
Mémoire d’Habilitation à Diriger les Recherches

Méthodes et outils computationnels pour
l’analyse de données géométriques

Computational Methods and Tools for
Geometric Data Analysis

Benjamin Charlier

Présenté le 11 Décembre 2025

Devant le jury composé de

Mohamed Daoudi — Professeur, IMT Nord Europe Rapporteur
Xavier Pennec — Directeur de recherche, INRIA Rapporteur
Frédéric Richard — Professeur, Aix-Marseille Université Rapporteur
Lorenzo Rosasco — Associate Professor, Università di Genova, MIT Examinateur
Joseph Salmon — Professeur, Université de Montpellier, INRIA Examinateur
Carola–Bibiane Schönlieb — Full professor, University of Cambridge Examinatrice
Alain Trouvé — Professeur, ENS Paris-Saclay Examinateur

Charte d’intégrité scientifique

Je déclare avoir respecté, dans la conception et la rédaction de ce mémoire d’HDR, les valeurs
et principes d’intégrité scientifique destinés à garantir le caractère honnête et scientifiquement
rigoureux de tout travail de recherche, visés à l’article L.211–2 du Code de la recherche et énoncés
par la Charte nationale de déontologie des métiers de la recherche et la Charte d’intégrité
scientifique de l’Université de Montpellier. Je m’engage à les promouvoir dans le cadre de mes
activités futures d’encadrement de recherche.

Benjamin Charlier

benjamin.charlier@inrae.fr

Unité de Mathématiques et Informatique Appliquées de Toulouse
INRAE Occitanie-Toulouse
24 Chemin de Borde Rouge
31320 Auzeville–Tolosane — France

2

mailto:benjamin.charlier@inrae.fr

Contents

Résumé (version française) 1

Foreword 7

Introduction 9

1 Shape Analysis for Geometric and Functional Data 13
1.1 Functional shapes . 14

1.1.1 Informal definition . 14
1.1.2 Case Study: OCT Dataset . 14
1.1.3 From shapes to fshapes analysis . 16

1.2 Deformation of fshapes . 17
1.2.1 Fshape Bundle . 17
1.2.2 Metamorphoses . 17
1.2.3 Tangential model . 19

1.3 Distance Between Functional Shapes in the Functional Varifold Framework 19
1.3.1 Measuring Distances Between Shapes . 19
1.3.2 Functional Shapes as Functional Varifolds . 20
1.3.3 RKHS Based Distances Between Fvarifold . 21

1.4 Registration of Fshapes and Atlas Estimation . 22
1.4.1 Registration (a.k.a. Matching) . 22
1.4.2 Atlas . 25

1.5 Numerical implementation . 27
1.5.1 Discrete fshapes . 28
1.5.2 Discrete functional norms . 28
1.5.3 Data attachment term and discrete Varifold norm 28
1.5.4 Metamorphosis in the discrete setting . 30

2 Longitudinal Datasets and Shape Evolution 33
2.1 A fanning scheme to compute the parallel transport on Riemannian manifolds . . . 34

2.1.1 Introduction . 34
2.1.2 Fanning scheme . 35
2.1.3 Convergence result . 38
2.1.4 Ladder Methods Strike Back . 38

2.2 Study of longitudinal datasets . 40
2.2.1 Context and Application Setting . 40
2.2.2 Geodesic regression in shape analysis . 41
2.2.3 Multimodal longitudinal data analysis . 44

3

CONTENTS

3 Kernel Methods in Action: General Formulas and Real-World Scale Datasets 45
3.1 Kernel Operation as Tensor reduction . 46

3.1.1 Tensor reduction . 46
3.1.2 Examples . 47

3.2 Reducing the memory footprint of kernel Operations 48
3.2.1 Scientific computing with GPU programming . 48
3.2.2 Tiled reduction scheme to avoid memory transfers 51
3.2.3 Advanced computational plan . 52

3.3 Providing High Level Computational tools . 53
3.3.1 The Symbolic Tensor abstraction . 53
3.3.2 Automatic differentiation . 57
3.3.3 Advanced linear algebra operations with kernels 59

3.4 Implementation details and structure of the library . 60
3.4.1 KeOps formulas . 60
3.4.2 Just-In-Time Compilation . 62
3.4.3 High level Binders . 64

Conclusion and Perspectives 67

A Scientific Production A1
A.1 List of Publications . A1
A.2 List of Softwares . A4

Bibliography A7

4

Résumé

Écrire son Habilitation à diriger les recherches, par Quino dans [67]

Avant-Propos

Ce mémoire présente les développements des méthodes et outils computationnels en analyse
de formes réalisés au cours de ces dix dernières années, en tant que Maître de Conférences à
l’Université de Montpellier. À partir de 2013 et pendant douze ans, en parallèle de mes activités
d’enseignement à la Faculté des Sciences, j’ai été membre de l’Institut Montpelliérain Alexander
Grothendieck, au sein de l’équipe Statistique et Probabilités.

Au cours ces années, j’ai eu la chance de passer près d’un quart de mon temps — ce qui
correspond officiellement à la moitié de mon temps alloué à la recherche — à travailler au
sein d’autres laboratoires. De 2016 à 2019, j’ai été membre à temps partiel de l’équipe-projet
Aramis (INRIA) à l’Institut du Cerveau et de la Moëlle Épinière (ICM), hébergé à l’Hôpital de la
Pitié-Salpêtrière. Durant le premier semestre de 2023, j’ai passé quelques mois au Laboratoire
Jacques-Louis Lions (LJLL). De plus, j’ai régulièrement fréquenté le Centre de Mathématiques et
Leurs Applications (CMLA) à l’École Normale Supérieure de Cachan, qui est devenu par la suite le
Centre Borelli à l’ENS Paris-Saclay.

Depuis peu, je suis en détachement dans l’unité Mathématiques et Informatique appliquées
de Toulouse à l’Institut national de recherche pour l’agriculture, l’alimentation et l’environnement
(INRAE).

Les différents laboratoires que j’ai fréquentés reflètent la diversité de mes centres d’intérêt
scientifiques. Mes domaines de spécialité se situent à l’intersection de plusieurs champs disci-
plinaires : géométrie, statistique, informatique graphique, optimisation, imagerie, programmation,
etc. Il est donc parfois difficile de résumer mes thématiques de recherche en quelques mots-clés.
En définitive, mon intérêt se porte avant tout sur la résolution de problèmes concrets par la
modélisation mathématique, laquelle mobilise souvent des outils issus de plusieurs domaines.

1

Résumé

J’ai constaté, au fil de mes premières années de carrière, que les applications constituent une
source inépuisable de développements méthodologiques originaux et féconds — pour peu que
l’on reste curieux.

Si l’on inclut les années de doctorat, cela fait maintenant quinze ans que j’exerce un métier
dont la finalité est de développer des outils et des méthodes pour l’analyse de données. À partir
de l’ensemble des travaux menés durant cette période, il m’a fallu trouver un angle d’attaque pour
construire un récit cohérent. J’ai choisi de centrer le propos sur mes contributions en analyse
de forme, en structurant le document selon une unité de lieu, de temps et d’action. La première
partie se déroule au CMLA, auprès d’A. Trouvé, autour des formes fonctionnelles ; la deuxième à
l’ICM avec S. Durrleman, sur l’analyse de données longitudinales ; enfin, une dernière partie dans
le cloud, avec J. Glaunès et J. Feydy, autour du développement de KeOps.

Je termine en mentionnant deux autres domaines de recherche. Le premier regroupe une série
de travaux menés en collaboration avec B. Gris, portant sur la théorie des modules de déformation
appliquée à l’analyse de formes structurées. Le second, développé plus récemment à Montpellier
avec J. Salmon, concerne le traitement des données issues du crowdsourcing. Ces thématiques
ne sont pas abordées dans les chapitres principaux, mais feront l’objet d’une discussion dans le
chapitre de conclusion.

Introduction

Contexte

Comprendre la notion de forme pour en étudier la variabilité implique l’utilisation, à plusieurs
niveaux, d’outils issus de la géométrie. En premier lieu, il y a les formes géométriques que l’on
observe. Dans les applications issues de l’imagerie médicale ou biologique, ce sont souvent des
nuages de points, des courbes ou des maillages dans le plan ou l’espace 3D. Définir la notion de
forme de manière générale demeure une tâche délicate. On peut néanmoins la concevoir comme
ce qui reste d’un objet lorsque l’on quotiente les effets de certaines transformations agissant
sur lui1. Cette acception nous amène à un second niveau où la géométrie apparaît: l’ensemble
des formes est décrit par un espace non-euclidien2 telle qu’une variété riemannienne. Selon le
groupe de tansformations considéré, les espaces de formes seront de dimension finie, comme la
sphère des triangles de Kendall [42], ou de dimension infinie avec des géométries plus complexes,
tels que les espace de courbes [55] ou des difféomorphismes [7].

Les espaces de Hilbert à noyau reproduisant (RKHS, pour Reproducing Kernel Hilbert Space)
[8], sont des outils classsiques en analyse qui sont particulièrement pratiques pout définir des
métriques sur les espaces de formes. Il s’agit d’espaces de dimension infinie qui se comportent
presque comme des espaces de dimension finie, dans le sens où ils sont munis d’un produit
scalaire et où l’évaluation en un point est une fonctionnelle linéaire continue. Cette propriété
est très utile lorsqu’on traite des données discrètes que l’on peut interpoler pour approximer
des objets continus. Les RKHS, qui constituent un concept central de cette thèse, sont également
largement utilisés dans de nombreux domaines des mathématiques appliquées [10, 71, 82].

Les nouvelles modalités d’imagerie en biologie ou en médecine permettent désormais de
mesurer la valeur d’une variable à des localisations précises de l’espace et/ou de multiplier

1D. G. Kendall motive sa définition par: “Nous définissons ici ’la forme’ de manière informelle comme ’ce qui reste
lorsque les différences qui peuvent être attribuées aux translations, rotations et dilatations ont été retirées’.” [41].

2D. Mumford a écrit ce que l’on pourrait traduire par “La notion de forme est en quelque sorte l’expression ultime de la
non-linéarité” [59].

2

Résumé

les acquisitions. Les données ayant motivé les travaux sur les formes fonctionnelles, décrites
au Chapitre 1, sont composées d’un maillage sur lequel un signal a été observé. Au Chapitre 2,
on s’intéresse au suivi de l’évolution temporelle d’un maillage représentant une sous-structure
corticale. En conséquence, les modèles théoriques doivent être généralisés, ce qui conduit souvent
à des formulations mathématiques plus complexes. Il est alors nécessaire de développer de
nouveaux outils computationnels, tels que ceux présentés au Chapitre 3, pour appliquer ces
modèles aux ensembles de données modernes.

Dans ce mémoire, je présente une série de contributions théoriques et pratiques dans le
domaine de l’analyse de formes, en mettant l’accent sur la notion de formes fonctionnelles et
sur l’analyse des données longitudinales, ainsi que leurs applications en imagerie médicale. Les
outils computationnels développés sont suffisamment généraux et bas niveau pour intéresser
d’autres communautés, notamment en statistique et en apprentissage automatique. Le travail est
organisé en trois chapitres principaux, chacun traitant d’un aspect distinct de l’analyse de formes
et de ses applications.

Plan du mémoire

Chapitre 1 — Analyse de formes pour données géométriques et fonctionnelles

Dans le premier chapitre, je présente des analyses théoriques et applications numériques des
formes fonctionnelles (fshape) introduites par [13]. La définition des formes fonctionnelles a
été motivée par la nécessité d’analyser la variabilité d’un ensemble de données acquises par
tomographie par cohérence optique (OCT), dans le cadre de la recherche sur le glaucome. Les
données consistent en des maillages de surface (les supports géométriques), tous distincts,
auxquels sont associés un champ scalaire représentant l’épaisseur de la membrane observée.
Un des objectifs de l’application était de développer un classificateur capable de détecter les
symptômes de la maladie, tout en produisant des cartes d’épaisseur cohérentes entre les patients,
fournissant ainsi aux praticiens un indicateur fiable de l’état de chaque patient.

Sur un plan théorique, l’analyse de forme fonctionnelle repose sur l’analyse de formes classique,
où les objets géométriques sont étudiés modulo des déformations régulières et non-rigides
agissant sur eux. Le principal enjeu réside dans l’adaptation des méthodes existantes — basées
sur la théories des Large Deformation Metric Mapping (LDDMM) — pour traiter simultanément la
composante géométrique et fonctionnelle.

Sur un plan pratique, le premier verrou est la taille importante des calculs. Les schémas
numériques utilisés reposent largement sur les méthodes à noyaux, qui ont une complexité
quadratique et sont donc difficiles à appliquer efficacement à des ensembles de données de
centaines de milliers de points. Un autre problème crucial est l’instabilité numérique. Ce point a
pu être résolu en étudiant les propriétés théoriques des modèles continues, donnant alors des
indications pour corriger les modèles discrets.

Je commence par définir le fibré des formes fonctionnelles et introduire une classe de défor-
mations — appelées métamorphoses — qui peuvent modifier à la fois la géométrie et le signal. Je
définis ensuite une distance entre les formes fonctionnelles en utilisant un outil de la théorie
géométrique de la mesure connu sous le nom de varifolds. Il fournit un cadre théorique attractif
pour définir une famille de distances entre des objets géométriques muni de signaux (ou struc-
tures plus avancées, cela fonctionne toujours). Ces distances possèdent plusieurs atouts: elles
sont régulières et n’ont pas besoin de correspondance point-à-point entre formes.

Je présente ensuite des résultats précis d’existence — démontrés dans les articles [Art3, Art6] —

3

Résumé

pour le problème d’appariement (estimer la déformation entre un objet source et un objet cible)
et le problème d’estimation d’atlas (estimer une forme moyenne et les déformations entre cette
forme et chaque observation). Cette analyse a révélé pourquoi les expériences numériques avec
des signaux L2 étaient instables — principalement en raison d’effets de disparition de masse — et
a conduit à étendre la cadre aux signaux de régularité plus élevée, dans des espaces de Sobolev
Hs. Enfin, je décris le schéma discret utilisé dans les simulations numériques.

Ces travaux correspondent aux articles [Art3, Art6, Art4, Art5, Art11], [Proc2], ainsi qu’au logiciel
FshapeTk [Soft1].

Chapitre 2 — Données longitudinales et évolution de formes

Dans le deuxième chapitre, je présente une série de résultats théoriques et pratiques développés
pour modéliser l’évolution temporelles des formes géométriques. Ces travaux ont été réalisés
durant mon séjour à l’ICM au sein de l’équipe ARAMIS, en collaboration avec S. Durrleman. Les
chercheurs de l’ICM s’intéressent à la compréhension des causes, des dynamiques et des traite-
ments potentiels des maladies neurodégénératives complexes telles que la maladie d’Alzheimer.
En exploitant la base de données multimodales de l’Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [39], qui contient des données longitudinales de patients, l’objectif est de comprendre la
progression de la maladie d’Alzheimer et de contribuer à la personnalisation du parcours de soins
des patients.

Les données longitudinales sont modélisées en représentant chaque observation par un point
sur une variété riemannienne — par exemple, la variété des formes dans le cas des structures
géométriques comme les maillages. L’évolution de ces structures au cours de la vie d’un patient
est alors décrite comme une courbe sur cette variété abstraite, observée à des instants discrets.

Le transport parallèle est un outil central de la géométrie riemannienne qui permet de comparer
des vecteurs tangents. C’est pourquoi la première section du chapitre présente un travail sur une
méthode d’approximation — le schéma dit, en éventail (fanning scheme ou FS) — pour calculer
le transport parallèle des vecteurs tangents [Art7]. J’étudis la vitesse de convergence de cette
méthode et démontre que l’erreur diminue linéairement en le pas de discrétisation. Un avantage
important du FS est qu’il ne nécessite pas le calcul du logarithme riemannien, qui est souvent
coûteux en termes de calcul dans les applications réelles. Je fait également le lien avec le travail
plus récent [37], qui démontre que des approches alternatives, connues sous le nom de méthodes
à échelle (Ladder), peuvent offrir de meilleures performances pour l’approximation du transport
parallèle.

Dans une seconde partie, je présente brièvement une application du transport parallèle, en
montrant comment différents modèles de régression peuvent être utilisés pour prédire l’évolution
d’une forme [Proc5]. Ces modèles ont été implémentés dans le logiciel Deformetrica [Soft2]. Enfin,
je décris succinctement l’article [Art10], qui analyse la variabilité de la progression de la maladie
d’Alzheimer à partir de données multimodales, incluant des images cérébrales, des évaluations
clinico-neuropsychologiques et d’autres biomarqueurs.

