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A FANNING SCHEME FOR THE PARALLEL TRANSPORT ALONG
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Abstract. Parallel transport on Riemannian manifolds allows one to connect tangent spaces
at different points in an isometric way and is therefore of importance in many contexts, such as
statistics on manifolds. The existing methods for computing parallel transport require either the
computation of Riemannian logarithms, such as Schild’s ladder, or the Christoffel symbols. The
logarithm is rarely given in closed form, and therefore expensive to compute, whereas the Christoffel
symbols are in general hard and costly to compute. From an identity between parallel transport and
Jacobi fields, we propose a numerical scheme to approximate parallel transport along a geodesic. We
find and prove an optimal convergence rate for the scheme, which is equivalent to Schild’s ladders.
We investigate potential variations of the scheme and give experimental results on the Euclidean
2-sphere and on the manifold of symmetric positive definite matrices.
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1. Introduction. Riemannian geometry has long been contained within the field
of pure mathematics and theoretical physics. Nevertheless, there is an emerging trend
to use the tools of Riemannian geometry in statistical learning to define models for
structured data. Such data may be defined by invariance properties and therefore seen
as points in quotient spaces, as for shapes, orthogonal frames, or linear subspaces.
They may be defined also by smooth inequalities, and therefore as points in open
subsets of linear spaces, as for symmetric positive definite matrices, diffeomorphisms,
or bounded measurements. Such data may be considered therefore as points on a
Riemannian manifold and analyzed by specific statistical approaches [14, 4, 10, 5].
At the core of these approaches lies parallel transport, an isometry between tangent
spaces which allows the comparison of probability density functions, coordinates, or
vectors that are defined in the tangent space at different points on the manifold. The
inference of such statistical models in practical situations requires efficient numerical
schemes to compute parallel transport on manifolds.
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Pitié-Salpêtrière, F-75013 Paris, France (maxime.louis.x2012@gmail.com, susovan97@gmail.com,
stanley.durrleman@inria.fr).
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The parallel transport of a given tangent vector is defined as the solution of an
ODE (see [2, page 52]), written in terms of the Christoffel symbols. The computation
of the Christoffel symbols requires access to the metric coefficients and their deriva-
tives, making the equation integration using standard numerical schemes very costly
in situations where no closed-form formulas are available for the metric coefficients or
their derivatives.

An alternative is to use Schild’s ladder [3], or its faster version in the case of
geodesics, the pole ladder [7]. These schemes essentially require the computation of
Riemannian exponentials and logarithms at each step. Usually, the computation of
the exponential may be done by integrating Hamiltonian equations and does not raise
specific difficulties. By contrast, the computation of the logarithm must often be done
by solving an inverse problem with the use of an optimization scheme such as a gra-
dient descent. Such optimization schemes are approximate and sensitive to the initial
conditions and to hyperparameters, which leads to additional numerical errors—most
of the time uncontrolled—as well as an increased computational cost. When closed
formulas exist for the Riemannian logarithm, or in the case of Lie groups, where the
logarithm can be approximated efficiently using the Baker–Campbell–Hausdorff for-
mula (see [6]), Schild’s ladder is an efficient alternative. When this is not the case,
it becomes hardly tractable. A more detailed analysis of the convergence of Schild’s
ladder method can be found in [9].

Another alternative is to use an equation showing that parallel transport along
geodesics may be locally approximated by a well-chosen Jacobi field, up to a second-
order error. This idea has been suggested in [12] with further credits to [1], but
without either a formal definition or a proof of its convergence. It relies solely on the
computations of Riemannian exponentials.

In this paper, we propose a numerical scheme built on this idea, which tries to limit
as much as possible the number of operations required to reach a given accuracy. We
will show how to use only the inverse of the metric and its derivatives when performing
the different steps of the scheme. This different set of requirements makes the scheme
attractive in a set of situations different from the integration of the ODE or Schild’s
ladder. We will prove that this scheme converges at linear speed with the time-
step and that this speed may not be improved without further assumptions on the
manifold. Furthermore, we propose an implementation which allows the simultaneous
computation of the geodesic and of the transport along this geodesic. Numerical
experiments on the 2-sphere and on the manifold of 3-by-3 symmetric positive definite
matrices will confirm that the convergence of the scheme is of the same order as
Schild’s ladder in practice. Thus, they will show that this scheme offers a compelling
alternative to computing parallel transport with a control over the numerical errors
and the computational cost.

2. Rationale.

2.1. Notations and assumptions. In this paper, we assume that γ is a geo-
desic defined for all times t > 0 on a smooth manifold M of finite dimension n ∈ N
provided with a smooth Riemannian metric g. We denote the Riemannian exponential
as Exp and ∇ as the covariant derivative. For p ∈M, TpM denotes the tangent space
of M at p. For all s, t ≥ 0 and for all w ∈ Tγ(s)M, we denote by Ps,t(w) ∈ Tγ(t)M
the parallel transport of w from γ(s) to γ(t). It is the unique solution at time t of the
differential equation ∇γ̇(u)Ps,u(w) = 0 for Ps,s(w) = w. We also denote by Jwγ(t)(h)
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the Jacobi field emerging from γ(t) in the direction w ∈ Tγ(t)M, that is,

Jwγ(t)(h) =
∂

∂ε

∣∣∣∣
ε=0

Expγ(t)(h(γ̇(t) + εw)) ∈ Tγ(t+h)M

for h ∈ R small enough. It verifies the Jacobi equation (see, for instance, [2, pages
111–119])

(1) ∇2
γ̇J

w
γ(t)(h) +R(Jwγ(t)(h), γ̇(h))γ̇(h) = 0,

where R is the curvature tensor. We denote by ‖ · ‖g the Riemannian norm on the
tangent spaces defined from the metric g and by gp : TpM× TpM→ R the metric at
any p ∈M. We use Einstein notations.

We fix Ω a compact subset ofM such that Ω contains a neighborhood of γ([0, 1]).
We also set w ∈ Tγ(0)γ and w(t) = P0,t(w). We suppose that there exists a coordinate
system on Ω, and we denote by Φ : Ω −→ U the corresponding diffeomorphism, where
U is a subset of Rn. This system of coordinates allows us to define a basis of the
tangent space of M at any point of Ω; we denote by ∂

∂xi

∣∣
p

the ith element of the

corresponding basis of TpM for any p ∈ M. Note finally that, since the injectivity
radius is a smooth function of the position on the manifold (see [2]) and since it is
everywhere positive on Ω, there exists η > 0 such that for all p in Ω, the injectivity
radius at p is larger than η.

The problem in this paper is to provide a way to compute an approximation of
P0,1(w).

We suppose throughout the paper the existence of a single coordinate chart de-
fined on Ω. In this setting, we propose a numerical scheme which gives an error varying
linearly with the size of the integration step. Once this result is established, since in
any case γ([0, 1]) can be covered by finitely many charts, it is possible to apply the
proposed method to parallel transport on each chart successively. The errors during
this computation of the parallel transport would increase, but the convergence result
remains valid.

