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Introduction

• Context: Analysis of spatial transcriptomics data, characterized by multiple
modalities and scales, high dimensionality, incomplete observations, and limited
sample sizes.

• Collaborators: (1) CIS, JHU (Baltimore): M. Anant, J. Fan, M. Miller, K. Stouffer, L.
Younès; (2) ENS (Paris-Saclay), INRAE (Toulouse)): B. C., A. Trouvé; (3) Allen institute
(Seattle): X.Chen, M. Kunst, L. Ng, M. Rue, H. Zeng;

• Topic: Presentation of cross-modality Mapping implemented in the
cross-modality image-varifold LDDMM (xIV-LDDMM) toolbox.
https://github.com/kstouff4/xIV-LDDMM-Particle
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Global Alignment of Spatial Transcriptomics and Brain Atlas

• Black dots: BARseq spatial transcriptomics data (104 genes)
• Colored regions: Allen CCFv3 brain atlas (around 700 anatomical regions)

Stouffer KM, Trouvé A, Younès L, et al. Cross-modality mapping using image varifolds to align tissue-scale atlases to

molecular-scale measures with application to 2D brain sections. Nat Commun. (2024)

Stouffer KM, Chen X, Zeng H, et al. xIV-LDDMM Toolkit: A Suite of Image-Varifold Based Technologies for Representing and Mapping

3D Imaging and Spatial-omics Data Simultaneously Across Scales. Prepint. (2025) 2



Keys ingredients

1. Non-rigid deformations: Large Deformation Diffeomorphic Metric Mapping
(LDDMM) for flexible geometric alignment.

2. Data representation and distances: Use of the (image) varifold framework to
define geometry-aware similarity measures.

3. Computational solutions: Multiresolution strategies and a versatile, parallelized
implementation for scalable performance.

4. Cross-modality data integration: A registration formulation that accommodates
differences in modality and spatial scale.
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Non-Rigid Deformation with LDDMM

Varifold norms

Cross modalities Mapping Using Varifolds



Geometrical deformations: RKHS of vectors fields

• Space of vectors fields V : an RKHS of vectors fields (smooth, vanishing at
infinity). There exists a kernel KV : RD × RD → RD×D such that

Span{δαx = KV(x, ·)α, x ∈ RD, α ∈ RD}

is dense in V . In practice, D = 2, 3 and

KV(x, y) = e−
‖x−y‖2

σ2 IdD.
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Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{

ϕ̇t(x) = vt(ϕt(x))
ϕ0(x) = x.

t ∈ [0, 1] and x ∈ RD

t = 0
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Geometrical deformations: flow of time varying smooth vector field

• Flow: let v = (vt)t∈[0,1] ∈ V be a time dependant vectors field of RD . Let
ϕ : [0, 1]× RD → RD :{
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Geometrical deformations: flow of time varying smooth vector field
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Geometrical deformations: a group acting on objects

The space V contains smooth vectors fields vanishing at infinity.

• Group action : Let L2V
.
= L2([0, 1], V). For all v ∈ L2V , ϕ

v
1 (·) is a C1-difféomorphism of

RD . The set
GV = {ϕv1 : RD → RD, v ∈ L2V}

is a group endowed with the (right invariant) distance

d2(Id, ϕ) = inf{‖v‖2L2V
.
=

∫ 1

0
‖vt‖2Vdt, ϕ̇ = v ◦ ϕ,ϕ1 = ϕ}

• Initial momentum : vectors field p0 : RD → RD generating minimum energy
deformations by integrating an Hamiltonian system.
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Hamiltonian framework

• Momentums (x, p) = (xk, pk)1≤k≤N and Hamiltonian :

H(xt, pt, vt) = (pt|vt · xt)V∗,V −
1
2
|vt|2V

• Optimal controls (PMP):

v(·) =
N∑
k=1

KV(·, xk)pk

• Reduced Hamiltonian:

Hr(x, p) =
1
2
pTKV(x, x)p

• Shooting equations: {
ẋt = ∂pHr(xt, pt)
ṗt = −∂xHr(xt, pt)
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Non-Rigid Deformation with LDDMM

Varifold norms

Cross modalities Mapping Using Varifolds



Geometric measure theory to compare shapes

Data with geometrical information with (possibly) a feature attached (signal, label,
etc.)