Dans ce chapitre sont évoqués les travaux [Art7, Art8, Art10], [Proc1, Proc5, Proc7], et le logiciel
FshapeTk [Soft2].

4

Résumé

Chapitre 3 — Méthodes à noyau en pratique: formules génériques et ensembles de données de
grande taille

Dans le dernier chapitre, je présente la bibliothèque KeOps, qui permet d’effectuer simplement
des calculs efficaces pour des opérations à noyau à grande échelle. Le parangon de cette famille
d’opérations est la convolution, interprétée ici comme un produit matrice-vecteur. Elles constituent
le cœur de nombreuses méthodes abordées dans les chapitres précédents. KeOps permet de
définir des formules mathématiques arbitraires pour ce type de calculs tout en garantissant de
hautes performances et une bonne scalabilité.

Les deux principaux goulets d’étranglement des opérations à noyau sont la complexité com-
putationnelle et l’usage mémoire. KeOps recourt à un calcul “brute force”, conservant ainsi une
complexité quadratique en temps, mais en la compensant par une exécution fortement paral-
lélisée sur GPU. Cette approche lui permet d’atteindre l’état de l’art en terme de rapidité de calcul
sur des problèmes de l’ordre du million de points. Mais surtout, KeOps conserve une empreinte
mémoire linéaire, ce qui en fait un outil particulièrement adapté aux applications à grande échelle,
où la mémoire constitue souvent un facteur limitant.

KeOps peut être utilisé avec des opérations à noyau définies à partir de formules mathéma-
tiques arbitraires, tout en gérant automatiquement leur exécution parallélisée. Pour cela, nous
avons introduit le concept de tenseur symbolique [Art9], qui distingue trois types de dimensions :
batch, externe et interne. Les opérations mathématiques peuvent être appliquées de manière
différée (lazy) sur la dimension interne, c’est-à-dire que les calculs ne sont pas exécutés à la déc-
laration mais remis à plus tard, quand le résultat est requis. L’exécution effective n’est déclenchée
que lors de la réduction de la dimension externe. C’est à ce moment que KeOps applique un
schéma de réduction par tuilage optimisé.

Cette conception permet d’utiliser les tenseurs symboliques dans un code existant avec un
minimum de code auxiliaire, facilitant ainsi son adoption. J’explique comment notre moteur
interne de différentiation automatique est compatible avec la méthode autograd de PyTorch, ce
qui permet une utilisation aisée dans des pipelines d’optimisation.

Je montre ensuite comment effectuer directement des opérations algébriques de haut niveau
avec les tenseurs symboliques — tel que l’inversion de système linéaires basés sur des noyaux,
des décompositions en espaces propres, etc. Enfin, je décris l’architecture interne de l’API, en
détaillant sa conception modulaire et son extensibilité.

Ce travail a été publié dans [Art9], [Proc6, Proc8], ainsi que dans la documentation officielle
disponible à l’adresse: www.kernel-operations.io [Soft3].

5

https://www.kernel-operations.io/keops

Résumé

6

Foreword

Writing his Habilitation à diriger les recherches, by Quino in [67]

This document presents the development about computational methods and computational
tools in shapes analysis carried out over the past decade during my tenure as a Maître de
Conférences at the Université de Montpellier. From 2013 and for twelve years, alongside my
teaching duties at the Faculté des Sciences, I was a member of the Institut Montpelliérain Alexander
Grothendieck (IMAG), within the Statistics and Probability team.

Fortunately, I was able to spend nearly a quarter of this time — which officially corresponds
to half of my allocated research time — visiting other laboratories. From 2016 to 2019, I was a
part-time member of the Aramis project-team (INRIA) at the Institut du Cerveau et de la Moëlle
Épinière (ICM), hosted at La Pitié-Salpêtrière Hospital. During the first half of 2023, I spent a few
months at the Laboratoire Jacques-Louis Lions (LJLL). In the meantime, I regularly visited the
Centre de Mathématiques et Leurs Applications (CMLA) at École Normale Supérieure Cachan (ENS
Cachan), which later became the Centre Borelli at ENS Paris-Saclay.

I recently joined the Mathématiques et Informatique appliquées de Toulouse (MIAT) laboratory
at the Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE)
as a full-time researcher (Chargé de Recherches).

This variety of structures reflects my interests, which lie at the intersection of several fields —
such as geometry, statistics, computer graphics, optimization, imaging, coding, ... As a result, it
is sometimes difficult to encapsulate my research output under a single keyword. It’s not that
my knowledge is particularly vast, but rather that it is drawn from a wide range of disciplines, in
an effort to identify common patterns and address practical problems through modeling. I have
come to realize that applied problems can serve as a powerful source of creativity for theoretical
development. In any case, curiosity is always a good drive.

After 15 years of developing methods and tools at the frontier between applied mathematics
and computer science, it became necessary to find a coherent narrative thread to present this
body of work. I chose to center the theme around geometric data analysis through the concept of
shape, which encompasses the majority of my contributions. This topic is a natural continuation —

7

Foreword

though distinct — from my PhD thesis, which focused on high-dimensional statistics applied to
quotiented data. In the spirit of classical theater principles, each chapter loosely follows the rules
of the Unités de lieu, de temps et d’action. The first part takes place at CMLA with A. Trouvé and
focuses on functional shapes; the second part at ICM with S. Durrleman explores longitudinal data
analysis; and the third part unfolds in the cloud with J. Glaunès, J. Feydy, and the KeOps project.

Two other topics could have been included in this thesis. The first is a direct continuation of
shape analysis, focusing on the modular deformation framework developed in collaboration with
B. Gris at LJLL. Orthogonally, a more recent line of work with J. Salmon (IMAG) explores statistics
and machine learning for the analysis of crowd-sourced data. While not covered in the main
chapters, these topics will be discussed in the perspectives section at the conclusion of the thesis.

On a train. Somewhere between Toulouse and Montpellier, May 18th, 2025.

8

Introduction

Context

Performing shape analysis involves working with geometry at several levels. The first level concerns
the observed geometric form itself, which is often represented in applications as point clouds,
curves, or meshes in the plane or in 3D space. The notion of shape is delicate to define in full
generality, but it can be informally understood as what remains after factoring out the effects
of certain transformations acting on the object3. This leads to a second level where geometry is
useful: the set of shapes is itself a space that can be modeled as non-Euclidean4 manifolds. These
can range from relatively simple finite-dimensional spaces, such as Kendall’s shape sphere for
triangles [42], to more intricate spaces like the space of curves [55] or the space of diffeomorphisms
[7].

To define metrics between shapes, a convenient tool in functional analysis is the Reproducing
Kernel Hilbert Space (RKHS) [8]. These are infinite-dimensional spaces that behave almost like
finite-dimensional ones, in the sense that they are endowed with an inner product and that
evaluation at a point is a continuous linear functional. This property is particularly useful when
dealing with discrete data and interpolation schemes to approximate continuous objects. RKHSs,
which are a central concept in this thesis, are also widely used in various fields of applied
mathematics [10, 71, 82].

Recent advances in biological and medical data acquisition have enriched traditional spatial
measurements with additional information and enabled more frequent or repeated acquisitions.
This may take the form of features observed at each point — such as a signal value, as discussed
in Chapter 1 — or temporal evolutions of the object, as in Chapter 2. As a result, theoretical models
must be extended, often leading to more complex mathematical formulations. This, in turn,
necessitates the development of new computational tools, such as those presented in Chapter 3,
to make these methods scalable for modern datasets.

In this thesis, I present a series of theoretical and practical contributions to the field of shape
analysis, with a particular focus on functional shapes and longitudinal data, and their applications
in medical imaging. The computational tools developed are sufficiently general and low-level
to be of interest to other communities, including statistics and machine learning. The work is
organized into three main chapters, each addressing a distinct aspect of shape analysis and its
applications.

3Citing D. G. Kendall in [41]: “We here define ’shape’ informally to be ’what is left when the differences which can be
attributed to translations, rotations, and dilatations have been quotiented out’".

4Citing D. Mumford in [59]: “Shape is the ultimate non-linear sort of thing”.

9

Introduction

Outline

Chapter 1 — Shape Analysis for Geometric and Functional Data

In the first chapter, I present theoretical and numerical developments of the functional shape
(fshape) framework, originally introduced by A. Trouvé and N. Charon in [13], shortly before I joined
the group at CMLA. The definition of fshapes was motivated by the need to analyze the variability
in a dataset acquired through Optical Coherence Tomography of the optic nerve, in the context of
glaucoma research. The data consists of distinct surface meshes (geometrical supports), each
paired with a scalar signal representing thickness. A key application goal was to develop a classifier
capable of detecting the disease, while also producing consistent thickness maps across patients
— providing practitioners with a reliable indicator of each patient’s condition.

On the theoretical side, functional shape analysis builds upon classical shape analysis, where
geometric objects are studied modulo smooth, non-rigid deformations acting on them. The main
challenge lies in extending existing methods — based on the Large Deformation Metric Mapping
(LDDMM) framework — to handle both geometric and functional components simultaneously.

On the practical side, the first major bottleneck was the computational load. The discrete
numerical scheme relies heavily on kernel methods, which have quadratic complexity and are
difficult to apply efficiently to datasets of this size (hundreds of thousands of points). Another sig-
nificant issue was numerical instability, which we were able to address by studying the theoretical
properties of the underlying continuous equations.

I begin by defining the fshape bundle and introducing a class of deformations — called
metamorphoses — that can modify both geometry and signal. I then define a distance between
fshapes using a tool from geometric measure theory known as varifolds. This provides a powerful
framework for defining a family of distances between geometric objects carrying features (signals
or more advanced structures). These distances have several desirable properties, such as being
differentiable and not requiring point-to-point correspondence between shapes.

I recall fine existence results, established in [Art3, Art6], for both the registration problem (esti-
mating the deformation between a source and a target object) and the atlas problem (estimating
a mean fshape and the deformations from it to each observation). This analysis revealed why the
numerical experiments with L2 signals were unstable — primarily due to mass cancellation effects
— and led us to develop the theory in higher-regularity settings, specifically within Sobolev spaces
Hs. Finally, I discuss the discrete scheme used in the experiments.

These works correspond to the papers [Art3, Art6, Art4, Art5, Art11], [Proc4, Proc2], as well as the
FshapeTk software [Soft1].

Chapter 2 — Longitudinal Datasets and Shape Evolution

In the second chapter, I present a series of theoretical and practical results developed to model
shape evolution. These developments were carried out during my time at ICM within the ARAMIS
team, and working with S. Durrleman. Researchers at ICM are interested in understanding the
causes, dynamics, and potential treatments for complex neurodegenerative diseases such as
Alzheimer’s disease and dementia. Leveraging the large, multimodal Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database [39], which contains longitudinal data from patients, the
aim is to explore the progression of Alzheimer’s disease and contribute to the personalization of
patient care.

10

Introduction

It is convenient to model such data by representing each observation as a point on a manifold
— for example, a shape manifold in the case of geometric structures like meshes describing
subcortical anatomy. The evolution of these structures over the lifetime of a patient can then be
described as a path on this abstract manifold, observed at discrete time points.

Since infinitesimal time evolutions are represented by tangent vectors, a central tool in
Riemannian geometry for comparing such vectors defined at different points on a manifold is
parallel transport. For this reason, the first section presents work on an approximation method —
the Fanning Scheme — for computing the parallel transport of tangent vectors [Art7]. I establish
the convergence rate of the method and demonstrate that the error decreases linearly. A key
advantage of the fanning scheme is that it does not require computation of the Riemannian
logarithm, which is often computationally expensive in real-world applications. I also discuss
recent developments by [37], who demonstrated that alternative approaches, known as Ladder
methods, can offer better performance for approximating parallel transport.

In the second part, I briefly present an application of parallel transport, showing how various
regression models can be used to address the task of shape progression prediction [Proc5]. These
models were implemented in the Deformetrica software [Soft2]. Finally, I introduce the application
paper [Art10], which applies similar methods to analyze variability in Alzheimer’s disease progres-
sion using multimodal data, including brain imaging, clinical and neuropsychological assessments,
and biomarkers.

This chapter correspond to the papers [Art7, Art8, Art10], [Proc1, Proc5, Proc7], as well as the
FshapeTk software [Soft2].

Chapter 3 — Kernel Methods in Action: General Formulas and Real-World Scale
Datasets

In the final chapter, I introduce the KeOps library — developed in collaboration with J. Feydy and
J. Glaunès — which is designed for efficient and user-friendly computation of large-scale kernel
operations. A prototypical example of such operations is convolution, viewed as a matrix–vector
product. These operations form the computational backbone of many of the methods discussed
in the previous chapters. KeOps enables the use of arbitrary mathematical formulas for these
kernel computations while maintaining high performance and scalability.

The main bottlenecks in kernel operations are twofold: computational complexity and memory
usage. KeOps tackles these challenges by using brute-force computation, maintaining the quadratic
time complexity, but offsetting it with highly parallelized execution on GPUs. This approach allows
KeOps to achieve state-of-the-art performance on problems involving millions of data points.
Most importantly, KeOps maintains a linear memory footprint, making it especially well-suited for
large-scale applications where memory is a limiting factor.

KeOps allows users to define custom kernel operations from arbitrary mathematical formulas,
while automatically handling their parallelized execution. To enable this, KeOps introduces the
concept of symbolic tensors, which distinguish between three types of dimensions: batch, outer,
and inner. Users can apply mathematical operations lazily on the inner dimension, meaning that
computations are deferred and not immediately executed. Actual computation is only triggered
when the outer dimension is reduced, at which point KeOps applies an optimized tiling reduction
scheme to ensure both efficiency and scalability.

This design allows the symbolic tensor abstraction to be integrated into existing code with
minimal boilerplate, making it easy to adopt. I explain how our internal automatic differentia-
tion engine is fully compatible with PyTorch’s autograd system, enabling seamless use within

11

Introduction

optimization pipelines. I then demonstrate how high-level algebraic routines can be performed
directly with symbolic tensors — for example, computing inverse kernel — based matrix–vector
products, eigenspace decompositions, and more. Finally, I describe the internal architecture of
the API, detailing its modular design and extensibility.

This work was published in [Art9], [Proc6, Proc8], and in the official documentation available at
www.kernel-operations.io [Soft3].

12

https://www.kernel-operations.io/keops

1C
h
ap

te
r

Shape Analysis for Geometric and Functional Data

Non rigid deformations by Franquin in [27]

Fshapes This chapter summarizes my work on functional shapes and presents, in a synthetic
manner, the results of [Art3, Art6, Art4, Art5, Art11], and [Proc2]. This long-standing series of works
was initiated during my postdoctoral position at CMLA, in the team of A. Trouvé, at the time when N.
Charon was completing his PhD thesis. Collaboration with both of them subsequently continued,
the latter moved to Johns Hopkins University as a faculty member at the Center for Imaging Science
(CIS). During this period, it was also an opportunity to work in close collaboration with the team of
F. Beg at Simon Fraser University, where the application paper on the retina dataset was part of
the PhD thesis of S. Lee.

FshapesTk The fshapes framework is grounded in solid theoretical developments, which were
guided and refined through numerical experiments on data. Several unusual numerical behaviors
turned out to be indicators of genuine theoretical challenges, such as mass cancellation and
gradient renormalization at boundaries. All numerical experiments were implemented in the
FshapesTK software [Soft1], which I developed and actively maintained from 2012 to 20191. It was
coded in Matlab, with performance-critical components — primarily kernel-related operations —
accelerated using C/CUDA code integrated via the Mex API2. FshapesTK incorporates numerous
algorithmic stabilization techniques, as detailed in Section 9 of [Art3], making it a robust and

1Still running as of 2025!
2See https://www.mathworks.com/help/matlab/matlab_external/cpp-mex-api.html

13

https://www.mathworks.com/help/matlab/matlab_external/cpp-mex-api.html

1. Shape Analysis for Geometric and Functional Data

reliable tool. Alongside Deformetrica [Soft2], it remains one of the few software packages capable
of implementing atlas estimation frameworks for geometric data.

Outline We begin by introducing the Functional Shape framework and provide an application
example, using the OCT dataset, that will be referenced throughout the chapter. We then describe
the mathematical foundations for analyzing geometric and functional data, extending the classical
non-rigid deformation framework traditionally used for geometric data. Finally, we present the
discrete framework along with practical algorithms for computing key quantities, such as atlas
registration. All of these concepts are defined and detailed in the sections that follow.