2.2. The key identity. The numerical scheme that we propose arises from the
following identity, which is mentioned in [12]. Figure 1 illustrates the principle.

Proposition 2.1. For all t > 0 and w ∈ Tγ(0)M we have

(2) P0,t(w) =
Jwγ(0)(t)

t
+ O

(
t2
)
.

Proof. Let X(t) = P0,t(w) be the vector field following the parallel transport

equation Ẋi + ΓiklX
lγ̇k = 0 with X(0) = w, where (Γikl)i,j,k∈{1,...,n} are the Christof-

fel symbols associated with the Levi-Civita connection for the metric g. In normal
coordinates centered at γ(0), the Christoffel symbols vanish at γ(0) and the equation
gives Ẋi(0) = 0. A Taylor expansion of X(t) near t = 0 in this local chart then reads
as

(3) Xi(t) = wi + O
(
t2
)
.

By definition, the ith normal coordinate of Expγ(0) (t(v0 + εw)) is t(vi0 +εwi). There-

fore, the ith coordinate of Jwγ(0)(t) = ∂
∂ε |ε=0Expγ(0)(t(γ̇(0) + εw)) is twi. Plugging

this into (3) yields the desired result.
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Fig. 1. The solid line is the geodesic. The green dotted line is formed by the perturbed geodesics
at time t. The blue arrows are the initial vector and its approximated parallel transport at time t.

This control on the approximation of the transport by a Jacobi field suggests
dividing [0, 1] into N intervals [ kN ,

k+1
N ] of length h = 1

N for k = 0, . . . , N − 1 and
approximating the parallel transport of a vector w ∈ Tγ(0) from γ(0) to γ(1) by a
sequence of vectors wk ∈ Tγ( k

N )M defined as

(4)


w0 = w,

wk+1 = NJwk

γ( k
N )

(
1

N

)
.

With the control given in the Proposition 2.1, we can expect to get an error of order
O
(

1
N2

)
at each step and hence a speed of convergence in O

(
1
N

)
overall. There are

manifolds for which the approximation of the parallel transport by a Jacobi field is
exact, e.g., Euclidean space, but in the general case, one cannot expect to get a better
convergence rate. Indeed, we show in the next section that this scheme for the sphere
S2 has a speed of convergence exactly proportional to 1

N .

2.3. Convergence rate on S2. In this section, we assume that one knows the
geodesic path γ(t) and how to compute any Jacobi fields without numerical errors,
and show that the approximation due to (2) alone raises a numerical error of order
O
(

1
N

)
.

Let p ∈ S2 and v ∈ TpS2 (p and v are seen as vectors in R3). The geodesics are
the great circles, which may be written as

γ(t) = Expp(tv) = cos(t|v|)p+ sin(t|v|) v
|v|
,

where |·| is the euclidean norm on R3. Using spherical coordinates (θ, φ) on the sphere,
chosen so that the whole geodesic is in the coordinate chart, we get coordinates on
the tangent space at any point γ(t). In this spherical system of coordinates, it is
straightforward to see that the parallel transport of w = p×v along γ(t) has constant
coordinates, where × denote the usual cross-product on R3.

We assume now that |v| = 1. Since w = p × v is orthogonal to v, we have
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∂
∂ε

∣∣
ε=0
|v + εw| = 0. Therefore,

Jwp (t) =
∂

∂ε
|ε=0

(
cos(t|v + εw|)p+ sin(t|v + εw|) v + εw

|v + εw|

)
= sin(t)w,

which does not depend on p. We have Jwγ(t)(t) = sin(t)w. Consequently, the se-

quence of vectors wk built by the iterative process described in (4) verifies wk+1 =

Nwk sin
(

1
N

)
for k = 0, . . . , N−1, and wN = w0N sin

(
1
N

)N
. Now, in the spherical co-

ordinates, P0,1(w0) = w0, so that the numerical error, measured in these coordinates,

is proportional to w0

(
1− ( sin(1/N)

1/N )N
)
. We have(

sin(1/N)

1/N

)N
= exp

(
N log

(
1− 1

6N2
+ o
(
1/N2

)))
= 1− 1

6N
+ o

(
1

N

)
,

yielding

|wN − w0|
|w0|

∝ 1

6N
+ o

(
1

N

)
.

It shows a case where the bound 1
N is reached.

3. The numerical scheme.

3.1. The algorithm. In general, there are no closed-form expressions for the
geodesics and the Jacobi fields. Hence, in most practical cases, these quantities also
need to be computed using numerical methods.

Computing geodesics. In order to avoid the computation of the Christoffel sym-
bols, we propose to integrate the first-order Hamiltonian equations to compute geo-
desics. Let x(t) = (x1(t), . . . , xd(t))

T
be the coordinates of γ(t) in a given lo-

cal chart, and let α(t) = (α1(t), . . . , αd(t))
T

be the coordinates of the momentum
gγ(t)(γ̇(t), ·) ∈ T ∗γ(t)M in the same local chart. We have then (see [13])

(5)

ẋ(t) = K(x(t))α(t),

α̇(t) = −1

2
∇x
(
α(t)TK(x(t))α(t)

)
,

where K(x(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local
chart. Note that using (5) to integrate the geodesic equation will require us to convert
initial tangent vectors into initial momenta, as seen in the algorithm description below.

Computing Jwγ(t)(h). The Jacobi field may be approximated with a numerical

differentiation from the computation of a perturbed geodesic with initial position γ(t)
and initial velocity γ̇(t) + εw, where ε is a small parameter

(6) Jwγ(t)(h) '
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
ε

,

where the Riemannian exponential may be computed by integration of the Hamilto-
nian equations (5) over the time interval [t, t+ h] starting at point γ(t), as shown in
Figure 2. We will also see that a choice for ε ensuring an O

(
1
N

)
order of convergence

is ε = 1
N .
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Fig. 2. One step of the numerical scheme. The dotted arrows represent the steps of the Runge–
Kutta integrations for the main geodesic γ and for the perturbed geodesic γε. The blue arrows are
the initial w(tk) and the obtained approximated transport using (6) with h = tk+1 − tk.

The algorithm. Let N ∈ N. We divide [0, 1] into N intervals [tk, tk+1] with
tk = k

N and denote by h = 1
N the size of the integration step. We initialize γ0 = γ(0),

γ̇0 = γ̇(0), w̃0 = w and solve β̃0 = K−1(γ0)w̃0 and α̃0 = K−1(γ0)γ̇0. We propose to
compute, at step k, the following:

(i) the new point γ̃k+1 and momentum α̃k+1 of the main geodesic by performing
one step of length h of a second-order Runge–Kutta method on (5);

(ii) the perturbed geodesic starting at γ̃k with initial momentum α̃k+εβ̃k at time h,
which we denote by γ̃εk+1, by performing one step of length h of a second-order
Runge–Kutta method on (5);

(iii) the estimated parallel transport

(7) ŵk+1 =
γ̃εk+1 − γ̃k+1

hε
;

(iv) the corresponding momentum β̂k+1 by solving K(γ̃k+1)β̂k+1 = ŵk+1.
At the end of the scheme, w̃N is the proposed approximation of P0,1(w). Figure

2 illustrates the principle. A complete pseudocode is given in Appendix A. It is
remarkable that we can substitute the computation of the Jacobi field with only four
calls to the Hamiltonian equations (5) at each step, including the calls necessary to
compute the main geodesic. Note, however, that step (iv) of the algorithm requires
solving a linear system of size n. Solving the linear system can be done with a
complexity less than cubic in the dimension (in O

(
n2.374

)
using the Coppersmith–

Winograd algorithm).