Glaunès, Vaillant. Surface Matching via currents. (2006)

Charon, Trouvé. The Varifold representation of non-oriented shapes for diffeomorphic
registration. (2013)

Kaltenmark et al. A general framework for curve and surface comparison and registration
with oriented varifolds. (2017)
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Geometric objects as measures

X is curve or surface in R3 .

• A varifold µX is a distribution on R3 × S2 , i.e. (position × tangent space
orientation).

Xi
Xj

• A Dirac δ(x,t) is a singular mass located at position x ∈ R3 in the direction of t ∈ S2 .

Remark: invariance to parametrization.
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Simplicial meshes as discrete measures

Discrete shapes are polyhedral objects X =
⋃
i
Xi .

• Each cell Xi (1D: segments, 2d: triangles) has a corresponding varifold µXi
approximated by riδ(xi,ti) :

Xi
Xj

ap
rr
ox
im
at
io
n

xi

ti

ri

xj

tj
rj

• Extend to X by linearity: µ̃X =
∑
i
riδ(xi,ti) ≈ µX .
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Varifolds

Definition
A varifold on Rd is a distribution (or measure) on the space

Rd × Gk(Rd),

where Gk(Rd) is the set of k-dimensional subspaces of Rd (Grassmannian).

• A Dirac δ(x,−→n ) corresponds to a singular mass located at position x ∈ Rd in the
direction of the subspace Vect(

−→n ).

• To any non-oriented shape X corresponds the fvarifold µX defined for all
ω ∈ C10(R

d × Gk(Rd)) :

µX(ω) =

∫
X
ω(x, TxX)dH2(x) ≈

(∑
i
riδ(xi,−→n i)

)
(ω)

Choose a RKHS of test functions embedded in C10(R
d × Gk(Rd))...
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Kernel based metrics for surfaces

Surfaces (k = 2) in space (d = 3) and G2(R3) = S2

RKHS: Let W be the RKHS dense in C10(R
3 × S2) generated by a product kernel

kpos ⊗ kor : (R3 × S2)2 → R induces a Hilbert space structure on the set of shapes
that writes:

〈µ(X,f ), µ(Y,g)〉W′

=

∫
X×Y

kpos(x, y)kor(TxX, TyY)dH2(x)dH2(y)

≈
∑
i

∑
j
kpos(xi, yj)kor(

−→n i,
−→m j)

Distance:
‖µ(X,f ) − µ(Y,g)‖2W′ =

〈
µ(X,f ), µ(X,f )

〉
W′ +

〈
µ(Y,g), µ(Y,g)

〉
W′ − 2

〈
µ(X,f ), µ(Y,g)

〉
W′ .

Remark: if the chosen kernels are smooth…varifold norms are differentiable.
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Discrete approximation

X

Y

r1kpos ⊗ kor((x,−→n ), ·)

r2kpos ⊗ kor((y,−→m ), ·)

r1r2
〈
kpos ⊗ kor((x,−→n ), ·), kpos ⊗ kor((y,−→m), ·)

〉
= r1r2kpos ⊗ kor((x,−→n ), (y,−→m))
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Examples of kernels

The various choices of kernels for kpos, kor , ksig offer a wide range of different metrics:

• Gaussian kernels for kpos and ksig :

kpos(x, y) = e
− ‖x−y‖2

σ20

σ0 measures the typical scale on spatial positions.

Use sums of kernel for multiple
scales.

• For curves or surfaces in R3 , Grassmann manifold by non-oriented tangent or
normal unit vectors.

kor(−→n ,
−→n ′) = 〈−→n ,

−→n ′〉2 Binet-Cauchy kernel

kor(−→n ,
−→n ′) = e

− 2
σ2t

(1−〈−→n ,
−→n ′〉2)

Gaussian kernel

Remark: Trivial to implement with KeOps.
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Implementation with KeOps (1/2)

Gaussian-CauchyBinet kernel (K(x, y, u, v)b)i =
∑

j exp(−σ‖xi − yj‖2)〈ui, vj〉2bj

from pykeops.torch import Vi, Vj

def GaussLinKernel(sigma):
x, y, u, v, b = Vi(0, 3), Vj(1, 3), Vi(2, 3), Vj(3, 3), Vj(4, 1)
gamma = 1 / (sigma * sigma)
D2 = x.sqdist(y)
K = (-D2 * gamma).exp() * (u * v).sum() ** 2
return (K * b).sum_reduction(axis=1)