1.1 Functional shapes

1.1.1 Informal definition

Spatial data extracted from medical imaging often comes with additional measurements as
thickness, pressure, diffusion direction, gene expression, etc. A general framework to model this
type of data is to consider that measurement are given as a pair (x, s), where x ∈ X denotes the
geometric position and s ∈M represents a feature attached to x. While X is typically a subset of
R2 or R3 in practical applications based on medical imaging — as points, curves or surfaces –, the
feature spaceM can take various forms, depending on both the acquisition modality and the
object under study — a real number, a vector, a distribution, etc.

We introduce a framework where the geometric structure and its associated feature field are
treated as a single entity and are processed jointly. Accordingly, the object of interest is generally
represented as a pair (X, f) where X denotes the geometrical support — typically a manifold
of dimension d ∈ N in an ambient space Rn with d ≤ n — and f : X →M is a function defined
on this manifold. We assume that the continuous object (X, f) is observed through a discrete
sampling process, possibly involving a mesh, yielding samples (xi, si = f(xi))i=1,...,N .

In the functional shape (fshape) framework, the feature space corresponds to real-valued
signals, i.e. M = R. In our applications, a fshape consists of a pair (X, f), where X denotes
the geometric support given by a surface in a 3D ambient space, and f : X → R is a function
defined on this surface. This definition is intentionally broad and can be adapted to accommodate
different object and ambient space dimensions.

More general feature spaces have recently been explored in the literature. In some of my recent
work, this exploration has been motivated by applications in spatial transcriptomics [Art15] and
the modeling of structured deformations [PreP1]. This topic is further discussed in the concluding
chapter.

1.1.2 Case Study: OCT Dataset

In practical applications conducted in collaboration with F. Beg’s team, the geometry-feature
pairs represent the retinal layer surface along with the corresponding thickness of that layer,
mapped onto the surface. The dataset was acquired using Optical Coherence Tomography (OCT),
a high-resolution 3D imaging technique for the posterior segment of the eye, as illustrated in
Figure 1.1a. The study included a few dozen scans, each represented as three meshes corresponding
to the retinal nerve fiber layer (RNFL), the Inner Limiting Membrane (ILM) and Bruch’s membrane
(BM) — with approximately 105 vertices each, as illustrated in Figure 1.1c.

14

1. Shape Analysis for Geometric and Functional Data

(a) OCT scan (b) Segmentation (c) Meshes with signal

Figure 1.1: (a) 3D visualization of the Optic Nerve Head; (b) Example of a slice segmentation of ILM
(magenta), posterior RNFL boundary (blue), BM (white), and posterior choroidal boundary (cyan);
(c) Corresponding meshes color mapped with thickness. Courtesy of M. Sarunic (SFU).

We propose an approach for quantitative shape variability analysis of retinal OCT data using
the fshape framework. This method enables the construction of a population-mean template from
the geometry-function pairs extracted from each individual scan. Shape variability across multiple
retinas is then measured through geometric deformations and functional residuals between
this template and each subject’s observation. In [Art4], we demonstrate the clinical relevance
and practical application of this framework by generating atlases of the RNFL thickness for both
glaucomatous and healthy subjects. These atlases reveal detailed spatial patterns of RNFL loss
associated with glaucoma, as illustrated by the sample data in Figure 1.2. This work was further
extended in [Art5], where we introduce high-level tools designed for clinical applications. The
resulting analysis allows for comprehensive visualization and interpretation of morphometric
patterns driven by multiple clinical and anatomical factors.

Figure 1.2: A sample from the OCT dataset. The first row depicts four examples of RNFL surfaces
along with their corresponding RNFL thickness maps (in mm). The second row illustrates the
relative positions of these surfaces from different viewing angles.

15

1. Shape Analysis for Geometric and Functional Data

1.1.3 From shapes to fshapes analysis

The analysis of variability in a dataset composed of discrete fshapes is conducted in the spirit of
classical shape theory. In Grenander’s setting [32], shape spaces are modeled as sets of shapes
that are homogeneous under the action of a group of spatial transformations. Metrics between
shapes are then induced from right-invariant Riemannian metrics on the transformation group
itself. The aim of this chapter is to introduce a similar, yet extended, framework tailored to the
case of functional shapes. This approach is commonly used in the field of computational anatomy
[62] and draws its theoretical foundations from several areas of mathematics, including geometry,
metric measure theory, optimal control, and the calculus of variations. The objective of defining a
comprehensive non-rigid deformation model for fshapes has progressed through the following
steps, with each contribution recalled in the corresponding paper:

• Define an adequate mathematical structure to describe the observed data. This is achieved
through the introduction of the fshape bundle in [Art3], which is further enhanced in [Art6].

• Define admissible deformations and their associated cost. We describe the metamorphosis
framework, which precisely models how geometry and signal deform jointly. The initial
setting introduced in [Art3] was restricted to signals in L2 spaces. However, numerical
experiments revealed the emergence of signal oscillations. The theoretical explanation lies
in the fact that the corresponding metrics may be too weak, failing to sufficiently penalize
variations in the signal. To address this, stronger metrics were considered — specifically,
Sobolev-type metrics in [Art6] and bounded variation norms in [Art11].

• Define a dissimilarity measure to compare objects. This is achieved through the functional
varifold distance — a smooth and flexible metric introduced in [Art3]. It is versatile, adaptable
to new imaging modalities [56], and scalable to real-world datasets, as demonstrated in
[Proc2], thanks to the KeOps library (see Chapter 3).

• Solve the registration problem, which consists in finding a minimum-energy deformation
that sends a fshape close to another. Generating these minimum-energy deformations is
formulated as an optimal control problem, leading to a Hamiltonian formulation (geodesic
shooting). The discrete case is studied in [Art3], and the general continuous case in [Art6].
A coherent discrete framework is established for both the deformation model and the
dissimilarity measure: in [Art3] for signals in L2 space, and in [Art6] for signals in Sobolev
spaces. The convergence of the (static) discrete scheme toward its continuous counterpart
is proven within the framework of Γ-convergence in [Art11].

• Solve the atlas estimation problem, which consists in estimating a mean fshape from a set of
fshape samples, along with the deformations from this central object to each observed data
point. We prove the existence of solutions in [Art3], and implement a practical algorithm in
[Art3], demonstrating its effectiveness on real datasets in [Art4, Art5].

All these questions are the subject of a vast body of literature, which can be loosely defined under
the umbrella of shape analysis [82]. Similar problems have been addressed in other modalities,
such as 2D or 3D images, and under different group actions.

16

1. Shape Analysis for Geometric and Functional Data

1.2 Deformation of fshapes

1.2.1 Fshape Bundle

We consider shapes as geometric objects embedded in a given ambient vector space Rn. These
shapes are sub-manifolds X ⊂ Rn (with or without boundary) of dimension d, where 1 ≤ d ≤ n,
and such that both X and its boundary possess regularity of order s ≥ 0.

The paper [Art3] corresponds to the case s = 0, where X is assumed to be a rectifiable set and
is endowed with a signal f in the space of square-integrable functions L2(X), equipped with the
norm

∥f∥2L2(X) =

∫
X

|f(x)|2 dHd(x) <∞,

where Hd denotes the d-dimensional Hausdorff (or volume) measure. The paper [Art6] addresses
the case of higher regularity, with s ≥ 1. The manifolds X considered are of class Cs, and the
associated function spaces are Sobolev spaces Hs(X). The norm ∥f∥Hs(X) =

∑s
k=0∥∇kf∥2L2(X)

ensures that all covariant derivatives of f up to order k ≤ s are square-integrable.
In the fshape framework, we will consider groups G = GV of smooth non-rigid deformations of

Rn based on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) setting [9, 82]. These
deformations are obtained as flows of time-dependent velocity fields modeled on a Reproducing
Kernel Hilbert Space (RKHS) V of smooth vector fields. The space V is chosen so that the induced
deformations are compatible with the regularity s of the submanifold X .In this context, shape
spaces are defined as orbits of a fixed bounded Cs submanifold X0 (the template) under the
action of GV , that is S = {ϕ(X0) | ϕ ∈ GV } which turns S into a homogeneous space. The fshape
bundle of regularity s modeled on the set S is:

Fs
S = {(X, f) | X ∈ S, f ∈ Hs(X)}.

This defines a vector bundle structure, whose fibers are Sobolev spaces parametrized by the orbit
S of X0. Indeed, strictly speaking, each functional space Hs(X) is distinct — since the domain of
definition of functions in Hs(X) is the shape X itself — yet these spaces are smoothly related
through the deformation group action. In the case of the OCT dataset, we can think of each RNFL
surface with its associated thickness signal as an image whose support is a different surface
embedded in the ambient space R3.

The geometric deformation extends naturally to fshapes in Fs
S as follows:

ϕ · (X, f) = (ϕ(X), f ◦ ϕ−1)

which corresponds to deforming the geometry by ϕ while pulling the signal back onto the deformed
shape ϕ(X). Note that in this case, the action on the signal is canonically defined, since the feature
space is one-dimensional. However, when dealing with more complex features, the modeling of
the deformation action involves non-trivial choices and must be carefully formulated. This point
is made explicit in recent work on implicit deformation modules [PreP1].

1.2.2 Metamorphoses

The action of GV on the fshape bundle considered so far only accounts for the geometrical part
of fshape variability corresponding to an horizontal motions in the fshape bundle Figure 1.3. To
complete it, we also need to introduce vertical motions in Fs

S which are essentially variations of
signal functions within a given fiber.

17

1. Shape Analysis for Geometric and Functional Data

S
vt ·Xt

X

X1 = ϕv1(X)

Hs(X)

f

ht

f + ζh1
Hs(X1)

f1 = (f + ζh1) ◦ (ϕv1)−1

Figure 1.3: Fshape bundle and metamorphosis.

Thus, an fshape transformation is a combination of a geometrical deformation ϕ ∈ GV and
the addition of a residual signal function ζ to the signal part of the fshape. Namely, if (X, f) ∈ Fs

S
and (ϕ, ζ) ∈ GV ×Hs(X), we shall consider the deformation:

(ϕ, ζ) · (X, f) = (ϕ(X), (f + ζ) ◦ ϕ−1). (1.1)

Note that unlike the classical setting of shape spaces, without further assumptions, this can be no
longer considered as an actual group action since the set of all transformations (ϕ, h) in Fs

S is
not even a group but should be rather thought as a section of the bundle GV ×Fs

S .
We define a metamorphosis of (X, f) as a couple of a time-varying infinitesimal deformation

v ∈ L2([0, 1], V) and infinitesimal signal variation h ∈ L2([0, 1], Hs(X)). The time integration of
(v, h) ∈ L2

(
[0, 1], V ×Hs(X)

)
parametrizes an fshape transformation path (ϕvt , ζ

h
t) with ϕvt ∈ GV

and ζht ∈ Hs(X) through the dynamical equations:
ϕ̇vt = vt ◦ ϕvt
˙ζht = ht

ϕv0 = Id, ζh0 = 0

(1.2)

We then define the infinitesimal metric on V ×Hs(X) by ∥(v, h)∥2(X,f) =
γV

2 ∥v∥
2
V +

γf

2 ∥h∥
2
Hs(X)

where γV , γf > 0 are weighting parameters. The magnitude of these coefficients governs the
trade-off between changing the geometry and changing the signal, and should be chosen based
on the specific problem at hand. In integrated form, this gives the following energy of the path
(ϕvt , ζ

h
t):

EX(v, h) =
γV
2

∫ 1

0

∥vt∥2V dt+
γf
2

∫ 1

0

∥ht ◦ (ϕvt)−1∥2Hs(Xt)
dt (1.3)

with Xt
.
= ϕvt (X). Note that the penalty on the signal variation ht at each time is measured on

the deformed submanifold Xt with respect to the metric ∥ · ∥Hs(Xt).
Finally, we can define a distance between two given fshapes (X, f) and (X ′, f ′) in the bundle

Fs
S by setting

dFs
S

(
(X, f), (X ′, f ′)

)2
= inf

{
E(v, h) | (ϕv1, ζh1) · (X, f) = (X ′, f ′)

}
(1.4)

The space (Fs
S , dFs

S
) is a complete metric space (Property 1 in [Art6]) , and a geodesic exists

between any two fshapes (Theorem 2 in [Art3]). Moreover, given a sample (Xℓ, f ℓ)1≤ℓ≤P of fshapes

18

1. Shape Analysis for Geometric and Functional Data

in FS , there exist (X∗, f∗) = min
(X,f)∈FS

P∑
ℓ=1

dFS

(
(X, f), (Xℓ, f ℓ)

)2. This miminizer of the sum of the

square distances to each (Xℓ, f ℓ) is known as the Karcher mean, and its existence is established
in Theorem 3 of [Art3]. These results are satisfactory as they provide a convenient mathematical
framework to perform first order (non-linear) statistical analysis in the fshape bundle. However,
they have limited practical utility because the fshapes observed in a sample, such as in the OCT
dataset, are unlikely to belong to the orbit S of a common template. Therefore, we require an
additional tool to compare arbitrary fshapes, such as the functional varifold norm defined in
Section 1.3.

1.2.3 Tangential model

The framework referred to as the tangential model [Art3], is obtained by neglecting the metric
changes in Equation (1.3) and approximating the signal cost by ∥ht∥2Hs(X0)

instead. In this formu-
lation, the cost of a signal change depends solely on the source geometry. While this leads to
a loss of some of the Riemannian-like properties characteristic of the metamorphosis setting,
important practical problems — such as registration — still admit solutions as shown by Theorem
4 in [Art3]. Moreover, this simplification significantly reduces the complexity of the geodesic
shooting equations — particularly the adjoint system, which must be integrated backward in time
to compute the gradient of the energy (notably, this was before automatic differentiation became
standard practice). This allowed for faster computations and more stable numerical scheme [Art4,
Art5]. However, it also leads to a partial decoupling between geometry and signal evolution. See
also the Section 1.5 below.

Let us consider Figure 1.4 for a comparison of minimum-energy trajectories under the meta-
morphosis and tangential models. Denoting S2 the unit sphere in R3, the initial fshape is (S2, 0)
and the final fshape is (2S2, 1). In other words, we deform a sphere such that both its radius and
its signal increase by one unit. Since we are using radial kernels, it turns out that the entire path in
fshape bundle remains within the set of spheres with uniform signal throughout the deformation.
In the tangential setting (top row), the optimal path corresponds to a linear interpolation of both
geometry and signal. However, in the metamorphosis model, the volume measure contributes to
the signal variation cost. As a result, geometry and signal must evolve together to find a more
efficient (i.e., lower energy) trajectory. The optimal strategy involves first contracting the sphere —
note the reduced radius at t = 0.4 — which reduces the cost of modifying the signal. Then, the
radius expands again to reach the final target geometry at t = 1. The amplitude of this bouncing
effect depends on the relative size of γV and γf as explained in Section 3.3.5 of [Art6].

1.3 Distance Between Functional Shapes in the Functional Varifold
Framework

1.3.1 Measuring Distances Between Shapes

The previous framework has primarily focused on comparing fshapes within a single, common
bundle F . However, this approach proves impractical in most real-world applications, where the
fshapes in a dataset cannot reasonably be assumed to lie within the same bundle. This is mainly
because the geometric supports of two subjects are not necessarily related by a deformation in
the group G.

19

1. Shape Analysis for Geometric and Functional Data

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

Figure 1.4: Mimimun-Energy path in the tangential model (top) versus metamorphosis (bottom)
computed with the FshapeTk.

In registration problems, it is common to introduce additional dissimilarity terms (also called
data attachment term or goodness-of-fit) to the deformation cost, which can also be interpreted
as modeling noise intensity, see Section 1.4.2. In standard image registration, these terms typically
take the form of a simple squared L2 norm between the deformed template image and the target.
However, the case of functional shapes is more complex: given two fshapes, the lack of explicit
correspondence between their geometric supports prevents any direct comparison of their signals.

Several distances have been proposed to compare geometric objects, and a review can be
found in [Chap1]. The classical Hausdorff distance is theoretically appealing but computationally
expensive and sensitive to noise. Optimal transport distances have received renewed interest,
particularly with relaxed formulations of the problem [66], but they remain computationally
demanding (e.g., due to Sinkhorn iterations). Kernel-based current distances [77] are attractive
thanks to their solid mathematical foundations and their adaptability to functional data [13].
However, they require geometries with consistently oriented meshes — which can be tricky to
achieve in automatic segmentation and meshing pipelines, as used in Section 2.2.2 — and can
suffer from numerical instabilities, such as mass cancellation effects when the geometry contracts.