3.2. Possible variations. There are a few possible variations of the presented
algorithm.

1. The first variation is to use higher-order Runge–Kutta methods to integrate
the geodesic equations at steps (i) and (ii). We prove that a second-order
integration of the geodesic equation is enough to guarantee convergence and
notice experimentally the absence of convergence with a first-order integration
of the geodesic equation. Experiments indicate a linear convergence with an
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improved constant using this variation. Depending on the situation, the extra
computations required at each step may be counterbalanced by this increased
precision.

2. The second variation uses a higher-order finite difference scheme by replacing
steps (ii) and (iii) in the following way. At the kth iteration, compute two
perturbed geodesics starting at γ̃k and with initial momentum α̃k+εβ̃k (resp.,
α̃k − εβ̃k) at time h, which we denote by γ̃+ε

k+1 (resp., γ̃−εk+1), by performing
one step of length h of a second-order Runge–Kutta method on (5). Then
proceed to a second-order differentiation to approximate the Jacobi field, and
set

(8) ŵk+1 =
γ̃+ε
k+1 − γ̃

−ε
k+1

2hε
.

Empirically, this variation does not seem to bring any substantial improve-
ment to the scheme.

3. The final variation of the scheme consists in adding an extra renormalization
step at the end of each iteration:

(v) Renormalize the momentum and the corresponding vector using

β̃k+1 = akβ̂k+1 + bkα̃k+1,

w̃k+1 = K(γ̃k+1)β̃k+1,

where ak and bk are factors ensuring β̃>k+1K(γ̃k+1)β̃k+1 = β>0 K(γ0)β0 and

β̃>k+1K(γ̃k+1)α̃k+1 = β>0 K(γ0)α0. Indeed, the quantities β(t)>K(γ(t))β(t)

and β(t)>K(γ(t))α(t) are preserved along the parallel transport. This extra
step is cheap even when the dimension is large. Empirically, it leads to the
same rate of convergence with a smaller constant.

We will show that the proposed algorithm and variations 1 and 2 ensure conver-
gence of the final estimate. We do not prove convergence with variation 3, but this
additional step can be expected to improve the quality of the approximation at each
step, at least when the discretization is sufficiently thin, by enforcing the conversa-
tion of quantities which should be conserved. Note that the best accuracy for a given
computational cost is not necessarily obtained with the method in section 3.1, but
might be attained with one of the proposed variations, as a few more computations
at each step may be counterbalanced by a smaller constant in the convergence rate.

3.3. The convergence theorem. We obtain the following convergence result,
guaranteeing a linear decrease of the error with the size of the step h.

Theorem 3.1. We suppose here the hypotheses stated in section 2.1. Let N ∈ N
be the number of integration steps. Let w ∈ Tγ(0)M be the vector to be transported.
We denote the error

δk = ‖P0,tk(w)− w̃k‖2,

where w̃k is the approximate value of the parallel transport of w along γ at time tk and
where the 2-norm is taken in the coordinates of the chart Φ on Ω. We denote by ε the
parameter used in step (ii) and h = 1

N the size of the step used for the Runge–Kutta
approximate solution of the geodesic equation. If we take ε = h, then we have

δN = O

(
1

N

)
.
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We will see in the proof and in the numerical experiments that choosing ε = h is
a recommended choice for the size of the step in the differentiation of the perturbed
geodesics. Further decreasing ε has no visible effect on the accuracy of the estimation,
and choosing a larger ε lowers the quality of the approximation.

Note that our result controls the 2-norm of the error in the global system of
coordinates but not directly the metric norm in the tangent space at γ(1). This is
due to the fact that γ(1) is not accessible, but only is its approximation γ̃N computed
by the Runge–Kutta integration of the Hamiltonian equation. However, Theorem
3.1 implies that the couple (γ̃N , w̃N ) converges towards (γ(1), P0,1(w)) using the `2

distance on M× TM and a coordinate system in a neighborhood of γ(1), which is
equivalent to any distance on M× TM on this neighborhood and hence is the right
notion of convergence.

We give the proof in the next section. The technical lemmas used in the proof
are all in Appendix B: in Appendix B.1, we prove an intermediate result allowing
uniform controls on norms of tensors; in Appendix B.3, we prove a stronger result
than Proposition 2.1 with stronger hypotheses; and in Appendix B.4, we prove a result
allowing us to control the accumulation of the error.

4. Proof of Theorem 3.1. We prove the convergence of the algorithm.

Proof. We will denote, as in the description of the algorithm in section 3, by
γk = γ(tk), γ̃k = γ̃(tk) its approximation in the algorithm. Let N be a number of
discretization steps, and let k ∈ {1, . . . , N}. We build an upper bound on the error
δk+1 from δk. We have

δk+1 = ‖wk+1 − w̃k+1‖2

≤

∥∥∥∥∥wk+1 −
Jwk
γk

(h)

h

∥∥∥∥∥
2︸ ︷︷ ︸

(1)

+

∥∥∥∥∥Jwk
γk

(h)

h
−

Jw̃k
γk

(h)

h

∥∥∥∥∥
2︸ ︷︷ ︸

(2)

+

∥∥∥∥∥Jw̃k
γk

(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2︸ ︷︷ ︸

(3)

+

∥∥∥∥∥Jw̃k

γ̃k
(h)

h
−

J̃w̃k

γ̃k
(h)

h

∥∥∥∥∥
2︸ ︷︷ ︸

(4)

,

where
• γ̃k is the approximation of the geodesic coordinates at step k,
• wk = w(tk) is the exact parallel transport,
• w̃k is its approximation at step k,
• J̃ is the approximation of the Jacobi field computed with finite difference:

J̃w̃k

γ̃k
=

γ̃ε
k+1−γ̃k+1

ε , and

• Jw̃k

γ̃k
(h) is the exact Jacobi field computed with the approximations w̃, γ̃, and

˜̇γ i.e., the Jacobi field defined from the geodesic with initial position γ̃k and
initial momentum α̃k, with a perturbation w̃k.