Convert discrete mesh to Varifold dirac

def get_center_length_normal(F, V):
"""V: vertices coordinates

F: Face connectivity of surfaces"""
V0, V1, V2 = ( V.index_select(0, F[:, 0]),

V.index_select(0, F[:, 1]),
V.index_select(0, F[:, 2]) )

centers = (V0 + V1 + V2) / 3
normals = 0.5 * torch.cross(V1 - V0, V2 - V0)
length = (normals**2).sum(dim=1)[:, None].sqrt()
return centers, length, normals / length
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Implementation with KeOps (2/2)

Varifold data attachment loss for surfaces

def lossVarifoldSurf(VS, FS, VT, FT, K):
"""VS, VT: vertices coordinates of target surface,

FS, FT: face connectivity of source and target surfaces
K: kernel"""

CT, LT, NTn = get_center_length_normal(FT, VT)
CS, LS, NSn = get_center_length_normal(FS, VS)
return ( (LT * K(CT, CT, NTn, NTn, LT)).sum()

+ (LS * K(CS, CS, NSn, NSn, LS)).sum()
- 2 * (LS * K(CS, CT, NSn, NTn, LT)).sum() )

Compatible with torch autodiff:

VS, FS, VT, FT = torch.load(datafile)
q0 = VS.clone().detach().to("cuda").requires_grad_(True)

L = lossVarifoldSurf(q0, FS, VT, FT, GaussLinKernel(sigma))
L.backward()

Returns the gradient of the varifold norm with respect to the vertex coordiantes of the
source shape.
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Varifold norm are robust to noise

Observation Reconstruction True shape
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Varifold norm are robust to missing data
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Non-Rigid Deformation with LDDMM
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Overview of the xIV-LDDMM toolkit

• Green: input. Red: output. Gray: technologies
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Dataset: Spatial transcryptomics data

Data at molecular scale :

• BARseq: 32–40 coronal brain sections, identifying 39 or 52 cell types, based on raw
expression of 104 genes. Hemibrain and full brain.

X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2024.

• MERFISH: 56 coronal brain sections, profiling 500 genes.

Partial acquisitions (censored data). Feature space is denoted F .
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Dataset : Brain Atlases

• Data at tissue scale : Allen Common Coordinate Framework (CCFv3), Franklin and
Paxinos Atlas, etc…

Wang, Q., et al. The allen mouse brain common coordinate framework: a 3d reference atlas. Cell 181(4), 936–953 (2020)

• Feature space are atlas regions (ontology) denoted L. Assume a spatial
homogeneity inside each region: for each ` ∈ L, gene distributions (on set F ) are
similar at every sites belonging to `.
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Cross-Modality Data Comparison

• Task: Compare different spatial scales (tissue-level vs. molecular-level) and
feature types (anatomical ontology vs. gene expression) …

“The expression patterns of representative genes in Allen Brain Atlas (left half) compared to
the current dataset (right half).”

X. Chen et al. Whole-cortex in situ sequencing reveals input-dependent area identity. Nature, 2014.

• Goal: Automate the comparison and quantify similarity across data modalities.

• Idea: Embed all data types (transcriptomics and atlases) into a shared (kernel)
varifold space for unified analysis.
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Generic varifold framework

A single read is a Dirac mass in a product space (location, feature) at:

• location: x ∈ Rd . Typically d = 2, 3

• feature distribution: wp ∈ M(F), where w ≥ 0 is a weight and p is a probability
distribution over feature space F. Typically F = F ,L.

• BARseq: F is the set of cell type (|F| ∼ 30)
• w is total cells at location x
• p ∈ M(F) is the probability distribution on cell type.
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Generic varifold framework

A single read is a Dirac mass in a product space (location, feature) at:

• location: x ∈ Rd . Typically d = 2, 3

• feature distribution: wp ∈ M(F), where w ≥ 0 is a weight and p is a probability
distribution over feature space F. Typically F = F ,L.