To address this issue, varifold distances were introduced into the field of computational
anatomy by [14], where Theorem 4.1 demonstrates why they are not subject to the aforementioned
shortcomings of currents. The mathematical concept of varifolds3 originates from geometric
measure theory [4, 2], initially motivated by the Plateau problem. It is striking to see how, decades
later, these abstract theoretical tools have led to practical solutions in applied fields. More recently,
the discrete approximation of varifolds has been extensively studied in [12, 11]. In this work, we
present the extension to functional varifolds as introduced in [Art3].

A comparison between the current and varifold approaches was carried out in [Proc2] within the
unifying framework of oriented varifolds. It was demonstrated that kernel-based varifold distances
possess several desirable properties: they are smooth, adaptable to various data modalities,
robust to noise and missing data, and scalable to large datasets.

1.3.2 Functional Shapes as Functional Varifolds

Definition

For any integer 1 ≤ d ≤ n, we denote by Gn
d the Grassmann manifold of all d-dimensional (non-

oriented) subspaces of Rn. An element V ∈ Gn
d can be identified with the orthogonal projector

3Short for variational manifolds.

20

1. Shape Analysis for Geometric and Functional Data

onto V . In the special cases where d = 1 (resp. d = n− 1, i.e., co-dimension one), the subspace V
can be naturally identified with the range (resp. the null space) of the projector. This is why, up
to a sign, when n = 2, 3, the orientation of one-dimensional objects such as curves is typically
represented using unit tangent vectors, while the orientation of two-dimensional objects such as
surfaces is represented using unit normal vectors. This was used in the definition of the oriented
varifold setting in [Proc2]. In what follows, we will refer to the orientation vector as t ∈ Sn−1.

We say that µ is a d-dimensional functional varifold (fvarifold, in short) if µ is a finite Borel
measure on the space Rn ×Gn

d × R. Note that we consider only the case of real-valued signals
here, but this could be extended to other feature spaces [56]. This means that a fshape may
be viewed as a distribution over the space (position × orientation × feature). For instance, it
amounts to representing a functional curve or surface as the distribution of its points, with a unit
orientation vector attached, together with the signal value.

A fshape (X, f) of dimension d in Rn can be represented by a fvarifold µ(X,f). This measure
can integrate any function ω ∈ C0(Rn ×Gn

d ×R), the space of continuous functions that vanish at
infinity. Namely, we have

µ(X,f)(ω) =

∫
X

ω(x, TxX, f(x))dHd(x), (1.5)

where we denoted TxX the tangent space of X at point x. The identification X 7→ µX defines
an injection from the set of smooth sub-manifolds into the dual space W ∗ of a suitable space
W ⊂ C0(Rn ×Gn

d × R) of test functions on Rn ×Gn
d × R, provided that this test function space

is sufficiently rich. Spaces W that are Reproducing Kernel Hilbert Spaces (RKHS) is a convenient
setting and will be discussed in more detail below.

Some particularly simple fvarifolds are the Dirac delta distributions, which in this context can
be written in the form δ(x,V,s), with x ∈ Rn, V ∈ Gn

d , and s ∈ R. These are defined by the relation
δ(x,V,s)(ω) = ω(x, V, s) for any test function ω. Such singular measures will be used to approximate
polyhedral fshapes as finite sums of Dirac deltas. Each Dirac precisely encodes the location of a
face of the fshape, its orientation, and the associated signal value.

Deformation of Fvarifold

We now need to define how to deform fvarifolds in a way that is consistent with deformation of
fshapes. Let ϕ : Rn → Rn be a diffeomorphism and h a measurable function on Rn, this is given
by the following set of equations:

∀ω ∈ C0(Rn ×Gn
d × R),

(
(ϕ, ζ) · µ

)
(ω) = µ

(
(ϕ, ζ) · ω

)
where(
(ϕ, ζ) · ω

)
(x, V, s) = |dxϕ↾V |ω(ϕ(x), dxϕ(V), s+ ζ)

where for V ∈ Gn
d , |dxϕ↾V | denotes the Jacobian of ϕ along subspace V (i.e. the volume change

along V at point x) and dxϕ(V) is the image of V by the invertible linear application dxϕ. This
yields, by Proposition 1 in [Art3], to the natural relation

(ϕ, ζ) · µ(X,f) = µ(ϕ(X),(f+ζ)◦ϕ−1).

1.3.3 RKHS Based Distances Between Fvarifold

As mentioned above, we focus on a particular class of test functions given by RKHS. In the
context of fvarifolds, an admissible space W is a Hilbert space that is continuously embedded in

21

1. Shape Analysis for Geometric and Functional Data

C0(Rn ×Gn
d × R). According to the standard theory of RKHS [8], such a space can be equivalently

described by a positive and continuous kernel k defined on Rn ×Gn
d × R.

A natural and convenient way to define kernels on product spaces is to consider tensor products
of kernels. Let kpos, kor, and ksig be three positive definite kernels of class C1, defined on Rn, Gn

d ,
and R, respectively. The RKHS associated with the kernel, defined for all x1, x2 ∈ Rn, V1, V2 ∈ Gn

d ,
and s1, s2 ∈ R by

kpos ⊗ kor ⊗ ksig
(
(x1, V1, s1), (x2, V2, s2)

)
= kpos(x1, x2) kor(V1, V2) ksig(s1, s2)

is admissible as shown by Proposition 2 of [Art3]. Although these separable kernels do not cover
the entire possible set of kernels on Rn × Gn

d × R, the tensor product construction has the
advantage of providing a large class of metrics through the various possible choices of kpos, kor,
and ksig, while being easy to interpret in terms of the combination of spatial and orientation
characteristics.

In particular, choosing kernels with symmetry (i.e., those that are invariant under a group
action) can lead to a metric with desirable properties. For instance, let us consider two functions
ρpos, ρor : R→ R. If kpos(x, y) = ρpos(∥x− y∥Rn) is a radial kernel, then the varifold norm will be
translation invariant. In the case d = 2, 3, and kor(t1, t2) = ρor(⟨t1, t2⟩Rn) for orientation vectors
t1, t2 ∈ Sn−1 and an even function ρor(·) = ρor(−·), the norm will be invariant under reorientation.
This is particularly useful when meshes are not properly oriented. We refer to Section 4.3 of [Proc2]
for a more detailed discussion on various kernel options.

With these assumptions, W and its dual W ∗ are Hilbert spaces, and we denote the Hilbert
norm on W ∗ by ∥ · ∥W∗ . Moreover, for any fshapes (X, f) and (Y, g), we have that µ(X, f) and
µ(Y,g) belong to W ∗, and the resulting inner product is given by:

⟨µ(X,f), µ(Y,g)⟩W∗ =

∫
X

∫
Y

kpos(x, y) kor(TxX, tyY) ksig(f(x), g(y))dHd(x)dHd(y), (1.6)

where as before TxX (resp. TyY) denotes the tangent space to X (resp. Y) at the point x (resp.
y). Thus, a dissimilarity measure between any two fshapes can be defined as the norm of the
difference in the space of fvarifolds, i.e.,

∥µ(X,f) − µ(Y,g)∥2W∗ = ⟨µ(X,f), µ(X,f)⟩W∗ + ⟨µ(Y,g), µ(Y,g)⟩W∗ − 2⟨µ(X,f), µ(Y,g)⟩W∗ , (1.7)

which can be computed easily using (1.6).
Not every choice of kernels kpos, kor, and ksig results in a valid distance on the space of varifolds;

it is possible for two distinct fshapes to have a distance of zero. A valid distance is guaranteed
if and only if the RKHS W is dense in C0(Rn ×Gn

d × R), in which case the kernel k is said to be
c0-universal. For example, Gaussian kernels satisfy this property [73].

1.4 Registration of Fshapes and Atlas Estimation

1.4.1 Registration (a.k.a. Matching)

Problem Definition

In shape analysis, the registration (or inexact matching) problem amount to find a deformation ϕ∗
between a source S and a target T objects. It often consists of optimizing a problem of the form

min
ϕ∈D

energy(ϕ) + discrepancy(ϕ · S, T)

22

1. Shape Analysis for Geometric and Functional Data

(a) Source (b) Target (c) Relative position

Figure 1.5: Two fshapes from the OCT dataset (en face view).

over a set of admissible deformations D. The deformed source ϕ∗ · S should then be similar
to the target T , while the energy of deformation — somehow measuring the complexity of ϕ∗ —
remains low. In the setting outlined above, objects are fshapes with metamorphoses acting as
deformations, the energy of deformation is given by formula (1.3), and the data attachment term
is a fvarifold norm of Equation (1.7). Similarly to the classical LDDMM framework, metamorphoses
are generated as the flow up to time t = 1 of infinitesimal deformations, but here affecting both
geometry and signal. This allows interpolation between the source, since (ϕt=0, ζt=0) = (Id, 0),
and the final deformation ϕ = (ϕt=1, ζt=1) as illustrated in Figure 1.6.

Given a template fshape (X0, f0) and a target (X tar, f tar), we will focus on variational problems
that have the general form:

(v∗, h∗) = Arginf
v∈L2([0,1],V)

h∈L2([0,1],Hs(X0))

{EX(v, h) +A(X1, f1)}

ϕ̇vt = vt ◦ ϕt, ζ̇ht = ht

ϕv0 = Id, ζh0 = 0

(1.8)

where A(X1, f1) is a data attachment term between the transformed template shape (X1, f1) =(
ϕv1(X

0), (f0 + ζh1) ◦ (ϕv1)−1
)

and the target shape (X tar, f tar). The function ζh1 ∈ Hs(X0) is called
functional residual and is of particular interest as it encode the signal variation to account
difference between the two fshapes. In the following, we consider the case where the data
attachment term A(X1, f1) = ∥µ(X1,f1) − µ(X tar,f tar)∥2W∗ is a RKHS based fvarifold norm given by

t = 0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1

Figure 1.6: A registration with metamorphosis (s = 1) between the two fshapes shown in Figure 1.5.
Both the geometry and signal are evolving along the time.

23

1. Shape Analysis for Geometric and Functional Data

formula (1.7).

Existence Results

Equation (1.8) defines an optimal control problem, with two controls given by the deformation field
v and the variable h of signal transformation. The existence of solutions of registration problem
(1.8) have been extensively studied in Section 5 of [Art3] and Section 3.2 of [Art6] for s ≥ 1. To
summarize, the various results

• Theorem 3 in [Art6] shows the existence of solutions to the registration problem (1.8) in the
case where the data attachment term A is lower semi-continuous in L2([0, 1], V ×Hs(X)).
Unfortunately, this result does not cover the case where A is a fvarifold norm with L2 signal
(corresponding to s = 0), as fvarifold terms are generally not lower semi-continuous with
respect to the weak convergence in L2([0, 1], L2(X)).

• Theorem 7 in [Art3] establishes the existence of solutions to the registration problem (1.8)
when A is a fvarifold norm with L2 signal, under the following assumptions: the kernels
kpos, kor, and ksig are sufficiently smooth, and the ratio γf/γW — the weights appearing in
the energy (1.3) — is large enough. This latter condition on the penalty weights has practical
implications in numerical experiments. When signal variations are not sufficiently penalized,
oscillations appear, as illustrated in Figure 1.7a. Conversely, an excessively large γf forces
the functional residuals to remain nearly null. These numerical instabilities motivated the
subsequent works [Art6, Art11], where norms that explicitly penalize signal variations are
considered.

• Theorem 5 in [Art6] addresses the case whereA is a fvarifold norm with anHs signal (s ≥ 1) in
the registration problem (1.8). Existence of solutions is guaranteed provided that the kernels
kpos, kor, and ksig are sufficiently smooth. Notably, no additional conditions on the weights are
required. Numerical experiments involving such Sobolev norms yield significantly improved
functional residuals compared to the L2 case, as illustrated in Figures 1.7b. Figure 1.7c
suggests that the BV norm could be a viable alternative. The trade-off, however, is increased
model complexity for these norms and higher computational cost.

(a) L2 norm (b) H1 norm (c) BV norm penalized

Figure 1.7: The functional residuals ζ1 in three different registration involving various functional
norms. Data are depicted of Figure 1.5. As theoretical result on existence suggest, penalizing signal
variation stabilized the algorithm.

24

1. Shape Analysis for Geometric and Functional Data

Solution approximations

A full characterization of solutions to the registration problem (1.8), along with the derivation of
a conservation law along the minimum energy path via a Hamiltonian formulation, is provided
in Section 3.3 of [Art6]. This deep understanding of the properties of the continuous model has
played an important role in guiding the design of appropriate discrete models and algorithms. In
Section 1.5, we present the discrete formulation adopted in the FshapesTk implementation [Soft1].
The practical computation of a registration between two fshapes, as illustrated in Figures 1.6 and
1.7, is performed by solving a variational problem using an adaptive gradient descent algorithm,
as described in Section 1.5.4. Despite the use of highly parallelized code for kernel operations,
registration remains computationally intensive due to the reliance on numerical time integration
(typically using a second-order Runge–Kutta scheme). The examples presented in this chapter
typically require several minutes to compute.

1.4.2 Atlas

Going further the registration problem and keeping notations of Section 1.4.1, the atlas estimation
problem aims to jointly estimate a template shape S∗ and a collection of deformations {ϕℓ∗}
aligning this template to a set of observed shapes {T ℓ}Pℓ=1. It typically involves solving an
optimization problem of the form

min
S∈S, {ϕℓ}⊂D

penalty(S) +
P∑

ℓ=1

{
energy(ϕℓ) + discrepancy(ϕℓ · S, T ℓ)

}
,

where S denotes the set of admissible shapes. The objective is to identify a shape S0, referred to
as the hypertemplate, that is both simple and representative, and that can be accurately deformed
to approximate the observed data. In this setting, S is defined as the fshape bundle over the fixed
reference shape S0, meaning that S∗ is a deformation of S0, see Figure 1.8. In the atlas estimation
framework, the penalty term associated with the mean template corresponds to the energy of
the deformation mapping S0 onto S∗. While the hypertemplate may be chosen from among the
observations, it is preferably constructed as a simple, smooth prototype with plausible topology,
in order to reduce bias toward any particular individual.

Bayesian interpretation

Let us now consider a sample of P observed fshapes (Xℓ, f ℓ)ℓ=1,...,P . We introduce a forward
generative model [20] for which observations are noisy geometric-functional transformations of a
common unknown template fshape (X, f) plus additional noise terms:

(Xℓ, f ℓ) = (ϕℓ, ζℓ) · (X, f) + εℓ, for all ℓ = 1, . . . , P

As above, ϕℓ is the flow of a vector field vℓ ∈ L2([0, 1], V) and (vℓ, ζℓ) are regarded as hidden latent
variables of the transformations from template to subjects, εℓ ’s are noise variables. Considering
i.i.d. variables εℓ, we may define a noise model on fshapes based on fvarifold metrics:

p(εℓ) = p
(
(Xℓ, f ℓ) | (X, f), (vℓ, ζℓ)

)
∝ e

− 1

2σ2
W

∥µ
(ϕℓ,ζℓ)·(X,f)

−µ
(Xℓ,fℓ)

∥2
W∗

which is a Gaussian model with respect to the metric ∥ · ∥W∗ . Note that this is only formal for
the infinite dimensional space of fvarifolds but can be given a rigorous sense if restricted to a

4See the video at https://miat.inrae.fr/bcharlier/soft/img/atlas_H1.webm

25

https://miat.inrae.fr/bcharlier/soft/img/atlas_H1.webm

1. Shape Analysis for Geometric and Functional Data

F

(X0, f0)

(X∗, f∗)

(X1, f1)

(X̃1, f̃1)

(X2, f2)

(X̃2, f̃2)

(X3, f3)

(X̃3, f̃3)

v0∗, ζ
0
∗

v3∗, ζ
3
∗

Figure 1.8: Atlas estimation on the OCT dataset performed using the hypertemplate algorithm4. We
illustrate the case with P = 3 observations, where the deformed template for each ℓ = 1, . . . , P is
denoted by (X̃ℓ, f̃ ℓ) = (ϕℓ∗, ζ

ℓ
∗) · (X∗, f∗).

predefined discrete grid, similarly to [29]. As for the latent variables
(
vℓ, ζℓ

)
ℓ
, we take the following

prior deriving from the energy (1.3)

p
(
(vℓ, ζℓ) | (X, f)

)
∝ e−EX(vℓ,ζℓ)2 , for all ℓ = 1, . . . , P

which is essentially assuming independent (formal) Gaussian distribution on v and ζ in their
respective metric spaces and with variance σ2

V = 1
γV

and σ2
f = 1

γf
.