We provide upper bounds for each of these terms. We start by assuming ‖wk‖2 ≤
2‖w0‖2, before showing that it is verified for any k ≤ N when N is large enough. We
could assume more generally that‖wk‖2 ≤ C‖w0‖2 for any C > 1. The idea is to get
a uniform control on the errors at each step by assuming that ‖wk‖2 does not grow
too much, and to show afterwards that the control we get is tight enough to ensure,
when the number of integration steps is large, that we do have ‖wk‖2 ≤ 2‖w0‖2.
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Term (1). This is the intrinsic error when using the Jacobi field. We show in
Proposition B.3 that for h small enough∥∥∥∥∥Ptk,tk+1

(wk)−
Jwk
γk

(h)

h

∥∥∥∥∥
g(γ(tk+1))

≤ Ah2‖wk‖g = Ah2‖wk‖g.

Now, since g varies smoothly and by the equivalence of the norms, there exists A′ > 0
such that

(9)

∥∥∥∥∥Ptk,tk+1
(wk)−

Jwk

γ(k)(h)

h

∥∥∥∥∥
2

≤ A′h2‖wk‖2 ≤ 2A′h2‖w0‖2.

Term (2). Lemma B.4 shows that for h small enough

(10)

∥∥∥∥∥Jwk

γ(tk)(h)

h
−

Jw̃k

γ(tk)(h)

h

∥∥∥∥∥
2

≤ (1 +Bh)δk.

Term (3). This term measures the error linked to our approximate knowledge of
the geodesic γ. It is proved in Appendix B.5 that there exists a constant C > 0 which
does not depend on k or h such that

(11)

∥∥∥∥∥Jw̃k
γk

(h)

h
−

J̃w̃k
γk

(h)

h

∥∥∥∥∥
2

≤ Ch2.

Term (4). This is the difference between the analytical computation of J and its
approximation. It is proved in Appendices B.6 and B.7 that if we use a Runge–Kutta
method of order 2 to compute the geodesic points γεk+1 and γk+1 and a first-order
differentiation to compute the Jacobi field as described in step (iii) of the algorithm,
or if we use two perturbed geodesics γεk+1 and γ−εk+1 and a second-order differentiation
method to compute the Jacobi field as described in (8), there exists D ≥ 0 which does
not depend on k such that

(12)

∥∥∥∥∥Jw̃k

γ(tk) − J̃w̃k

γ(tk)

h

∥∥∥∥∥
2

≤ D(h2 + εh).

Note that this majoration is valid as long as w̃k is bounded by a constant which does
not depend on k or N , which we have assumed so far.

Gathering (9), (10), (11), and (12), there exists a constant F > 0 such that for
all k such that ‖wi‖2 ≤ ‖w0‖2 for all i ≤ k

(13) δk+1 ≤ (1 +Bh)δk + F (h2 + hε).

Combining those inequalities for k = 1, . . . , s, where s ∈ {1, . . . , N} is such that
‖wk‖2 ≤ 2‖w0‖2 for all k ≤ s, we obtain a geometric series whose sum yields

(14) δs ≤
F (h2 + hε)

Bh
(1 +Bh)s+1.

We now show that for a large enough number of integration steps N , this implies that
‖wk‖2 ≤ 2‖w0‖2 for all k ∈ {1, . . . , N}. We proceed by contradiction, assuming that
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there exist arbitrary large N ∈ N for which there exists u(N) ≤ N—that we take
to be minimal—such that ‖wu(N)‖2 > 2‖w0‖2. For any such N ∈ N, since u(N) is
minimal with that property, we can still use (14) with s = u(N):

(15) δu(N) ≤
F (h2 + hε)

Bh
(1 +Bh)u(N)+1.

Now h = 1
N so that

(16) δu(N) ≤
F (h+ ε)

B
(1 +Bh)u(N)+1 ≤ F (h+ ε)

B
(1 +Bh)

1
h +1.

But we have, on the other hand,

(17) ‖w0‖2 < |‖w̃u(N)‖2 − ‖w0‖2| ≤ ‖w̃u(N) − w0‖2 ≤
F (h+ ε)

B
(1 +Bh)

1
h +1.

Taking ε ≤ h, which we will keep as an assumption in the rest of the proof, the term
on the right goes to zero as h→ 0—i.e., as N →∞— which is a contradiction. So for
N large enough, we have that ‖wk‖2 ≤ 2‖w0‖2 and (14) holds for all k ∈ {1, . . . , N}.
With s = N , (14) reads as

δN ≤
F (h2 + hε)

Bh
(1 +Bh)N+1.

We see that choosing ε = 1
N yields an optimal rate of convergence: choosing a larger

value deteriorates the accuracy of the scheme, while choosing a lower value still yields
an error in O

(
1
N

)
. Setting ε = 1

N ,

δN ≤
2F

BN

(
1 +

B

N

)N+1

=
2F

BN

(
exp(B) + o

(
1

N

))
.

Eventually, there exists G > 0 such that, for N ∈ N large enough,

δN ≤
G

N
.

5. Numerical experiments.

5.1. Setup. We implemented the numerical scheme on simple manifolds where
the parallel transport is known in closed form, allowing us to evaluate the numerical
error.1 We present two examples:

• S2: in spherical coordinates (θ, φ), the metric is g =
( 1 0

0 sin(θ)2
)
. We gave

expressions for geodesics and parallel transport in section 2.3.
• The set of 3 × 3 symmetric positive definite matrices SPD(3). The tangent

space at any point of this manifold is the set of symmetric matrices. In [4], the
authors endow this space with the following affine-invariant metric: for Σ ∈
SPD(3), V,W ∈ Sym(3), gΣ(V,W ) = tr(Σ−1V Σ−1W ). Through an explicit
computation of the Christoffel symbols, they derive explicit expressions for
any geodesic Σ(t) starting at Σ0 ∈ SPD(3) with initial tangent vector X ∈

1A modular Python version of the code is available online from https://gitlab.icm-institute.org/
maxime.louis/parallel-transport.

https://gitlab.icm-institute.org/maxime.louis/parallel-transport
https://gitlab.icm-institute.org/maxime.louis/parallel-transport
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Sym(3): Σ(t) = Σ
1
2
0 exp(tX)Σ

1
2
0 , where exp : Sym(3)→ SPD(3) is the matrix

exponentiation. Deriving an expression for the parallel transport can also be
done using the explicit Christoffel symbols; see [11]. If Σ0 ∈ SPD(3) and
X,W ∈ Sym(3), then

P0,t(W ) = exp

(
t

2
XΣ−1

0

)
W exp

(
t

2
Σ−1

0 X

)
.

The code for this numerical scheme can be written in a generic way and used for
any manifold by specifying the Hamiltonian equations and the inverse of the metric.
For experiments in large dimensions, we refer the reader to [8].