• CCFv3 atlas: L ontology labels
• w = 1 for location x in foreground tissue
• p = δ`x ∈ M(L) is the dirac probability distribution on ontology label at the label `x of
x (with |L| ∼ 500).
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Image varifold framework

• Image Varifold:Full acquisition is a linear combination of Dirac indexed by i ∈ I:

µ =
∑
i∈I

δxi ⊗ wipi.

with varifold norm

〈µ, µ〉M =
∑
i,j∈I

wiwjKσ(xi, xj)
∑
f ,g∈F

KF(f , g)pi(f )pj(g).

where Kσ is spatial kernel (Gaussian), KF is a def pos matrix (identity)
• Computational intensity: Depending on application we have:

• |I| ∼ 104, 105, 106, 107 (resolution)
• |F|, |L| ∼ 10, 100, 1000 (feature size)

Resampling adjust data resolution to kernel bandwidth

• Cross modality: allow us to define distance between objects in the same varifold
space. But what’s happened when the feature spaces are different ?
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Offline Scale-Space Resampling

The full resolution acquisition is µ =
∑

i∈I δxi ⊗ wipi .

• Series of scales: Let σ1 = 200µm > σ2 = 100µm > σ3 = 50µm > . . . and

µσ =
∑
i∈Iσ

δxi ⊗ wipi, {xi, i ∈ Iσ}, for σ = σ1, σ2, . . .

• Closest approximation in varifold norm. Each µσ is defined by

min
xi,wi,pi,i∈Iσ

‖µσ − µ‖M

• Practical problem: µ do not fit in GPU memory (tiled optimization procedure).
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Single modality Registration

Source and target: MERFISH with location and gene type F at molecular scale (feature)

The single modality spatial deformation ϕ : Rd → Rd acts as

ϕ · µ =
∑
i∈I

δϕ(xi) ⊗
(
|Dϕ|xiwi

)
pi,

where determinant of the Jacobian capture expansion/contraction.

µ ϕ · µ

Minimize pen(ϕ) + ‖ϕ · µSource − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Hamiltonian formulation (Geodesic shooting) is adapted to update the weight
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Cross modality Registration

Source: Atlas with location and atlas ontology L at tissue scale (feature)

Target: MERFISH with location and gene type F at molecular scale (feature)

Spatial homogeneity assumption: there exists a (latent) dictionary (π`)`∈L where
each π` ∈ M(F).

The cross modality spatial deformation (ϕ, π) acts as

(ϕ, π) · µA = (ϕ, π) ·
∑
i∈IA

δxi ⊗ wAi p
A
i︸ ︷︷ ︸

∈M(L)

Remember that since µA is an atlas, wAi = 1 and pi is a Dirac at `xi (“one hot”).

(ϕ, π) · µA .
= ϕ ·

∑
i∈IA

δxi ⊗ π`xi︸︷︷︸
∈M(F)

=
∑
i∈I

δϕ(xi) ⊗ |Dϕ|xiπ`xi︸ ︷︷ ︸
∈M(F)

.

where determinant of the Jacobian capture expansion/contraction.

Warning: notation switch between the 2 papers...
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Deformations of varifolds

Minimize pen(ϕ) + pen(π) + ‖(ϕ, π) · µA − µTarget‖2M with respect to

• Spatial correspondence: ϕ : Rd → Rd , an affine motion and diffeomorphism of Rd

• Feature correspondence: (π`)`∈L where each π` ∈ M(F) is a (latent)
distribution over F which should be similar to the wipi’s (of the target) in region `.

• KL penalty: pen(π`) =
MA`∑

f∈F MTargetf

∑
f∈F

π`(f ) log
(

π̄`(f )
1/|F|

)
where MA` (resp. M

Target
f )

is total mass in region ` (resp. feature f ), π̄`(f )
.
= π`(f )∑

f∈F π`(f )
.
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CCFv3 and BARseq: Global Geometric Alignment

• Black dots: ∼ 30 coronal hemi-sections of BARseq spatial transcriptomics data
• Regions denoted by color CCFv3
• Good overlap of low cell density area (BARseq) with CCFv3 corpus callosum (CC),
and layer 2/3 cells (BARseq) with CCFv3 layer 2/3.
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CCFv3 and BARseq: : Local Geometric Alignment

• Small spheres: BARseq cell center colored according to layer-specific cell type
(L2/3 (green), L4/5 (blue), L5 (purple), L6 (grey))

• Plain circles color: CCFv3 Region
• Boundaries between cell types align to cortical layer delineations in the CCFv3,
and both corpus callosum (CC) and layer 1 (L1) accurately align with low cell
density areas.
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CCFv3 and MERFISH

20 selected variable genes. Resolution is 200µm
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