Finally, we also model the template (X, f) as a random variable itself. Inspired from the
hypertemplate model for shape atlases of [49], we represent (X, f) as a transformation of a given
hypertemplate fshape (X0, f0), i.e (X, f) = (ϕ0, ζ0) · (X0, ζ0) for a deformation ϕ0 and a residual
ζ0 ∈ L2(X0). As previously, the prior on the template is:

p
(
v0, ζ0

)
∝ e−EX0

(v0,ζ0)2 .

With an hypertemplate (X0, f0) fixed by the user, estimating the template then amounts to
computing the maximum a posteriori (MAP) estimate of (v0, ζ0) knowing the observations (Xℓ, f ℓ)ℓ.
With Bayes rules this leads to minimizing:

−
P∑

ℓ=1

log

(∫
p
(
(Xℓ, f ℓ) | (v0, ζ0), (vℓ, ζℓ)

)
p(vℓ, ζℓ)

)
− log

(
p(v0, ζ0)

)
.

The first term involves the integral with respect to the probability distribution of the latent
variables (vℓ, ζℓ). As there is no closed form expression of this integral, we use the standard Fast
Approximation with Modes and replace it by max

(vℓ,ζℓ)
p
(
(Xℓ, f ℓ) | (v0, ζ0), (vℓ, ζℓ)

)
p
(
vℓ, ζℓ

)
leading

eventually to the following variational problem:(
(v0∗, ζ

0
∗), (v

ℓ
∗, ζ

ℓ
∗)ℓ

)
= Arginf

(v0,ζ0),(vℓ,ζℓ)ℓ

1
2σ2

V

∫ 1

0

∥v0t ∥2V dt+ 1
2σ2

f
∥ζ0∥2Hs(X0)

+

P∑
ℓ=1

(
1

2σ2
V

∫ 1

0

∥vℓt∥2V dt+ 1
2σ2

f
∥ζℓ∥2Hs(X0) +

1
2σ2

W
∥µ(ϕℓ,ζℓ)·(X,f) − µ(Xℓ,fℓ)∥2W∗

) (1.9)

26

1. Shape Analysis for Geometric and Functional Data

where we remind that for ℓ = 0, . . . , P deformations ϕℓ are the flows of the vℓ and X = ϕ0 (X0).
Note that the variances σ2

V , σ
2
f , σ

2
W serve as weighting coefficients between the different terms of

the objective. Here, we treat these variances as algorithm parameters.

Mean template estimation

The previous paragraphs highlight the Bayesian interpretation underlying the variational problem
(1.9), for which the existence of solutions under certain conditions is recalled in Section 1.4.1.
In practice, computing an approximate mean template requires solving multiple concurrent
registration problems. Two different atlas estimation methods are described in detail in Section
7 of [Art3]: the hypertemplate algorithm (discussed Section 1.4.2 and used in [Art4] and [Art5])
and the free template algorithm. Both approaches rely on the following two steps iterated until
convergence:

1. Partially solve P registration problems from the current mean template onto the dataset.

2. Compute the gradient and update the mean template.

The first step is common to both algorithms. In the free template algorithm, the mean template
is updated directly using the aggregated gradient from the P registrations. In contrast, the
hypertemplate algorithm applies this same gradient through an additional registration step
between a fixed hypertemplate and the mean template. This ensures that the updated mean
template remains within the same fshape bundle, see Figure 1.8.

Application to OCT dataset

The cohorts of patients in the OCT dataset studies include both healthy and glaucomatous subjects.
The first study [Art4] was a methodological paper aimed at demonstrating the feasibility of the
proposed approach, and included P = 53 observations. In the second, medically oriented study
[Art5], the cohort consisted of P = 38 acquisitions. Despite the smaller sample size, the cohort
was designed with balanced sex and age distributions to ensure the statistical relevance of
the conclusions. By estimating a mean template for both geometry and function, individual
observations can be mapped into the coordinate system of the template. This alignment enables
functional residuals ζ — representing deviations in the functional signal — to be indexed on a
common geometric domain. As a result, statistical analysis can be performed in this common
space to study thickness loss patterns associated with glaucoma.

The fshape framework enabled detailed visualization of spatial patterns, offering significantly
finer representations compared to classical methods that rely on low-resolution, fixed-sector
views as used in [44]. The differences between age-matched normal and glaucomatous retinal
nerve fiber layers are thoroughly analyzed in [Art5]. The glaucomatous layers were found to be
significantly thinner, especially in the inferior region near Bruch’s membrane opening. Additionally,
comparisons between younger and older healthy subjects revealed a significant age-related
thinning of the choroid, particularly in the nasal and inferior regions.

1.5 Numerical implementation

In the OCT dataset, data results from a complex pipeline involving image acquisition, segmentation,
and surface extraction. In this context, the ideal underlying continuous functional surface (X, f)

is unknown and is approximated by a textured triangular mesh.

27

1. Shape Analysis for Geometric and Functional Data

1.5.1 Discrete fshapes

A continuous fshape (X, f) of dimension d embedded in Rn is assumed to be known through a
finite set of N ≥ (d + 1) points, along with their associated signal values and the connectivity
relations between vertices. In the discrete setting, an fshape is therefore described by a triplet of
objects (x,f , C), where:

• x = (xi)i=1,...,N is a N × n matrix of the N vertex coordinates xi ∈ Rn,

• f = (fi)i=1,...,N ∈ RN×1 is a column vector of signal values attached to each vertex (in
Lagrangian coordinates),

• C ∈ {1, . . . , N}T×(d+1) is a T × (d+ 1) connectivity matrix. The mesh thus consists of T > 0

simplices of dimension d (line segments (for curves) or triangles (for meshed surfaces)),
where the k-th row of C contains the indices of the d + 1 vertices forming the simplex
k ∈ {1, . . . , T}.

In direct analogy with the continuous transport equations (1.1), the transformation of a discrete
fshape by a deformation ϕ : Rn → Rn and a functional residual ζ ∈ RN×1 results in the discrete
fshape given by:

(ϕ, ζ) · (x,f) =
(
ϕ(x),f + ζ

)
=

(
ϕ(xi), fi + ζi

)
i=1,...,N

,

with the connectivity matrix C remaining unchanged.

1.5.2 Discrete functional norms

A discrete shape (x,f ,C) is a graph equipped with a signal attached to each vertex. From this
graph, we construct a piecewise polyhedral domain X̃ ⊂ Rn, consisting of d-dimensional simplices
whose vertices and edges are encoded by the matrices x and C . Let f̃ : X̃ → R be an interpolating
function such that f̃(xi) = fi for all i = 1, . . . , N . In this setting, the Hs norm of f̃ on X̃ is denoted
by ∥f∥Hs(x) — omitting the explicit dependence on X̃ and f̃ — and can be generally expressed as:

∥f∥2Hs(x) = f⊤Ds(x)f ,

where, Ds(x) is a symmetric positive definite N ×N matrix that depends on the interpolation
scheme used to define f̃ over X̃ . The entries of Ds(x) can be computed from the data in x and
C , and the matrix is typically sparse, as it is derived from the adjacency structure of the mesh. In
our applications, we consider Sobolev norms of order s = 0, 1, and the P1, P0, and mass lumping
interpolation schemes were sufficient for our purposes — i.e., they provide a precise meaning to
∥f∥L2 and ∥∇f∥L2 . Further details can be found in Section 4.2 of [Art6] and Section 6.2 of [Art11].

1.5.3 Data attachment term and discrete Varifold norm

Using the notations from Section 1.3.2, the reproducing kernel property implies that, for any x ∈ Rn,
V ∈ Gn

d , and s ∈ R, all Dirac measures δ(x,V,s) belong to the RKHS dual space W ∗ used to define
the varifold norm. The corresponding dual metric satisfies:

⟨δ(x1,V1,s1), δ(x2,V2,s2)⟩W∗ = kpos(x1, x2) kor(V1, V2) ksig(s1, s2). (1.10)

This is the key element for approximating the double integral in Equation (1.6) by a double sum.
However, before this, we need to define a quantization process. The basic idea is outlined here,

28

1. Shape Analysis for Geometric and Functional Data

with detailed explanations provided in Section 6.1 of [Art3], Section 4 of [Art6], Section 6 of [Art11],
and [Chap1].

As in Section 1.5.2, a continuous fvarifold (X, f) is known through a discrete shape (x,f ,C) on
which we associate a (still continuous) polyhedral object (X̃, f̃), which can generally be written as
(X̃, f̃) =

⋃T
k=1(Xk, fk), where the cells Xk are distinct from each other (modulo their boundaries).

To this polyhedral fshape, we associate the fvarifold µ(X̃,f̃) =
∑T

k=1 µ(Xk,fk), where each µ(Xk,fk)

is the fvarifold associated with the flat cell Xk according to formula (1.5). As illustrated by Figure
1.9, we can make the approximation:

µ(Xk,fk)(ω) ≈
∫
Xk

ω(x̃k, Vk, f̃k)dHd(x) = rkω(x̃k, Vk, f̃k) = rkδ(x̃k,Vk,f̃k)
(ω),

where position x̃k is the barycenter of the cell Xk , orientation Vk ∈ Gn
d is the linear subspace

spanned by Xk , the signal f̃k is the mean value on the cell of fk , and rk
.
= Hd(Xk) is the volume

(or length or area) of the cell (resp. segment or triangle). This leads to replacing each µ(Xk,fk) by
a single weighted Dirac rkδ(x̃k,Vk,f̃k)

. Let us define

µ(X̃,f̃) ≈ µ(x,f)
.
=

T∑
k=1

rkδ(x̃k,Vkf̃k)
(ω),

where, the center cell positions x̃k , cell orientations Vk , and mean cell signals f̃k are readily
computed from x, f , and C . In the case of varifolds (no signal), Proposition 1 in [Proc2] shows that
this finite sum of Dirac approximations provides an acceptable approximation of the polyhedral
shape X̃ in terms of varifolds, as long as the size of the cells remains small enough. A general
error bound, including the fshape case and the continuous (unobserved) (X, f), is given in Lemma
6.2 in [Art11].

xi

Vk

Xk

Xk′

(a) Continuous triangles with signal

x̃k

Vk

rk

x̃k′

Vk′

rk′

(b) Discrete approximation with mean signal

Figure 1.9: An example of quantization of two triangle cells with signal.

We finally obtain a equivalent for discrete fshapes of formula (1.6) that writes:

⟨µ(x,f), µ(x′,f ′)⟩W∗ =

T∑
k=1

T ′∑
k′=1

kpos(x̃k, x̃
′
k′) kor(Vk, V

′
k′) ksig(f̃k, f̃

′
k′)rkr

′
k′ , (1.11)

for the two discretizations µ̃(X,f) =
∑T

k=1 rkδ(x̃k,Vk,f̃k)
and µ̃(Y,g) =

∑T ′

k′=1 r
′
kδ(x̃′

k,V
′
k,f̃

′
k)

. In the
initial implementation in FshapesTk [Soft1], the expressions for the fvarifold distances derived
from (1.11) and for their gradients were manually coded in CUDA to scale to real data. Formulations
for generic radial kernels in dimensions d = 2, 3 were provided with the paper [Proc2]. Today, the
distance ∥µX − µ̃X∥W∗ can be implemented for arbitrary kernels in just a few lines using KeOps
[Soft3], and the gradients with respect to both the positions of the shape’s vertices and the signal

29

1. Shape Analysis for Geometric and Functional Data

can be computed automatically — without memory overflow — thanks to automatic differentiation,
as described in Chapter 3.

1.5.4 Metamorphosis in the discrete setting

Discrete Hamiltonian equations

A metamorphosis is determined by a couple (vt,ht) with v ∈ L2([0, 1], V) and ht = (hi,t) ∈ RN×1

such that we have the finite-dimensional evolution equations:

ẋi,t = vt(xi,t)

ḟi,t = hi,t

The energy (1.3) becomes:

Ex(v,h) =
γV
2

∫ 1

0

∥vt∥2V dt+
γf
2

∫ 1

0

hT
t Ds(xt)htdt.

The Hamiltonian corresponding to the minimization problem with this discrete energy also takes
the form:

H
(
xt,f t,pt,p

f
t , v,ht

) .
=

(
pt | vt(x)

)
+

(
pf
t | ht

)
− γV

2

∥∥vt∥∥2V − γf
2
hT
t Ds

(
xt

)
ht

=

〈 N∑
i=1

pTi,tKV (xi,t, ·) , vt
〉

V

+ hT
t p

f
t −

γV
2

∥∥vt∥∥2V − γf
2
hT
t Ds

(
xt

)
ht

where p ∈ RN×n and pf ∈ RN×1 are the discrete co-state variables. DenotingKV the vector kernel
associated to the RKHS V , the optimality conditions along geodesics ∂vH

(
xt,f t,pt,p

f
t , vt,ht

)
= 0

and ∂hH
(
xt,f t,pt,p

f
t , vt,ht

)
= 0 from the Pontryagin Maximum Principle lead to the following

expressions of the optimal controls:

vt =
1
γV

N∑
i=1

KV (xi,t, ·)pi,t

ht =
1
γf
D−1

s (xt)p
f
t

As usual for the LDDMM model, the optimal velocity fields vt are fully parameterized (via a
convolution operation) by finite-dimensional momentum vectors pt = (pi,t)

N
i=1 associated with

each vertex position. This leads to the following discrete reduced Hamiltonian:

Hr

(
xt,f t,pt,p

f
t

)
=

1

2γV
pT
t Kxt,xt

pt +
1

2γf

(
pf
t

)T
D−1

s (xt)p
f
t (1.12)

where pT
t Kxt,xt

pt
.
=

∑N
i,j=1 p

T
i,tKV (xi,t, xj,t) pj,t. In the tangential model used in [Art3] and

recalled Section 1.2.3, the functional norm does not depend on the geometry evolution and second
term is replaced by 1

2γf

(
pf
t

)T
D−1

s (x0)p
f
t .

30

1. Shape Analysis for Geometric and Functional Data

Forward equations

The hamiltonian being conserve along the time, and using formula (1.12), we can derive explicit
discrete Hamiltonian evolution equations5 for the full metamorphoses model:

ẋt

ḟ t

ṗt

ṗf
t

 =


∂pHr

(
x,f ,p,pf

)
∂pfHr

(
x,f ,p,pf

)
−∂xHr

(
x,f ,p,pf

)
−∂fHr

(
x,f ,p,pf

)
 =


1
γV
Kxt,xt

pt
1
γf
vf
t

− 1
2γV

pT
t ∂xt

Kxt,xt
pt +

1
2γf

(
vf

)T
∂xt

Ds (xt)v
f

0

 . (1.13)

Here, vf
t = D−1

s (xt)p
f is a term that requires the inversion of an N ×N (sparse) matrix for its

computation. We also note that the functional momentum pf
t remains constant over time (hence

the subscript t is dropped). The geometric momentum ṗt depends on the functional momentum
pf , meaning that variations in the signal induce variations in the geometry as discussed Section
1.2.3. For the sake of completeness, we provide below the forward equation for the tangential
metamorphosis model derived in [Art3]:ẋt

ṗt

f t

 =


1
γV
Kxt,xtpt

− 1
2γV

pT
t ∂xt

Kxt,xt
pt

f + tζ

 . (1.14)

Equations (1.13) and (1.14) provide insight into the behavior illustrated in Figure 1.4.

Geodesic shooting

We have all the ingredients to define the discrete equivalent of fshape registration Equation (1.8)
between a source (x,f) and a target (xtar,f tar). It can then be cast as a finite dimensional, non
convex, optimization problem on the initial momenta variables p0

.
= pt=0 ∈ RN×n and pf ∈ RN×1

that writes:

min
p0,p

f
J
(
p0,p

f
) .
=
γV
2
pT
0Kx,xp0 +

γf
2

(
pf

)T
D−1

s (x0)p
f + γW ∥µ(x1,f1)

− µ(xtar,f tar)∥2W∗︸ ︷︷ ︸
.
=g(x1,f1)

(1.15)

subject to the dynamics described by Equation (1.13). We use a geodesic shooting scheme for
solving the minimization generalizing widely used similar frameworks in diffeomorphic shape
matching [3].