Remark. Note that even though the computation of the gradient of the inverse of
the metric with respect to the position, ∇xK, is required to integrate the Hamiltonian
equations (5), ∇xK can be computed from the gradient of the metric using the fact

that any smooth map M : R → GLn(R) verifies dM−1

dt = −M−1 dM
dt M

−1. This is
how we proceeded for SPD(3): it spares some potential difficulties if one does not
have access to analytical expressions for the inverse of the metric. It is, however, a
costly operation which requires the computation of the full inverse of the metric at
each step.
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One perturbed geodesic, Runge-Kutta 2
One perturbed geodesic, Runge-Kutta 4
Two perturbed geodesics, Runge-Kutta 2
Two perturbed geodesics, Runge-Kutta 4

Fig. 3. Relative errors for the 2-sphere in different settings, as functions of the step size, with
initial point, velocity, and initial w kept constant. The dotted lines are linear regressions of the
measurements. Runge–Kutta 2 (resp., 4) indicates that a Runge–Kutta method or order 2 (resp., 4)
is used for the integration of the geodesic equation.

5.2. Results. Errors measured in the chosen system of coordinates confirm the
linear behavior in both cases, as shown in Figures 3 and 4.

We assessed the effect of a higher-order for the Runge–Kutta scheme in the in-
tegration of geodesics. Using a fourth-order method increases the accuracy of the
transport in both cases, by a factor 2.3 in the single geodesic case. A fourth-order
method is twice as expensive as a second-order method in terms of the number of
calls to the Hamiltonian equations; hence in this case it is the most efficient way to
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reach a given accuracy.
We also investigated the effect of using variation 3 of the algorithm, which enforces

conservation of the transported vector norm and of its scalar product with the geodesic
velocity. Doing so yields an exact transport for the sphere because it is of dimension 2
and the conservation of two quantities is enough to ensure an exact transport—up to
the fact that the geodesic is computed approximately—so that the actually observed
error is the error in the integration of the geodesic equation. It yields a dramatically
improved transport of the same order of convergence for SPD(3) (see Figure 4). The
complexity of this operation is very low, and we recommend always using it. It can
be expected, however, that the effect of the enforcement of these conservations will
lower as the dimension increases since it only fixes two components of the transported
vector.
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One perturbed geodesic, Runge-Kutta 2
One perturbed geodesic, Runge-Kutta 2, without conservation

One perturbed geodesic, Runge-Kutta 4
Two perturbed geodesics, Runge-Kutta 2
Two perturbed geodesics, Runge-Kutta 4

Fig. 4. Relative errors for SPD(3) in different settings, as functions of the step size, with initial
point, velocity, and initial w kept constant. The dotted lines are linear regressions. Runge–Kutta
2 (resp., 4) indicates that a second-order (resp., fourth-order) Runge–Kutta integration has been
used to integrate the geodesic equations at steps (i) and (ii). Without conservation indicates that
variation 3 has not been used.

We also confirmed numerically that without a second-order method to integrate
the geodesic equations at steps (i) and (ii) of the algorithm, the scheme does not con-
verge. This is not in contradiction with Theorem 3.1, which supposes this integration
is done with a second-order Runge–Kutta method.

Finally, using two geodesics to compute a central finite difference for the Jacobi
field is 1.5 times more expensive than using a single geodesic, in terms of the number
of calls to the Hamiltonian equations, and it is therefore more efficient to compute
two perturbed geodesics in the case of the symmetric positive definite matrices.

5.3. Comparison with Schild’s ladder. We compared the relative errors of
the fanning scheme with Schild’s ladder. We implemented Schild’s ladder on the
sphere and compared the relative errors of both schemes on the same geodesic and
vector. We chose this vector to be orthogonal to the velocity since the transport
with Schild’s ladder is exact if the transported vector is collinear to the velocity. We
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Fig. 5. Relative error of Schild’s ladder scheme compared to the fanning scheme (double
geodesic, Runge-Kutta 2) proposed here, in the case of S2.

use a closed-form expression for the Riemannian logarithm in Schild’s ladder and
closed-form expressions for the geodesic. The results are given in Figure 5.

6. Conclusion. We proposed a new method, the fanning scheme, to compute
parallel transport along a geodesic on a Riemannian manifold using Jacobi fields. In
contrast to Schild’s ladder, this method does not require the computation of Rie-
mannian logarithms, which may not be given in closed form and may be hard to
approximate. We proved that the error of the scheme is of order O

(
1
N

)
, where N

is the number of discretization steps, and that it cannot be improved in the general
case, yielding the same convergence rate as Schild’s ladder. We also showed that only
four calls to the Hamiltonian equations are necessary at each step to provide a satis-
fying approximation of the transport, two of them being used to compute the main
geodesic.

A limitation of this scheme is to only be applicable when parallel transporting
along geodesics, and this limitation seems to be unavoidable with the identity on which
it relies. Note also that the Hamiltonian equations are expressed in the cotangent
space, whereas the approximation of the transport computed at each step lies in the
tangent space to the manifold. Going back and forth from cotangent to tangent space
at each iteration is costly if the metric is not available in closed form, as it requires
the inversion of a system. In very high dimensions this might limit the performances.

Appendix A. Pseudocode for the algorithm. We give a pseudocode
description of the numerical scheme. Here, G(p) denotes the metric matrix at p for
any p ∈M.

1: function ParallelTransport(x0, α0, w0, N)
2: function v(x, α)
3: return K(x)α
4: end function
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5: function f(x, α)
6: return − 1

2∇x
(
αTK(x)α

)
. in closed form or by finite differences

7: end function

. γ0 coordinates of γ(0)
. α0 coordinates of G(γ(0))γ̇(0) ∈ T ∗γ(0)M

. w0 coordinates of w ∈ Tγ(0)M
. β0 coordinates of G(γ(0))w0

. N number of time-steps
8: h = 1/N , ε = 1/N
9: for k = 0, . . . , (N − 1) do

. integration of the main geodesic
10: γk+ 1

2
= γk + h

2 vk

11: αk+ 1
2

= αk + h
2f(γk, αk)

12: γk+1 = γk + hv(γk+ 1
2
, αk+ 1

2
)

13: αk+1 = αk + hf(γk+ 1
2
, αk+ 1

2
)

. perturbed geodesic equation in the direction wk
14: γε

k+ 1
2

= γk + h
2 v(γk, αk + εβk)

15: αε
k+ 1

2

= αk + εβk + h
2f(()γεk, αk + εβk

16: γεk+1 = γεk + hv(γε
k+ 1

2

, αεk + 1
2 )

. Jacobi field by finite differences

17: ŵk+1 =
γε
k+1−γk+1

hε

18: β̂k+1 = g(γk+1)wk+1 . Use explicit g or solve K(γk+1)β̂k+1 = ŵk+1

. Conserve quantities
19: Solve for a, b:

20: β>0 K(γ0)β0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1),

21: α>0 K(γ0)α0 = (aβ̂k+1 + bαk+1)>K(γ̃k+1)(aβ̂k+1 + bαk+1, vk+1)

22: βk+1 = aβ̂k+1 + bαk+1 . parallel transport
23: wk+1 = K(γk+1)βk+1

24: end for
return γN , αN , wN

. γN approximation of γ(1)
. αN approximation of G(γ(1))γ̇(1)

. wN approximation of Pγ(0),γ(1)(w0)
25: end function

Appendix B. Proofs.

