, LS)).sum()
-2 % (LS = K(CS, CT, NSn, NTn, LT)).sum() )

Compatible with torch autodiff:

L = lossVarifoldSurf(q®, FS, VT, FT, GaussLinKernel(sigma))
L.backward() -



Varifold norm are

Observation Reconstruction True shape
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Varifold norm are robust to missing data

Reconstruction Observation
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Varifold norm are robust to missing data

Reconstruction Observation
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Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, ) at:

- location: x € RY. Typically d = 2,3
wp € M(F), where w > 0 is a weight and p is a probability
distribution over feature space F. Typically F = F, L.

- BARseq: F is the set of cell type (|F| ~ 30)

- wis total cells at location x
+ p € M(F) is the probability distribution on cell type.

Seq oyl Hyb

- Segmentation

21



Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, feature) at:

- location: x € RY. Typically d = 2,3

- feature distribution: wp € M(F), where w > 0 is a weight and p is a probability
distribution over feature space F. Typically F = F, L.

- MERFISH: F is the set of gene type (|F| ~ 700)

- w is total mRNA at location x,
+ p € M(F) is the probability distribution on gene.

21



Generic varifold framework for transcriptomic data

A single read is a Dirac mass in a product space (location, ) at:

- location: x € RY. Typically d = 2,3

o wp € M(F), where w > 0 is a weight and p is a probability
distribution over feature space F. Typically F = F, L.

- CCFv3 atlas: £ ontology labels
- w = 1for location x in foreground tissue
© p = dy, € M(L) s the dirac probability distribution on ontology label at the label £, of
x (with | £| ~ 500).

o RSPABSPaGIV IS
B ’
b TN g
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Image varifold framework

- Image Varifold: Full acquisition is a linear combination of Dirac indexed by i € I:
n= Z(SX, & W;p;.
i€l
with varifold norm
(s ym = > WiwiKa (i) > Ke(f, 9)pi(F)p;(9)-
ijel f,geF

where K, is spatial kernel (Gaussian), K¢ is a def pos matrix (identity)

- Computational intensity: Depending on application we have:

- |I| ~10%,10°,10°,107 (resolution)
- |Fl, |£]| ~ 10,100, 1000 (feature size)

Resampling adjust data resolution to kernel bandwidth

- Cross modality: allow us to define distance between objects in the same varifold
space. But what's happened when the feature spaces are different ?

22



Cross modalities Mapping Using Varifolds



Overview of the xIV-LDDMM toolkit

A
‘/Dma with 5 Single modality
Different Scopev Censoring Mapping
of Capture (e.g hemibrain to

SN 1 hemibrain)

Multi-scale Data
> Alignment

Data with
Different Feature

J Cross-modality Mapping
I { ’ ] ™

\

v ‘ Feature Selection L J
. pling —_ 8 vo )
Data at a Single j l 1 Feature Set ~, )

Scale
\_/\_) Data Approximation at Spatially Informative \My
Different Scales Features

Multi-modal, Multi-scale Data Alignment

| | Scale-space

- Green: input. Red: output. Gray: technologies
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Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)

25



Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)
The single modality spatial deformation ¢ : RY — R? acts as
= d,x)® (IDelwi) pj,
icl

where determinant of the Jacobian capture expansion/contraction.
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Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)
The single modality spatial deformation ¢ : RY — R? acts as
= d,x)® (IDelwi) pj,
icl

where determinant of the Jacobian capture expansion/contraction.

Minimize pen(¢) + |l - pisource — ;UfTargetH%/; with respect to

- Spatial correspondence: ¢ : RY — RY an affine motion and diffeomorphism of R?
- Hamiltonian formulation (Geodesic shooting) is adapted to update the weight

25



Cross modality Registration

Source: Atlas with location and atlas ontology £ at tissue scale (feature)
Target: MERFISH with location and gene type F at molecular scale (feature)

Spatial homogeneity assumption: there exists a (latent) dictionary (7)¢c where
each m, € M(F).

26



Cross modality Registration

Source: Atlas with location and atlas ontology £ at tissue scale (feature)
Target: MERFISH with location and gene type F at molecular scale (feature)

Spatial homogeneity assumption: there exists a (latent) dictionary (7)¢c where
each m, € M(F).

The cross modality spatial deformation (¢, ) acts as

(@7”)'#A:(50’ Z5X®Wpr
ien EM(L)

Remember that since p* is an atlas, WIA =1and p; is a Dirac at £, (“one hot").

(om) 1 =93 6 0® m

ielA ~~
€ eM(F)
= 26#9()(1) ® |D80‘X,7TZX’ 0
i€l N—
EM(F)

where determinant of the Jacobian capture expansion/contraction.

Warning: notation switch between the 2 papers...

26



Deformations of varifolds

Minimize pen(p) + pen(m) + || (¢, ) - p — 9|2, with respect to

- Spatial correspondence: ¢ : R — R, an affine motion and diffeomorphism of R?
- Feature correspondence: (m¢)ee s Where each m, € M(F) is a (latent)
distribution over F which should be similar to the w;p;'s (of the target) in region £.

* KL penalty: pen(m,) = Zf Target Z me(f) log (1/|]:)|) where MA (resp. MTOVQE[)
eF

is total mass in region £ (res feature 7 D
g (resp. i 7e(f) = Sier )’
‘ Optimization Scheme Error Updates Feature Distribution (7) and Geometric Transformation ()
Allen CCFv3 Atlas l Transformed CCFv3 Atlas MERFISH Gene Reads

yis

—_—
Synthesis of
Gene Features

+

Geometric
Transformation
_—
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CCFv3 BARseq: Global Geometric Alignme

Single Section

Before Alignment After Alignment

- Black dots: ~ 30 coronal hemi-sections of BARseq spatial transcriptomics data

- Regions denoted by color CCFv3
- Good overlap of low cell density area (BARseq) with CCFv3 corpus callosum (CC),
and layer 2/3 cells (BARseq) with CCFv3 layer 2/3.

28



cal Geometric Alighme

Mouse 1

- Small spheres: BARseq cell center colored according to layer-specific cell type
(L2/3 (green), L4/5 (blue), L5 (purple), L6 (grey))

- Plain circles color: CCFv3 Region

- Boundaries between cell types align to cortical layer delineations in the CCFv3,
and both corpus callosum (CC) and layer 1 (L1) accurately align with low cell
density areas.

29



CCFv3 and MERFISH

P
Dipk1b-

1mm % 1mm

20 selected variable genes. Resolution is 200um
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User Difficulties

- Understanding the basic principles of kernel-based LDDMM methods
- Calibrating the set of parameters

- Assessing the quality of a deformation

31






Cross-Modality Data Comparison

- Task: Compare different spatial scales (tissue-level vs. molecular-level) and
feature types (anatomical ontology vs. gene expression) ...

i 1 £+ i . i

Cbin2 Cux2 Fezf2 Foxp2

=

o

Etvi Rorb Scnnila Syt17
“The expression patterns of representative genes in Allen Brain Atlas (left half) compared to
the current dataset (right half).”
@ X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2014.
- Goal: Automate the comparison and quantify similarity across data modalities.

- Idea: Embed all data types (transcriptomics and atlases) into a shared (kernel)
varifold space for unified analysis.
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