In this case, the problem essentially reduces to performing a gradient descent on the initial mo-
menta variables (p0,p

f). The gradients of the first two terms in Equation (1.15) are straightforward
to compute. The only slightly more involved part is the last term, g(x1,f1), which depends on the
final states — (x1,f1) = (ϕ1, ζ1) · (x,f) — obtained via the forward equations (1.13). Nowadays,
this can be computed directly using KeOps and automatic differentiation as explained in Chapter
3. Alternatively, it can be approached by integrating backward the so-called adjoint linearized
system of equations6: 

Ẋt

Ḟt

Ṗt

Ṗ f
t

 =
(
−dF

(
xt,f t,pt,p

f
t

))T


Xt

Ft

Pt

P f
t

 (1.16)

5The time evolution of
(
x,f ,p,pf

)
is perpendicular to the gradient of Hr .

6The terminology is similar to that of reverse-mode automatic differentiation, though, at the time, the communities
using them were distinct.

31

1. Shape Analysis for Geometric and Functional Data

with the adjoint variables Xt ∈ RN×n, Ft ∈ RN×1, Pt ∈ RN×n, P f
t ∈ RN×1 and the endpoint

conditions X1 = ∂xg(x1,f1), F1 = ∂fg(x1,f1), P1 = ∂pg(x1,f1) = 0 and P f
1 = ∂pg(x1,f1) = 0.

In practice, the system of equations 1.16 is tedious to implement and we use instead the finite
difference trick presented in [6] (Section 4.1 just before Proposition 9). To integrate the adjoint
system (1.16), rather than explicitly compute each term in the matrix dFT , we only need to compute
a single directional derivative at each time step with a finite difference method. This has several
advantages: it is rather general, it greatly simplifies the implementation and in the end amounts
in about twice the computational cost of the forward system of equations (1.13).

In summary, the gradient of the objective functional with respect to p0 and pf is obtained by
the following forward-backward scheme:

1. Compute
(
xt,f t,pt,p

f
t

)
by integrating Equation (1.13) forward with initial conditions

(
x0,f0,

p0,p
f
0

)
.

2. Compute the gradients of g(x1,f1) with respect to f and x.

3. Transport the gradients to t = 0 by integrating backward equation 1.16 with final conditions
X1 = ∂xg(x1,f1), F1 = ∂fg(x1,f1), P1 = 0, P f

1 = 0.

4. Set ∇p0
J = 1

γV
Kx,xp0 + P0 and ∇pfJ = D0 (x0)

(
1
γf
D−1

s (x0)p
f + γWP f

0

)
We point out that the gradient with respect to the functional momentum pf at last step is computed
with respect to the L2 metric on X0 instead of the Euclidean metric, which adds the extra weight
matrix D0 (x0). This can be crucial for example when the mesh X0 is not regular but contains
triangles of very different areas. The updates on pf obtained from the gradient computed with
respect to this metric ensures that the signal variations ḟ = D−1

s (x)pf will not be too much
affected by the quality of the initial mesh.

32

2C
h
ap

te
r

Longitudinal Datasets and Shape Evolution

Pour qu’une chose soit intéressante, il
suffit de la regarder longtemps.

G. Flaubert in [25]

Longitudinal data The work presented in this chapter was carried out at ICM from 2016 to
2019, within the Aramis team, which focuses on the design of computational, mathematical, and
statistical approaches for the analysis of multimodal patient data, with a particular emphasis on
neuroimaging. The team also develops various clinical applications of its research, especially in
the context of neurodegenerative disorders such as Alzheimer’s disease.

This chapter presents my contributions to various models used in the analysis of longitudinal
data. Longitudinal refers to observations of a patient’s state at multiple time points, allowing us
to capture the rate of change over time. A common approach is to model the evolution of clinical
markers as trajectories — sampled at discrete time points — in an abstract space, using tools from
Riemannian geometry. These contributions are primarily related to the theoretical paper [Art7],
the software [Soft2] and the applied studies [Proc5, Art8, Art10]. This series of works corresponds
to part of the PhD thesis of M. Louis, which I co-supervised together with S. Durrleman.

Deformetrica The ICM provided a dynamic environment for developing research projects, span-
ning theoretical advances and practical applications in medical research. During my research stay,
I had the opportunity to collaborate with skilled engineers such as A. Routier, M. Bacci, and B.
Martin, from whom I learned many of the software development skills that later proved invaluable.

At Aramis, a strong emphasis was placed on implementation, and I was actively involved in the
development of the Deformetrica software. Initially written in C++/CUDA [Proc1], it was later ported
to Python in 2018 by PhD students A. Bône and M. Louis, who — frustrated by the intricacies of the
language — chose a cleaner and more accessible approach. For example, computing gradients in
registration problems originally required integrating the adjoint Hamiltonian system backward in
time. Early versions of the software encoded full, explicit expressions, including tedious second-
order derivative terms (as in FshapesTk). This was later simplified through a single directional
derivative approximated by finite difference, as explained in Section 1.5.4. But the transition to

33

2. Longitudinal Datasets and Shape Evolution

Python marked a major breakthrough, leveraging the PyTorch library and KeOps for automatic
differentiation. This made the implementation of new methods significantly more accessible and
flexible. The notable difference is that the initial method implemented a discretized version of
the gradient derived from the continuous framework to optimize the discrete model, whereas
automatic differentiation provides the exact gradient of the discretized problem.

Outline We begin this chapter with a study of the numerical properties of the fanning scheme
algorithm for computing parallel transport on manifolds and motivate its use on some applica-
tions. Several experiments are presented on shape space to evaluate its performance. Geodesic
regression and trajectory estimation in shape space using parallel transport were implemented
in the software [Soft2]. Finally, we present the application paper [Art10], which analyzes the
variability in Alzheimer’s disease progression using multimodal data, including brain images,
clinico-neuropsychological assessments, and biomarkers.

2.1 A fanning scheme to compute the parallel transport on Rie-
mannian manifolds

2.1.1 Introduction

Many data modalities with complex structures cannot be accurately analyzed within standard
Euclidean spaces. Such data often exhibit invariance properties and are better represented
as points in quotient spaces — such as shape spaces, spaces of orthogonal frames, or linear
subspaces — which fundamentally belong to curved, non-Euclidean spaces. Moving beyond
classical statistics in Euclidean settings, and instead adopting statistical learning frameworks
grounded in Riemannian geometry, has become a common and effective strategy. Computational
anatomy is a prominent example of this approach.

The need for efficient algorithms to compute intrinsic quantities on high-dimensional, abstract
manifolds — while operating on real, concrete data — has become increasingly pressing, especially
with the growing availability of data and computational resources. As a result, software packages
incorporating these rigorous mathematical developments have been released. Notable examples
include Deformetrica1 and the Geomstats library [57].

In [Art7], we focus on parallel transport and study a numerical scheme designed to scale
efficiently to high-dimensional data. Parallel transport is an isometry that enables the comparison
of quantities defined in the tangent spaces at different points on a manifold — such as probability
density functions, coordinates, or vectors associated with distinct locations.

There are typically no tractable formulas for computing parallel transport on a given manifold.
Either no closed-form solutions are available, or the computational complexity makes it impractical
in real-world scenarios. Formally, parallel transport can be defined as the solution to an ordinary
differential equation involving Christoffel symbols (which are computed from the manifold’s
metric). However, the number of these symbols explodes with the dimension of the manifold,
making the approach computationally unrealistic.

Alternative methods involve approximation techniques, which can be categorized into two
main families. The first family consists of ladder methods, which iterate through steps that
include the construction of small geodesic parallelograms. In principle, these methods require

1March 2025, the project seems to be discontinued... website down.

34

2. Longitudinal Datasets and Shape Evolution

the computationally expensive step of calculating the Riemannian logarithm at each iteration.
Recently, [37] addressed this limitation by providing a convergence study for these methods. We
will revisit this topic in Section 2.1.4. The second family consists of the Fanning scheme (FS) which
use a well-chosen Jacobi fields to approximate parallel transport along geodesics, up to the
second order error. Overall, it relies solely on the computations of Riemannian exponentials much
cheaper than the logarithm.

2.1.2 Fanning scheme

Notations and assumptions

We assume that γ is a geodesic defined for all time t > 0 on a smooth manifold M of finite
dimension d ∈ N provided with a smooth Riemannian metric g. We denote the Riemannian
exponential Exp and∇ the covariant derivative. For p ∈M, TpM denotes the tangent space ofM
at p. For all s, t ≥ 0 and for all w ∈ Tγ(s)M, we denote Ps,t(w) ∈ Tγ(t)M the parallel transport of w
from γ(s) to γ(t). It is the unique solution at time t of the differential equation ∇γ̇(u) Ps,u(w) = 0

for Ps,s(w) = w. We also denote Jwγ(t)(h) the Jacobi field emerging from γ(t) in the direction
w ∈ Tγ(t)M, that is

Jwγ(t)(h) =
∂

∂ε ↾ε=0

Expγ(t)(h(γ̇(t) + εw)) ∈ Tγ(t+h)M

for h ∈ R small enough. It verifies the Jacobi equation

∇2
γ̇J

w
γ(t)(h) +R

(
Jw
γ(t)(h), γ̇(h)

)
γ̇(h) = 0,

where R is the curvature tensor. We denote ∥ · ∥g the Riemannian norm on the tangent spaces
defined from the metric g, and gp : TpM× TpM→ R the metric at any p ∈M.

We describe here a way to compute an approximation of P0,1(w).

Rationale

The fanning scheme is based on the following identity from [81] with further credits to [78] For all
t > 0, and w ∈ Tγ(0)M we have

P0,t(w) =
Jwγ(0)(t)

t
+O

(
t2
)
. (2.1)

It is illustrated by Figure 2.1. This control on the approximation of the transport by a Jacobi
field suggests dividing [0, 1] into n intervals [kn ,

k+1
n] of length h = 1

n for k = 0, . . . , n− 1 and to
approximate the parallel transport of a vector w ∈ Tγ(0) from γ(0) to γ(1) by a sequence of vectors
wk ∈ Tγ(k

n)
M defined as 

w0 = w

wk+1 = n Jwk

γ(k
n)

(
1

n

)
.

(2.2)

Equation (2.1) tells us that we can expect an error of order O
(

1
n2

)
at each step and hence a speed

of convergence in O
(
1
n

)
overall. There are manifolds for which the approximation of the parallel

transport by a Jacobi field is exact e.g. Euclidean space, but in the general case, one cannot expect
to get a better convergence rate.

35

2. Longitudinal Datasets and Shape Evolution

γ(t)

Jwγ(0)(t)

t

w

γ(0)

Figure 2.1: The solid line depicts the geodesic. The green dotted line is formed by the perturbed
geodesics at time t. The blue arrows are the initial vector and its approximated parallel transport
at time t.

Algorithm

In general, there are no closed form expressions for the geodesics and the Jacobi fields. Hence, in
most practical cases, these quantities also need to be computed using numerical methods.

Computing geodesics In order to avoid the computation of the Christoffel symbols, we pro-
pose to integrate the first-order Hamiltonian equations to compute geodesics. Let x(t) =

(x1(t), . . . , xd(t))
T be the coordinates of γ(t) in a given local chart, and α(t) = (α1(t), . . . , αd(t))

T

be the coordinates of the momentum gγ(t)(γ̇(t), ·) ∈ T ∗
γ(t)M in the same local chart. We have then

(see [82]) ẋ(t) = K(x(t))α(t)

α̇(t) = −1

2
∇x

(
α(t)TK(x(t))α(t)

) , (2.3)

where K(x(t)), a d-by-d matrix, is the inverse of the metric g expressed in the local chart. Note
that using (2.3) to integrate the geodesic equation will require us to convert initial tangent vectors
into initial momenta, as seen in the algorithm description below. This point is crucial because, in
one of our targeted usecase, d can be large, see 2.2.2.

Computing Jwγ(t)(h) The Jacobi field may be approximated with a numerical differentiation from
the computation of a perturbed geodesic with initial position γ(t) and initial velocity γ̇(t) + εw

where ε is a small parameter

Jwγ(t)(h) ≃
Expγ(t)

(
h(γ̇(t) + εw)

)
− Expγ(t)

(
hγ̇(t)

)
ε

, (2.4)

where the Riemannian exponential may be computed by integration of the Hamiltonian equa-
tions (2.3) over the time interval [t, t+ h] starting at point γ(t), as shown on Figure 2.2. We will
also see that a choice for ε ensuring a O

(
1
n

)
order of convergence is ε = 1

n .

The algorithm Let n ∈ N. We divide [0, 1] into n intervals [tk, tk+1] with tk = k
n and denote

h = 1
n the size of the integration step. We initialize γ0 = γ(0), γ̇0 = γ̇(0), w̃0 = w and solve

β̃0 = K−1(γ0)w̃0 and α̃0 = K−1(γ0)γ̇0. We propose to compute, at step k:

1. The new point γ̃k+1 and momentum α̃k+1 of the main geodesic, by performing one step of
length h of a second-order Runge-Kutta method on equation (2.3).

36

2. Longitudinal Datasets and Shape Evolution

γ̃ε
k+1

γ̃k+1

w̃k+1

γ̃k

w̃k

γ̃ε
k+2

γ̃k+2

w̃k+2

Figure 2.2: Two steps of the numerical scheme are illustrated. The dotted arrows represent the
Runge-Kutta integration steps for the main geodesic γ (in black) and the perturbed geodesic γε

(in gray). The blue arrows indicate the approximated parallel transport of the vector w.

2. The perturbed geodesic starting at γ̃k with initial momentum α̃k + εβ̃k at time h, that we
denote γ̃εk+1, by performing one step of length h of a second-order Runge-Kutta method on
equation (2.3).

3. Compute
ŵk+1 =

γ̃εk+1 − γ̃k+1

hε
. (2.5)

The estimated parallel transport can be set to w̃k+1 = ŵk+1, or we can apply an extra
normalization step as described below.

4. The corresponding momentum β̂k+1, by solving: K(γ̃k+1)β̂k+1 = ŵk+1.

At the end of the scheme, w̃N is the proposed approximation of P0,1(w). Figure 2.2 illustrates
the principle. It is remarkable that we can substitute the computation of the Jacobi field with
only four calls to the Hamiltonian equations (2.3) at each step, including the calls necessary to
compute the main geodesic. Note however that the step (4) of the algorithm requires to solve a
linear system of size d. Solving the linear system can be done with a complexity less than cubic in
the dimension (in O

(
d2.374

)
using the Coppersmith–Winograd algorithm).

Possible variations There are a few possible variations of the presented algorithm.

1. The first variation is to use higher-order Runge-Kutta methods to integrate the geodesic
equations at step (1) and (2). We prove that a second-order integration of the geodesic
equation is enough to guarantee convergence and notice experimentally the absence of
convergence with a first order integration of the geodesic equation. Experiments indicate
a linear convergence with an improved constant using this variation. Depending on the
situation, the extra computations required at each step may be counterbalanced by this
increased precision.

2. The second variation uses a higher-order finite difference scheme by replacing step (2) and
step (3) the following way. At the k-th iteration, compute two perturbed geodesics starting
at γ̃k and with initial momentum α̃k + εβ̃k (resp. α̃k − εβ̃k) at time h, that we denote γ̃+ε

k+1

(resp. γ̃−ε
k+1), by performing one step of length h of a second-order Runge-Kutta method on

equation (2.3). Then proceed to a second-order differentiation to approximate the Jacobi
field, and set:

ŵk+1 =
γ̃+ε
k+1 − γ̃

−ε
k+1

2hε
. (2.6)

37

2. Longitudinal Datasets and Shape Evolution

Empirically, this variation does not seem to bring any substantial improvement to the
scheme.

3. The final variation of the scheme consists in adding an extra renormalization step at the
end of each iteration:

(5) Renormalize the momentum and the corresponding vector using

β̃k+1 = akβ̂k+1 + bkα̃k+1

w̃k+1 = K(γ̃k+1)β̃k+1

where ak and bk are factors ensuring β̃⊤
k+1K(γ̃k+1)β̃k+1 = β⊤

0 K(γ0)β0 and
β̃⊤
k+1K(γ̃k+1)α̃k+1 = β⊤

0 K(γ0)α0. Indeed, the quantities β(t)⊤K(γ(t))β(t) and β(t)⊤K(γ(t))α(t)

are preserved along the parallel transport. This extra step is cheap even when the dimension
is large. Empirically, it leads to the same rate of convergence with a smaller constant.