B.1. A lemma to change coordinates. We recall that we suppose the geode-
sic contained within a compact subset Ω of the manifold M. We start with a result
controlling the norms of change-of-coordinates matrices. Let p in M, and let q =
Expp(v), where ‖v‖g ≤ η

2 , where η > 0 is a lower bound on the injectivity radius on
Ω. We consider two bases of TqM: one defined from the global system of coordinates,
which we denote by BΦ

q , and another made of the normal coordinates centered at p,
built from the coordinate on TpM obtained from the coordinate chart Φ, which we
denote by BNq . We can therefore define Λ(p, q) as the change-of-coordinates matrix

between BΦ
q and BNq . The operator norms ||| · ||| of these matrices are bounded over

Ω in the following sense.
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Lemma B.1. There exists L ≥ 0 such that for all p ∈ K and for all q ∈ K such
that q = Expp(v) for some v ∈ TpM with ‖v‖g ≤ η

2 , we have

|||Λ(p, q)||| ≤ L

and

|||Λ−1(p, q)||| ≤ L.

Proof. Any two norms on TqM are equivalent, and the norm bounds of the co-
ordinate change smoothly depend on p and q by smoothness of the metric. Hence we
have the result.

This lemma allows us to translate any bound on the components of a tensor in
the global system of coordinates into a bound on the components of the same tensor
in any of the normal systems of coordinates centered at a point of the geodesic, and
vice versa.

B.2. Transport and connection. We prove a result connecting successive co-
variant derivatives to parallel transport.

Proposition B.2. Let V be a vector field onM. Let γ : [0, 1]→M be a geodesic.
Then

(18) ∇kγ̇V (γ(t)) =
dk

dhk

∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h))).

Proof. Let Ei(0) be an orthonormal basis of Tγ(0)M. Using the parallel transport
along γ, we get orthonormal basis Ei(s) of Tγ(t)M for all t. For t ∈ [0, 1], denote by
(ai(t))i=1,...,n the coordinates of V (γ(t)) in the basis (Ei(t))i=1,...,n. We have

dk

dhk
P−1
t,t+h(V (γ(t+ h)) =

dk

dhk
P−1
t,t+h

(
n∑
i=1

ai(t+ h)Ei(t+ h)

)
=

n∑
i=1

dkai(t+ h)

dhk
Ei(t)

because P−1
t,t+hEi(t+ h) = Ei(t) does not depend on h. On the other hand,

∇kγ̇V (γ(t)) = ∇kγ̇
n∑
i=1

ai(t)Ei(t) =

n∑
i=1

∇kγ̇(ai(t))Ei(t) =

n∑
i=1

dkai(t+ h)

dhk
Ei(t)

by the definition of Ei(s).

B.3. A stronger version of Proposition 2.1. From there, we can prove a
stronger version of Proposition 2.1. As before, η denotes a lower bound on the injec-
tivity radius of M on Ω.

Proposition B.3. There exists A ≥ 0 such that for all t ∈ [0, 1[, for all w ∈
Tγ(t)M, and for all h < η

‖γ̇(t)‖g , we have∥∥∥∥∥Pt,t+h(w)−
Jwγ(t)(h)

h

∥∥∥∥∥
g

≤ Ah2‖w‖g.

Proof. Let t ∈ [0, 1[, w ∈ Tγ(t)M, and h < η
‖γ̇(t)‖g , i.e., such that Jwγ(t)(h) is well

defined. From Proposition B.2, for any smooth vector field V on M,

(19) ∇kγ̇(t)V (γ(t)) =
dk

dhk

∣∣∣∣
h=0

P−1
t,t+h(V (γ(t+ h))).
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We will use this identity to obtain a development of V (γ(t+ h)) = Jwγ(t)(h) for small
h.

We have Jwγ(t)(0) = 0, ∇γ̇Jwγ(t)(0) = w, ∇2
γ̇J

w
γ(t)(0) = −R(Jwγ(t)(0), γ̇(0))γ̇(0) = 0

using (1) and finally

(20)
‖∇3

γ̇J
w
γ(t)(h)‖g = ‖∇γ̇(R)(Jwγ(t)(h), γ̇(h))γ̇(h) +R(∇γ̇Jwγ(t)(h), γ̇(h))γ̇(h)‖g

≤ ‖∇γ̇R‖∞‖γ̇(h)‖2g‖Jwγ(t)(h)‖g + ‖R‖∞‖γ̇(h)‖2g‖∇γ̇Jwγ(t)(h)‖g,

where the∞-norms, taken over the geodesic and the compact Ω, are finite because the
curvature and its derivatives are bounded. Note that we used ∇γ̇ γ̇ = 0, which holds
since γ is a geodesic. In normal coordinates centered at γ(t), we have Jwγ(t)(h)i = hwi.

Therefore, if we denote by gij(γ(t + h)) the components of the metric in normal
coordinates, we get using Einstein notations

‖Jwγ(t)(h)‖2g = h2gij(γ(t+ h))wiwj .

To obtain an upper bound for this term which does not depend on t, we note that the
coefficients of the metric in the global coordinate system are bounded on Ω. Using
Lemma B.1, we get a bound M ≥ 0 valid on all the systems of normal coordinates
centered at a point of the geodesic, so that

‖Jwγ(t)(h)‖g ≤ hM‖w‖2.

By the equivalence of the norms as seen in Lemma B.1, and because g varies smoothly,
there exists N ≥ 0 such that

(21) ‖Jwγ(t)(gh)‖g ≤ hMN‖w‖g,

where the dependence of the majoration on t has vanished, and the result stays valid
for all h < max ( η

‖γ̇(t)‖g , 1− t) and all w. Similarly, there exists C > 0 such that

(22) ‖∇γ̇Jwγ(s)(h)‖ ≤ C‖w‖g

at any point and for any h < max ( η
‖γ̇(t)‖g , 1− t). Gathering (20), (21), and (22), we

get that there exists a constant A ≥ 0 which does not depend on t, h, or w such that

(23)
∥∥∥∇3

γ̇J
w
γ(s)(h)

∥∥∥
g
≤ A‖w‖g.

Now, using (19) with V (γ(t+ h)) = Jwγ(t)(h) and a Taylor formula, we get

P−1
t,t+h(Jwγ(t)(h)) = hw + h3r(h,w),

where r is the remainder of the expansion, controlled in (23). We thus get∥∥∥∥∥J
w
γ(t)(h)

h
− Pt,t+h(w)

∥∥∥∥∥
g

= ‖Pt,t+h(h3r(w, h))‖g.

Now, because the parallel transport is an isometry, we can use our control (23) on the
remainder to get ∥∥∥∥∥J

w
γ(t)(h)

h
− Pt,t+h(w)

∥∥∥∥∥
g

≤ A

6
h2‖w‖g.
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B.4. A lemma to control error accumulation. At every step of the scheme,
we compute a Jacobi field from an approximate value of the transported vector. We
need to control the error made with this computation from an already approximate
vector. We provide a control on the 2-norm of the corresponding error in the global
system of coordinates.

Lemma B.4. There exists B ≥ 0 such that for all t ∈ [0, 1[, for all w1, w2 ∈
Tγ(t)M, and for all h ≤ η

‖γ̇(t)‖g small enough, we have

(24)

∥∥∥∥∥J
w1

γ(t)(h)− Jw2

γ(t)(h)

h

∥∥∥∥∥
2

≤ (1 +Bh)‖w1 − w2‖2.

Proof. Let t ∈ [0, 1[, and let h ≤ η
‖γ̇(t)‖g . We denote p = γ(t), q = γ(t +

h). We use the exponential map to get normal coordinates on a neighborhood V
of p from the basis

(
∂
∂xi

∣∣
p

)
i=1,...,n

of TpM. Let us denote by
(
∂
∂yi

∣∣
r

)
i=1,...,n

the

basis obtained in the tangent space at any point r of V from this system of normal
coordinates centered at p. At any point r in V , there are now two different bases
of TrM:

(
∂
∂yi

∣∣
r

)
i=1,...,n

obtained from the normal coordinates and
(

∂
∂xi

∣∣
r

)
i=1,...,n

obtained from the coordinate system Φ. Let w1, w2 ∈ TpM, and denote by wij for
i ∈ {1, . . . , n}, j ∈ {1, 2} the coordinates in the global system Φ. By definition,
the basis

(
∂
∂yi

∣∣
p

)
i=1,...,n

and the basis
(
∂
∂xi

∣∣
p

)
i=1,...,n

coincide, and in particular, for

j ∈ {1, 2},

wj = (wj)
i ∂

∂xi

∣∣∣∣
p

= (wj)
i ∂

∂yi

∣∣∣∣
p

.

If i ∈ {1, . . . , n}, j ∈ {1, 2}, the jth coordinate of Jwi

γ(t)(h) in the basis
(
∂
∂yi

∣∣
q

)
i=1,...,n

is

J
wj

γ(t)(h)i =
∂

∂ε

∣∣∣∣
ε=0

(Expp(h(v + εwj)))
i =

∂

∂ε

∣∣∣∣
ε=0

(h(v + εwj))
i = hwij .

Let Λ(γ(t + h), γ(t)) be the change-of-coordinates matrix of Tγ(t+h) from the basis(
∂
∂yi

∣∣
q

)
i=1,...,n

to the basis
(
∂
∂xi

∣∣
q

)
i=1,...,n

. Λ varies smoothly with t and h and is the

identity when h = 0. Hence, we can write an expansion

Λ(γ(t+ h), γ(t)) = Id + hW (t) +O(h2).

The second-order term depends on the second derivative of Λ with respect to h.
Restricting ourselves to a compact subset of M, as in Lemma B.1, we get a uniform
bound on the norm of this second derivative, thus getting a control on the operator
norm of Λ(γ(t+ h), γ(t)), which we can write, for h small enough, as

|||Λ(γ(t+ h), γ(t))||| ≤ (1 +Bh),

where B is a positive constant which does not depend on h or t. Now we get∥∥∥∥∥J
w1

γ(t)(h)− Jw2

γ(t)(h)

h

∥∥∥∥∥
2

= ‖Λ(γ(t+ h), γ(t))(w1 − w2)‖2 ≤ (1 +Bh) ‖w1 − w2‖2 ,

which is the desired result.
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B.5. Proof that we can compute the geodesic simultaneously with a
second-order method. We give here a control on the error made in the scheme
when computing the main geodesic approximately and simultaneously with the par-
allel transport. We assume that the main geodesic is computed with a second-order
method, and we need to control the subsequent error on the Jacobi field. The com-
putations are made in global coordinates, and the error is measured by the 2-norm
in these coordinates. Φ : Ω → U denotes the corresponding diffeomorphism. We
denote by η > 0 a lower bound on the injectivity radius of M on Ω and by ε > 0 the
parameter used to compute the perturbed geodesics at step (ii).

Proposition B.5. There exists A > 0 such that for all t ∈ [0, 1[, for all h ∈
[0, 1− t], and for all w ∈ Tγ(t)M,∥∥∥∥∥Jw̃k

γk
(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2

≤ Ah2.

Proof. Let t ∈ [0, 1[, h ∈ [0, 1− t], and w ∈ Tγ(t)M. The term rewrites as
(25)∥∥∥∥∥Jw̃k

γk
(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2

=

∥∥∥∥∥ ∂Expγk(hγ̇k + xw̃k)

∂x

∣∣∣∣
x=0

−
∂Expγ̃k(h˜̇γk + xw̃k)

∂x

∣∣∣∣∣
x=0

∥∥∥∥∥
2

.

This is the difference between the derivatives of two solutions of the same differential
equation (5) with two different initial conditions. More precisely, we define Π : Φ(Ω)×
BRn(0, ‖γ̃k‖+2ε‖w̃k‖)× [0, η])→ Rn such that Π(p0, α0, h) are the coordinates of the
solutions of the Hamiltonian equation at time h with initial coordinates p0 and initial
momentum α0. Π is the flow, in coordinates, of the geodesic equation. We can now
rewrite (25) as∥∥∥∥∥Jw̃k

γk
(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2

=

∥∥∥∥ ∂Π(γk, γ̇k + εw̃k, h)

∂ε

∣∣∣∣
ε=0

− ∂Π(γ̃k, ˙̃γk + εw̃k, h)

∂ε

∣∣∣∣
ε=0

∥∥∥∥
2

.

By the Cauchy–Lipschitz theorem and results on the regularity of the flow, Π is
smooth. Hence, its derivatives are bounded over its compact set of definition. Hence
there exists a constant A > 0 such that∥∥∥∥∥Jw̃k

γk
(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2

≤ A
(
‖γ̃ − γ‖2 +

∥∥ ˙̃γ − γ̇
∥∥

2

)
,

where we can once again assume that A is independent of t and h. In coordinates,
we use a second-order Runge–Kutta method to integrate the geodesic equation (5) so
that the cumulated error ‖γ̃ − γ‖2 +

∥∥ ˙̃γ − γ̇
∥∥

2
is of order h2. Hence, there exists a

positive constant B which does not depend on h, t, or w such that∥∥∥∥∥Jw̃k
γk

(h)

h
−

Jw̃k

γ̃k
(h)

h

∥∥∥∥∥
2

≤ Bh2.

B.6. Numerical approximation with a single perturbed geodesic. We
prove a lemma which allows us to control the error we make when we approximate
numerically the Jacobi field using steps (iii) and (ii) of the algorithm.
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Lemma B.6. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for
all h ∈ [0, η

‖γ̇(t)‖g ], and for all w ∈ Tγ(t)M with ‖w‖2 < L—in the global system of

coordinates—we have ∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)

h

∥∥∥∥∥
2

≤ A(h2 + εh),

where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with a single per-
turbed geodesic and a first-order differentiation method.