The proposed algorithm and the variations 1 and 2 ensure convergence of the final estimate.
Convergence of the variation 3 has not been demonstrated. But this additional step can be
expected to improve the quality of the approximation at each step, at least when the discretization
is sufficiently thin, by enforcing the conversation of quantities which should be conserved. Note
that the best accuracy for a given computational cost is not necessarily obtained with the method in
Section 2.1.2, but might be attained with one of the proposed variations, as a bit more computations
at each step may be counter-balanced by a smaller constant in the convergence rate.

2.1.3 Convergence result

We obtain the following convergence result, guaranteeing a linear decrease of the error with the
size of the step h.

Theorem 1 We suppose here the hypotheses stated in Section 2.1.2. Let n ∈ N be the number of
integration steps. Let w ∈ Tγ(0)M be the vector to be transported. We denote the error

δk = ∥P0,tk(w)− w̃k∥2

where w̃k is the approximate value of the parallel transport of w along γ at time tk and where
the 2-norm is taken in the coordinates of the chart Φ on Ω. We denote ε the parameter used in
the step (2) and h = 1

n the size of the step used for the Runge-Kutta approximate solution of the
geodesic equation.
If we take ε = h, then we have

δN = O
(1

n

)
.

It is shown in [Art7] that taking ε = h is a recommended choice for the size of the step in the
differentiation of the perturbed geodesics. Further decreasing ε has no noticeable impact on
estimation accuracy, while increasing ε degrades the quality of the approximation.

2.1.4 Ladder Methods Strike Back

The ladder construction process was first introduced in [58] and later formalized as the Schild
Ladder (SL) in [43]. A variant known as the Pole Ladder (PL) was subsequently proposed in [48].
However, a rigorous theoretical convergence analysis for these methods was lacking until the
recent work of [37], which also provided this valuable historical clarification.

38

2. Longitudinal Datasets and Shape Evolution

A key result is that ladder methods are, in fact, second-order accurate — that is, their error
decreases quadratically with step size — when implemented with a fourth-order Runge-Kutta (RK4)
time integrator and an appropriate scaling/rescaling step (see Formula 6 in [37]), involving the
parameter α, which serves to properly "flatten" the geodesic parallelogram.

In contrast, the Fanning Scheme (FS) exhibits first-order convergence (i.e., linear decrease in
error with step size, as shown in Theorem 1) and requires only a second-order Runge-Kutta (RK2)
scheme for time integration. In [Art7], SL was found to converge only linearly, which can potentially
be explained2 by the absence of the scaling/rescaling step and the use of an RK2 scheme in the
implementation. See the Figure 5 below.

(a) Figure 5 of [Art7] (b) Figure 5 of [37]

Figure 53 – Error rates of various parallel transport approximation schemes on the unit sphere
S2. (a) illustrates a suboptimal, linear convergence rate for the Schild Ladder method in a naive
implementation (blue curve). (b) shows that a more refined implementation of SL achieves a
quadratic convergence rate (green curve).

One of the main limitations of ladder schemes is that they essentially require the computation
of Riemannian logarithms at each step. Recall that computing the exponential map can be done
by integrating Hamiltonian equations (also required in the FS), as described in Section 2.1.2. In
contrast, computing the logarithm is often significantly more costly, as it typically involves solving
an inverse problem of the form Exp ◦Log(x) = x using an optimization procedure.

To address this, [37] noted in their numerical experiments on low-dimensional examples that
only a few gradient steps are often sufficient to compute the logarithm4. They also studied a
variant of the Pole Ladder that uses only an approximation of the logarithm and showed that
this does not harm the convergence rate of the scheme. In conclusion, ladder schemes may
remain competitive despite the need for logarithm computations [36], thanks to their quadratic
convergence properties.

2These are, admittedly, assumptions. I do not have access to the implementation used in [Art7], and the codebase
from [37] relies on outdated Python libraries and no longer runs out of the box. A good reminder of the importance of
reproducible science.

3How might it be named differently?
4In the case of shape spaces, computing the logarithm corresponds to solving a registration problem. Since the steps

are small, this observation may hold in this context as well.

39

2. Longitudinal Datasets and Shape Evolution

Method Error Step size Integrator Operations
FS 1/n 1/n rk2 Exp
SL/PL 1/n2 1/

√
n rk4 Exp and Log

infinitesimal PL 1/n2 1/
√
n rk4 Exp

Table 2.1: Recap of the various approximation methods for parallel transport. FS stands for Fanning
Scheme, SL for Schild Ladder, and PL for Pole Ladder.

2.2 Study of longitudinal datasets

2.2.1 Context and Application Setting

The primary pathological developments of neurodegenerative diseases such as Alzheimer’s are
believed to begin long before the first symptoms of cognitive decline appear. The ability to detect,
monitor, or predict changes in radiological and clinical signs is therefore crucial for estimating an
individual’s stage of disease progression, selecting appropriate patients, and defining endpoints
in clinical trials. The methodological development of parallel transport computation presented in
Section 2.1 was specifically motivated by the need to analyze multimodal longitudinal datasets. A
representative example is the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [39] database,
which provides multimodal follow-up data from a large cohort of patients.

When longitudinal data is limited, a useful strategy is to transfer knowledge from another
subject with a longer observation period. This requires a spatio-temporal matching method to
align shape trajectories across individuals [54, 80]. Such ideas have already been explored in
the computational anatomy community, where parallel transport in diffeomorphism groups has
been used to infer future deformations from baseline alignments [47, 72]. Building on this, the
quantitative study [Proc5] and the application paper [Art10] model the evolution of an object of
interest as a trajectory in a Riemannian manifold, derived from the deformation path of a mean
template object — within shape space and in a multimodal setting, respectively. The proposed
approach relies on transporting geodesic paths from a reference point to the observed data, using
a technique known as Exp-parallelization [69, 70]. This method allows for estimating the object’s
state at arbitrary time points through interpolation or extrapolation.

Analyzing non-Eucliean data in low-dimensional model spaces, such as Euclidean spheres
[51] or matrix subgroups [63] already involve advanced specific tools. Instantiating computational
statistical methods to high-dimensional shape spaces based on real observations is an even more
delicate endeavor. The first challenge is to scale these methods to high-dimensional data, in
order to manage the computational complexity of the associated regression models. The second
challenge lies in dealing with real-world data, which often suffer from significant acquisition
noise — typically introduced by both the imaging process and the complex preprocessing pipeline
(segmentation, meshing, etc.) — as well as from small sample sizes or missing data, as Figure 2.4
illustrates.

40

2. Longitudinal Datasets and Shape Evolution

M
es

h

Age 61.2 62.2 63.2 64.2 67.2 70.2

Figure 2.4: Evolution along the time of the (left) hippocampus of a patient extracted (after segmen-
tation and meshing) from ADNI MRI data bank.

A third challenge lies in the limitations of current models to fully capture the complexity of
observed dynamics. In particular, the geodesic nature of mean template trajectories imposes a
constant-speed evolution, which may not align with the biological variability seen across sub-
jects. As a result, the statistical significance of simple regression models applied to individuals
with differing progression patterns may be limited. In [Proc5], introducing an additional time
reparametrization to adapt the speed of evolution for each subject have improved model per-
formance. However, the constraint of geodesic evolution may still lack biological plausibility,
especially in capturing non-linear phenomena such as cycles of remission and aggravation, much
like how linear models fail to represent periodic behavior. To overcome these limitations, more
flexible dynamical models have been proposed, including piecewise-geodesic evolutions, as
explored in [15].

In addition, the choice of metric is critical for model performance. In shape analysis, standard
kernel metrics — such as those described in Chapter 1 — are insensitive to the mechanical
properties of the deformed material and may fail to reproduce even simple observed deformation
patterns. Designing constrained [5] or structured deformations [Proc9] remains an active area of
research [PreP1].

2.2.2 Geodesic regression in shape analysis

The aim of paper [Proc5] is to predict subject-specific longitudinal progression of brain structures
derived from baseline MRI scans. The estimation was carried out for P = 74 patients, each
with a sequence of typically 9 observations. The proposed methodology is based on three
key components: (1) extrapolating from a subject’s own past progression; (2) transferring the
progression pattern from a reference subject with a longer observation window to new subjects;
and (3) refining this transfer using information on relative disease dynamics, as inferred from
cognitive assessments.

As discussed in Chapter 1, shape spaces in computational anatomy are often modeled via the
action of diffeomorphism groups. In this setting, geodesic regression estimates a subject-specific
flow of diffeomorphisms that best fits repeated shape observations over time [46, 65], effectively
generalizing linear regression to Riemannian manifolds. However, empirical studies indicate that
accurate prediction of future shape evolution typically requires a large number of time points. In
contrast, performance tends to be limited in scenarios with only a few observations — a more
frequent and clinically realistic situation.

One of the key components of the method is the parallel transport of the deformation field
along the geodesic. To perform this computation, we employ the fanning scheme described in
Section 2.1, which is well-suited for high-dimensional settings. The main computational bottleneck
lies in the inversion step (4). In practice, the method remains tractable for deformations involving

41

2. Longitudinal Datasets and Shape Evolution

up to a few thousand of control points in a 3D ambient space.

Deformation model

Let (yj)j=1,...,nℓ
denote a time series of segmented surface meshes for a given subject ℓ ∈

{1, . . . , P}, acquired at the corresponding ages (tj)j=1,...,nℓ
. We consider a finite-dimensional

family of diffeomorphisms of the ambient space acting on the segmented meshes, following the
procedure described in [21], which is conceptually similar to the approach presented in Section
1.5.4, but based on a framework involving control points. Specifically, flows of diffeomorphisms in
R3 are generated by integrating time-varying vector fields of the form vt(x) =

∑Ncp

i=1 K(x, ci,t)βi,t

where K is a Gaussian kernel, ct =
(
ci,t

)
i=1,...,Ncp

and βt =
(
βi,t

)
i=1,...,Ncp

denote, respectively,
the control points and the associated momenta of the deformation at time t.

We endow the space of diffeomorphisms with a metric that quantifies the cost associated with
a deformation. In what follows, we focus exclusively on geodesic flows of diffeomorphisms — i.e.,
flows that minimize the deformation energy between the identity and a target diffeomorphism.
Such flows are uniquely determined by their initial control points and momenta, denoted c0,β0 ∈
RNcp×3. Under the action of this flow, an initial template shape X∗ is continuously deformed,
tracing a trajectory in shape space denoted by t 7→ ϕ

(c0,β0)
t (X∗). In parallel, following the approach

in Section 1.5.3, we equip the surface meshes with a varifold norm ∥ · ∥W∗ , which enables the
definition of a data attachment term between shapes without requiring pointwise correspondence.

Geodesic regression and Exp-parallelization

Analogous to linear regression, one can perform geodesic regression in shape space by estimating
an “intercept” X∗ and a “slope” (c0,β0) such that the trajectory t 7→ ϕ

(c0,β0)
t (X∗) minimizes the

following objective functional:

inf
c,β,X

nℓ∑
j=1

∥∥∥ϕ(c,β)
tj (X)− yj

∥∥∥2
W∗

+ βTKc,cβ. (2.7)

We estimate a solution to Equation (2.7) using a Nesterov gradient descent algorithm, as imple-
mented in the Deformetrica software. The gradient with respect to the control points, the momenta,
and the template is computed via backward integration of the data attachment term along the
geodesic — an optimization procedure similar to that described in Section 1.5. Once an optimum
is reached, this yields a representation of the progression of brain structures, expressed in the
tangent space at the identity of the diffeomorphism group.

Given a reference geodesic, we use Riemannian parallel transport to generate a new trajectory
starting from a subject-specific baseline point S. This begins with baseline matching between the
template X∗ and S, represented as a vector in the tangent space of the diffeomorphism group —
illustrated by a blue arrow in Figure 2.5. Several methods have been proposed to generate the
corresponding evolution from the subject’s baseline S. The simplest approach consists of parallel
transporting the initial velocity of the reference geodesic and then computing a new geodesic
from S using this transported velocity (a method known as geodesic parallel, shown in Figure
2.5b). Another method, known as Exp-parallelization transports the matching vector along the
reference geodesic and then reconstructs a trajectory from each point on the reference geodesic
using the transported vector, as illustrated in Figure 2.5a.

42

2. Longitudinal Datasets and Shape Evolution

y1

y2

y3

y4

y5

y6

S

X∗

(a) Exp-parallelization. Green arrow: geodesic regres-
sion. Blue arrows: transported baseline matching.
Black dotted line: exp-parallelization of the refer-
ence geodesic for the given subject (not a geodesic).

y1

y2

y3

y4

y5

y6

S

X∗

(b) Geodesic parallelization. Blue arrow: baseline
matching. Green arrows: transported regression.
Black dotted line: exponentiation of the transported
regression (a geodesic).

Figure 2.5: Two methods for transporting the geodesic regression path (black curve) fitted to the
data points (gray dots).

The two paradigms for transporting parallel trajectories were shown to perform similarly well in
this prediction task. However, the exp-parallelization method offers a methodological advantage:
the generated trajectories do not depend on the choice of a specific point along the reference
geodesic, unlike those obtained via geodesic parallelization.

Reparametrization of the geodesic

The protocol described in the previous section presents two main limitations. First, the choice
of the matching time along the reference trajectory is arbitrary: the baseline is selected for
convenience, but ideally, matching should occur at comparable stages of disease progression.
Second, the method does not account for individual variation in the pace of progression. To
address these issues, [70] introduces a statistical model that learns, in an unsupervised fashion,
subject-specific dynamical parameters from ADAS-Cog scores — a standardized cognitive test
used to monitor disease progression. Specifically, the model assumes that each patient follows a
trajectory parallel to the mean progression, but with a subject-specific time reparametrization:

ψ(t) = α (t− t0 − τ) + t0 (2.8)

which maps individual subject time to a normalized time frame using two scalar parameters,
α > 0 and τ . A high (respectively low) value of α corresponds to a faster (respectively slower)
progression of the scores, while a negative (respectively positive) value of τ indicates an earlier
(respectively later) onset of cognitive decline. In the ADNI dataset used in this work, the estimated
acceleration factors (αℓ)ℓ range from 0.15 to 6.01, and the time shifts (τℓ)ℓ span from -20.6 to 22.8.
This wide variability highlights the heterogeneity in individual disease dynamics and underlines
the importance of accounting for these effects. Using these dynamic parameters, the shape
evolution can be individualized by reparametrizing the parallel trajectory via the same formula
(2.8).

Discussion

Obtaining a reliable estimate of the geodesic regression requires multiple observations per subject;
in this study, only subjects with 7 to 12 observations were included. Despite this, the quantitative
study on geodesic regression extrapolation in [Proc5] revealed limited predictive accuracy. To

43

2. Longitudinal Datasets and Shape Evolution

address this, we proposed a method to transport spatiotemporal trajectories between subjects by
incorporating cognitive decline and derived time reparametrization, which demonstrated slightly
improved predictive performance. These results highlight the crucial role of dynamic modeling
in disease progression and the value of leveraging cross-modality data to enhance learning
algorithms. The methods developed were further applied in the more ambitious applications
[Art10].

2.2.3 Multimodal longitudinal data analysis

Alzheimer’s disease (AD5) is characterized by progressive alterations observable in brain imaging,
which are associated with the emergence of various symptoms. Nevertheless, the variability
in the temporal dynamics of both neuroimaging markers and cognitive decline remains poorly
understood. The study [Art10] introduces AD Course Map, a spatiotemporal atlas of Alzheimer’s
disease progression. It captures and summarizes inter-individual variability in the trajectories of
neuropsychological assessments, the propagation of hypometabolism and cortical thinning across
brain regions, and the morphological deformation of the hippocampus. The methods employed
represent a refinement and generalization of the framework described in Section 2.2.2, extended
to encompass multiple biomarkers. These methods were scaled to handle a large patient cohort,
requiring significant implementation effort.

The analysis of these variations revealed strong genetic determinants of disease progression,
as well as evidence of potential compensatory mechanisms active during the course of the disease.
AD Course Map also outperformed competing approaches in predicting cognitive decline in the
TADPOLE open challenge [52]. Its predictive performance has since been further validated on an
independent dataset [50]. Results can be visualized in https://project.inria.fr/digitalbr
ain/.

5Not to be confused with Automatic Differentiation, as used in another section of this thesis.

44

https://project.inria.fr/digitalbrain/
https://project.inria.fr/digitalbrain/

3C
h
ap

te
r

Kernel Methods in Action: General Formulas and Real-
World Scale Datasets

KeOps by Uderzo and Goscini in [30]

This chapter outlines the principles and main functionalities of the Kernel Operations (KeOps)
library, as described in [Art9, Proc6], [Proc8] and the official documentation at www.kernel-
operations.io. The project is developed by a core team composed of B. Charlier, J. Feydy, and J.
Glaunès. KeOps is now a mature library and serves as a dependency for various projects across
diverse fields such as machine learning, statistics, optimal transport, chemistry, and physics.