Proof. Let L > 0. Let t ∈ [0, 1[, h ∈ [0, η
‖γ̇(t)‖g ], and w ∈ Tγ(t)M. We split the

error term into two parts,

∥∥∥∥∥J
w
γ(t)(h)

h
−

J̃wγ(t)(h)

h

∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥∥∥
Jwγ(t)(h)

h
−

Expγ(t)
(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸

(1)

∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
− ˜Expγ(t)

(
h(γ̇(t) + εw)

)
+ ˜Expγ(t)

(
hγ̇(t)

)
εh︸ ︷︷ ︸
(2)

∥∥∥∥∥∥∥∥∥
2

,

where Exp is the Riemannian exponential and ˜Exp is the numerical approximation of
this Riemannian exponential computed thanks to the Hamiltonian equations. When
running the scheme, these computations are done in the global system of coordinates.

Term (1). Let i ∈ {1, . . . , n}, and let F i : (x, t, w) 7→ Exp[hγ̇(t) + xw]i. We have

Jwγ(t)(h)

h

i

− Exp[h(γ̇(t) + εw)]
i − Exp[hγ̇(t)]

i

εh

=
1

h

∂F i(εh, t, w)

∂ε

∣∣∣∣
ε=0

− F i(εh, t, w)− F i(0, t, w)

εh

=
∂F i(x, t, w)

∂x

∣∣∣∣
x=0

− F i(εh, t, w)− F i(0, t, w)

εh
.

This is the error when performing a first-order differentiation on x 7→ F i(x, t, w) at
0. This error is of order εh and will depend smoothly on t and w. Since t ∈ [0, 1] and
imposing ‖w‖2 < L, there exists B which does not depend on t or w such that∣∣∣∣∣J

w
γ(t)(h)

h

i

− Exp[hγ̇(t) + εhw]
i − Exp[hγ̇(t)]

εh

i
∣∣∣∣∣ ≤ Bεh

so that there exists C > 0 such that for all t, for all h, and for all w with ‖w‖2 ≤ L,∥∥∥∥∥Jwγ(t)(h)

h
− Exp[hγ̇(t) + εhw]− Exp[hγ̇(t)]

εh

∥∥∥∥∥
2

≤ Cεh.

Term (2). We rewrite the Hamiltonian equation ẋ(t) = F1(x(t), α(t)) and α̇(t) =
F2(x(t), α(t)). We denote by xε, αε the solution of this equation (in the global sys-
tem of coordinates) with initial conditions xε(0) = x0 = γ(t) and αε(0) = αε0 =
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K(x0)−1(γ̇(t) + εw). We denote by x̃ε the result after one step of length h of the
integration of the same equation using a second-order Runge–Kutta method with
parameter δ ∈ ]0, 1]. The term (2) rewrites as

1

εh
‖(xε(h)− x0(h))− (x̃ε − x̃0)‖2.

First, we develop xε in the neighborhood of 0:

(26) xε(h) = x0 + hẋ0 +
h2

2
ẍ0 +

∫ h

0

(h− t)2

2

...
xε(t)dt.

We have for the last term∥∥∥∥∥
∫ h

0

(h− t)2

2

...
xε(t)dt−

∫ h

0

(h− t)2

2

...
x0(t)dt

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ h

0

∫ +ε

0

(h− t)2

2
∂ε

...
xε(u, t)dudt

∥∥∥∥∥
2

,

xε being the solution of a smooth ODE with smoothly varying initial conditions; it is
smooth in time and with respect to ε. Hence, when the initial conditions are within
a compact, ∂ε

...
xε is bounded, and hence there exists D > 0 such that∥∥∥∥∥
∫ h

0

(h− t)2

2

...
xε(t)dt−

∫ h

0

(h− t)2

2

...
x0(t)dt

∥∥∥∥∥
2

≤ Dh3ε.

After computations of the first- and second-order terms, we get

(27)

xε(h) =x0 + h(γ̇(0) + εw)

+
h2

2

(
(∇xK)(x0)[K(x0)αε0]αε0 +K(x0)F2(x0, α

ε
0)
)

+ O
(
h3|ε|

)
.

Now we focus on the approximation x̃ε. One step of a second-order Runge–Kutta
method with parameter δ gives

x̃ε = x0 + h

[(
1− 1

2δ

)
F1(x0, α

ε
0) +

1

2δ
F1

(
x0 + δhF1(x0, α

ε
0), αε0 + δhF2(x0, α

ε
0)
)]

= x0 + h

[(
1− 1

2δ

)
K(x0)αε0 +

1

2δ
K
(
x0 + δhK(x0)αε0

)(
αε0 + δhF2(x0, α

ε
0)
)]
.

We use a Taylor expansion for K:

K
(
x0 + δhK(x0)αε0

)
= K(x0) + δh(∇xK)(x0)[K(x0)αε0]

+
(δh)2

2
(∇xK)2[K(x0)αε0,K(x0)αε0] + O

(
h3
)
.

Injecting this into the previous expression for xε, we get after development

x̃ε = x0 + hK(x0)(αε0)

+
h2

2

[
K(x0)F2(x0, α

ε
0) + (∇xK)(x0)[K(x0)αε0]αε0

]
+
h3δ

4

[
(∇xK)(x0)[αε0]F2(x0, α

ε
0) + (∇xK)2[K(x0)αε0,K(x0)αε0]αε0

]
+ O

(
h4
)
.
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The third-order term of x̃ε − x0 is then proportional to

(∇xK)(x0)[αε0]F2(x0, α
ε
0)− (∇xK)(x0)α0

0F2(x0, α
0
0)

+ (∇xK)2[K(x0)αε0,K(x0)αε0]αε0 − (∇xK)2[K(x0)α0
0,K(x0)α0

0]α0
0.

Both these terms are the differences of smooth functions at points whose distance is
of order ε‖w‖2. Because those functions are smooth, and we are only interested in
these majorations for points in Ω and tangent vectors in a compact ball in the tangent
space, this third-order term is bounded by Eh3ε‖w‖2, where E is a positive constant
which does not depend on the position on the geodesic. Finally, the zeroth-, first-,
and second-order terms of xε and x̃ε cancel each other, so that there exists D ≥ 0
such that

‖(xε(h)− x0(h))− (x̃ε(h)− x̃0(h))‖2 ≤ (h3ε+ Eh3ε),

which concludes the proof.

B.7. Numerical approximation with two perturbed geodesics. We sup-
pose here that the computation to get the Jacobi field is done using two perturbed
geodesics, and a second-order differentiation as described in (8).

Lemma B.7. For all L > 0, there exists A > 0 such that for all t ∈ [0, 1[, for
all h ∈ [0, 1 − t], and for all w ∈ Tγ(t)M with ‖w‖2 < L—in the global system of
coordinates—we have ∥∥∥∥∥Jwγ(t)(h)− J̃wγ(t)(h)

h

∥∥∥∥∥
2

≤ A(h2 + εh),

where J̃wγ(t)(h) is the numerical approximation of Jwγ(t)(h) computed with two perturbed
geodesics and a central finite differentiation method. We consider that this approxi-
mation is computed in the global system of coordinates.

The proof is similar to the one above.
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