KeOps builders Everything started in the late 2000s with a set of CUDA routines developed by
J. Glaunès. The goal was to accelerate Matlab scripts involving Gaussian convolutions and their
derivatives, as used in the LDDMM algorithms and their refinements. These independent CUDA
files were compiled with Matlab binders (C/mex files) into various static libraries. Starting in 2012,
I began adapting these files to match the formulas required for the Matlab FshapesTk package
[Soft1], which I was starting developing during my postdoc at CMLA. In 2016, I integrated these
CUDA codes into the C++ project Deformetrica [Soft2], repeatedly performing similar adaptations
as I had done for FshapeTk. At some point, the idea of creating a truly versatile library imposed

45

https://www.kernel-operations.io/keops
https://www.kernel-operations.io/keops

3. Kernel Methods in Action

itself naturally. We began discussing it with J. Glaunès, and soon after, J. Feydy — who had just
started his PhD — joined the effort. The results have been far more successful than we initially
planned.

KeOps mythology Version 1 (released in 2019) of the KeOps code generation engine was an
original idea by J. Glaunès: it used C++ variadic templates as an abstract syntax tree to generate
CUDA code. While this approach worked remarkably well, it came with significant drawbacks. First,
compilation times grew substantially for complex formulas. Second, the system relied on resolving
quantities at compile time — something only made possible by modern C++ features that were not
fully compatible with CUDA at the time. Finally, the compilation stack was hard to set up across
the variety of user configurations. Despite this, we managed to provide a functional and versatile
API: a C++ interface (thanks to F.-D. Collin), along with Matlab, Python, and R bindings (with the R
interface developed by G. Durif).

Completely refactored and rewritten for its version 2 release in 2022, the KeOps engine is now
implemented purely in Python. The actively supported backends now focus on Python and R
where most usage are. Thanks to significant improvements, formula compilations are now fast
enough to be performed Just-In-Time (JIT), making the system highly flexible and responsive. In
addition, extensive documentation has been developed to support users.

KeOps continues to be actively maintained and improved — driven by our ongoing need
for efficient kernel operations in developing new methods, particularly in shape analysis (e.g.,
deformation models). Recently, KeOps was awarded with a Prix de la science ouverte in the
Documentation category, recognizing its quality and accessibility1.

3.1 Kernel Operation as Tensor reduction

3.1.1 Tensor reduction

In the following, b, B,M,N, d,D ∈ N denote dimensions. Bold symbols represent multi-indices;
for example, d = (d1, . . . , dD) and |d| = d1 + · · ·+ dD . We consider real-valued tensors of the form

ηℓ,i,j,k = ηℓ1,...,ℓb,i,j,k1,...,kd
∈ RB1×···×Bb × RM×N × RD1×···×Dd

where the first indices ℓ = (ℓ1, . . . , ℓb) correspond to the so-called batch dimensions, i and j

are the outer dimensions, and k = (k1, . . . , kd) represent the inner dimensions. The quantity
D

.
= |D| = D1 + · · · + Dd denotes the inner space dimension. We define a reduction as the

application of a commutative binary operation ∗ : E × E → E to one of the outer dimensions:

γℓ,j,k =

M∗
i=1

ηℓ,i,j,k or γℓ,i,k =

N∗
j=1

ηℓ,i,j,k (3.1)

We emphasize here that the dimensions indexed by i and j should be regarded as the large
ones and thus require special treatment. This formulation is still too generic, so we focus on
problems where η can, in fact, be computed from tensors containing at most one of the indices i
or j. Assume there exists an interaction map represented by a closed-form formula F .

ηℓ,i,j,k = F (p1ℓ,k, . . . , p
P
ℓ,k︸ ︷︷ ︸

parameters

, x1ℓ,i,k, . . ., x
X
ℓ,i,k︸ ︷︷ ︸

i-variables

, y1ℓ,j,k, . . ., y
Y
ℓ,j,k︸ ︷︷ ︸

j-variables

) (3.2)

1See https://www.ouvrirlascience.fr/remise-des-prix-science-ouverte-du-logiciel-libre-de-la-reche
rche-2023/

46

https://www.ouvrirlascience.fr/remise-des-prix-science-ouverte-du-logiciel-libre-de-la-recherche-2023/
https://www.ouvrirlascience.fr/remise-des-prix-science-ouverte-du-logiciel-libre-de-la-recherche-2023/

3. Kernel Methods in Action

where P , X , and Y ∈ N denote the number of each type of data tensor required to compute the
formula. This contraction formula pattern encompasses many common operations. In particular,
it includes the case where two sets of particles (data) in a D-dimensional space (features) are
considered — one point cloud indexed by i, the other by j — and their interactions are described
by a kernel function given in closed form by the formula F . In the next section, we recall three
examples that served as motivation for this work.

3.1.2 Examples

As a common notation, let x1, . . . , xM and y1, . . . , yN denote two sets of points in a common vector
space RD .

Convolution

Let b1, . . . , bN ∈ RD . We compute, for every i = 1, . . . ,M and k = 1, . . . , D,

γi,k =

N∑
j=1

k(xi, yj)bj,k.

Typical use cases involve M and N ranging from hundreds to billions, with D = 2 or 3, and k(x, y)
being a radial Gaussian kernel or one of its first or second derivatives, with bandwidth σ > 0.
This operation is commonly interpreted as a matrix-vector product involving the Gaussian kernel
matrix (Ki,j) = (k(xi, yj))i,j , or equivalently, as a convolution of the kernel function k sampled
over the point clouds (xi)i=1,...,M and (yj)j=1,...,N .

Nearest neighbor search

Assume that RD is endowed with a distance d whose values can be computed as a function of the
point coordinates (e.g., distances derived from norms, cosine similarity, hyperbolic geometry, etc.).
We consider

νi = min
j=1,...,N

d(xi, yj)

as the closest-point distance between xi and all the yj ’s. In real-world applications, both N

and M may reach into the billions. The dimension D can vary widely depending on the domain:
from 2 or 3 in graphics applications to over 1000 in machine learning, where the ambient space
represents a set of features.

Sinkhorn algorithm

DefineCi,j =
1
2∥xi−yj∥

2 as the squared Euclidean norm in RD , and let (αi)i=1,...,M and (βj)j=1,...,N

be non-negative weights summing to one. The Sinkhorn algorithm is an iterative method, and its
variants are applied in many fields. This algorithm is nearly a hundred years old [19], and it has
more recently been successfully used to compute approximate solutions to the Optimal Transport
problem with entropic regularization [16]. The goal is to compute two potentials, fi ∈ RM and
gj ∈ RN , of interest, as follows. Begin by initializing fi = 0 and gj = 0 for all i = 1, . . . ,M and

47

3. Kernel Methods in Action

j = 1, . . . , N . Given ε > 0, perform the following two updates:

fi ← −ε log
M∑
j=1

βj exp
(1
ε

(
gj − Ci,j

))

gj ← −ε log
N∑
i=1

αi exp
(1
ε

(
fi − Ci,j

))
until convergence. The reduction used here is the so-called LogSumExp operation. To be useful,
stable numerical schemes are employed in practice, including the symmetrization of Sinkhorn
steps and online normalization of the LogSumExp reduction.

Clustering, Gaussian Processes, and more. . .

Examples above, and many others, can be found with a great level of detail in the KeOps docu-
mentation2 and Appendix of [Proc8].

3.2 Reducing the memory footprint of kernel Operations

Performing these operations on large dimensions can be challenging: optimizing memory consump-
tion and computational speed are key factors in scaling methods to real-world data. Instantiating
the full tensor to be reduced is not an option due to its quadratic O(MN) memory footprint. By
maintaining the brute-force computation scheme and taking advantage of modern GPU architec-
ture, the approach computes the quantity on the fly while optimizing the use of cache and shared
memory to accelerate the process. The KeOps library, presented below, does this seamlessly for
the end user.

3.2.1 Scientific computing with GPU programming

GPU Hardware

In a nutshell, modern Graphics Processing Units (GPUs) are hardware components initially devel-
oped to accelerate graphical rendering and later adapted for scientific computing. They provide
an affordable (relatively — see discussion below) massively parallel computing architecture. The
leading company, Nvidia, was the first in the 2000s to recognize the potential of this emerging
market, expanding its sales beyond gamers and graphics professionals to computational scientists.
To encourage this, Nvidia — followed by other industry players such as AMD, Intel — developed a
dedicated line of products with higher-quality components and larger memory capacities than
gaming-oriented cards. These scientific computing GPUs were also designed to be compatible with
data center racks, energy supplies, and cooling systems. However, the prices of these specialized
GPUs rapidly increased and are now roughly 5 to 10 times higher (tens of thousands of euros) than
gaming GPUs (around a thousand euros). Despite this aggressive marketing strategy, depending
on the application, a €1000 gaming GPU may still provide excellent acceleration for scientific
workloads.

As of 2025, more than 3/4 of the Top500 supercomputers3 now feature both CPUs and GPU-
accelerating devices, mainly from Intel, AMD or Nvidia. Thence, a large part of the peak performance

2See https://www.kernel-operations.io/keops/_auto_tutorials/index.html
3See https://top500.org/statistics/treemaps/

48

https://www.kernel-operations.io/keops/_auto_tutorials/index.html
https://top500.org/statistics/treemaps/

3. Kernel Methods in Action

of new supercomputers is due to these GPU accelerators. As a result, modern computational
methods are urged to adapt to this specific hardware to fully leverage its computational power. The
recent explosion of machine learning (ML) has propelled GPU programming as a key technology.
Although ML relies on processing vast amounts of data, computational methods in this field have
adapted to GPUs’ constrained memory capacity. The typical memory available on a GPU is now
between 20 and 100 GB, whereas CPU RAM is an order of magnitude larger. To overcome this
limitation, deep learning networks exploit, among other techniques, the parallel nature of their
architecture, batch optimization schemes, and the ability to use low-precision data formats. In
other fields — especially those involving complex, large-scale, and sequential codes, such as
physics-based simulations — this transition is more challenging and remains a work in progress.

Supercomputers often have their own specific hardware setups, sometimes even with specific
and proprietary compiler stacks. However, in academic labs or local computation clusters, the
situation is simpler, as available hardware is surprisingly homogeneous — typically Intel CPUs
paired with Nvidia GPUs and running a standard Linux distribution as Operating System. The
emergence of alternatives to Nvidia GPUs has been tedious and slow. The KeOps software, whose
target is the development of research code, unfortunately still relies only on the proprietary
Nvidia/CUDA framework. While not ideal in a Free-Open Source Software and reproducible science
perspective, this is of little practical limitation due to the aforementioned reason.

Software stack

Inspired by the computer graphics development stack, in 2007, Nvidia strategically initiated the
development of its fully documented CUDA language ecosystem. It enables programmers to
implement scientific code specifically on Nvidia hardware while remaining fully compatible with
the widespread C/C++ ecosystem. Another similar but cross-hardware solution, called OpenCL, was
released a few years later thanks to a consortium that included various industry players such as
AMD, Intel, Apple, and Nvidia. However, this effort never reached the same level of documentation
quality and performance as the almighty Nvidia/CUDA combination. As a result, Apple has recently
discontinued support for OpenCL in favor of its proprietary Metal framework4. A universal standard
for writing hardware-independent code on GPUs remains a distant goal.

To overcome this, many software tools have been created to free the end user from manually
translating code into specific languages. We will not review these solutions in detail here, as
the past two decades have been rich in such projects, ranging from low-level (e.g. LLVM) to
higher-level abstractions (e.g. KeOps). Instead, we will mention two well-known examples that
could have been adapted to achieve what KeOps does. The first is Triton, developed by OpenAI
to accelerate code fragments commonly found in ML methods. It first converts code into its
Intermediate Representation (IR) language, potentially optimizing it through an autotune method.
Finally, it compiles the code to run on hardware. The highest level of compatibility is currently
announced with Nvidia, but since it relies on the LLVM-IR language, it could theoretically support
other platforms as well.5 This process is extremely fast, as it only considers small code segments
and performs compilation on-the-fly, a technique known as Just-In-Time (JIT) compilation. Triton
has now been integrated into PyTorch, enabling seamless and significant speedups in Deep Neural
Network applications. The second example is the Taichi language [38], which follows a similar
approach but is not limited to ML applications. It defines a high-level language on top of Python.
Again, this language is transformed into an IR, which is then automatically compiled into various

4See https://developer.apple.com/opencl/
5As of 2025, the documentation remains somewhat unclear on this point...

49

https://developer.apple.com/opencl/

3. Kernel Methods in Action

other languages, including C++, CUDA, OpenCL, and Metal. KeOps, in a sense, has a similar goal but
is specifically oriented toward kernel methods, with support limited to C++ and CUDA.

When parallelizing code, the routine is divided into smaller sub-tasks, each executed by an
individual thread. In the Single Instruction, Multiple Thread (SIMT) paradigm, the program specifies
the operations to be performed by each thread running concurrently. When a thread depends
on the result of another, a synchronization barrier is introduced to ensure all threads reach the
same point before proceeding. If not properly managed, such barriers can introduce unnecessary
latency or even lead to bugs. In GPU-based SIMT programming models like CUDA and OpenCL,
execution is split into two main components: (1) the host part, which runs on the CPU, coordinates
the overall computation and interfaces with external programs; and (2) the device part, which
runs on the GPU and performs the actual computation. This latter portion is typically referred to
as a GPU kernel — a concept similar to a shader in computer graphics.

Threads, blocks and memories

Writing high-performance code requires a solid understanding of computer hardware fundamentals.
A processor consists of physical cores, each capable of executing multiple threads simultaneously.
In contrast, a GPU contains thousands of floating-point cores — organized into units called
Streaming Multiprocessors (SMs)6 — with the exact number depending on the floating-point (FP)
precision used: FP64 (double), FP32 (single), FP16 (half), or even 8-bit operations. The number
of SMs, cores, and other architectural features varies across GPU generations. As with CPUs, the
raw count of physical cores is abstracted away in practice, as developers primarily work with
virtual threads. The first step in writing a GPU kernel is to define a computation plan — or grid
— that distributes the workload across the SMs. The objective is to select an arrangement that
maximizes GPU occupancy and delivers results as efficiently as possible. Inherited from the
graphics rendering domain, the grid structure can be one-, two-, or three-dimensional. The first
dimension can contain up to 231 ≈ 109 threads, which is sufficient for most applications; however,
the second and third dimensions are restricted to a maximum of 216 = 65536, which may impose
constraints in certain scenarios. Furthermore, each grid dimension is subdivided into blocks, with
each block supporting up to 1024 threads in total. Threads within the same block can share data
at minimal cost, a feature that is essential for achieving high performance. For every kernel launch,
two parameters must be provided: the number of blocks in each grid dimension and the number
of threads per block in each dimension.

GPUs feature multiple types of memory, each with different sizes, access scopes, and speeds.
As a general rule, the broader the scope and capacity of a memory type, the slower its access. The
largest is global memory (or GPU RAM), typically comprising tens of gigabytes and shared across
all cores. Every thread can read from and write to global memory, but access times are relatively
high. To improve efficiency within blocks, GPUs provide shared memory — a small, low-latency
cache (on the order of tens of kilobytes) accessible only to threads within the same block. Because
it resides close to the cores, access to shared memory typically costs just a few clock cycles. At
the finest level, each thread has access to a limited number of registers (sometimes called local
memory), which are extremely fast but very limited in size.7

It is important to note that GPUs are very efficient with single-precision floating-point numbers.
5This use of the term "kernel" is unrelated to the mathematical concept of a kernel operator.
6For example, the 2025 Nvidia Blackwell GPU features 192 SMs, each with 128 FP32 cores, totaling 24,576 cores
7The 2025 Nvidia RTX 6000 comes with 96 GB of RAM, 228 KB of shared memory per SM and/or 227 KB of shared memory

per block, 64K 32-bit registers per SM, and only 255 registers per thread.
8From https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-12-02.pdf

50

https://www3.nd.edu/~zxu2/acms60212-40212-S12/Lec-12-02.pdf

3. Kernel Methods in Action

Variable declaration Memory Scope Lifetime Access Size
__device__ __local__ local thread thread very fast kB
__device__ __shared__ shared block block very fast kB
__device__ global grid application very slow GB
__device__ __constant__ constant grid application fast MB

Table 3.1: CUDA variable Types8

Recent advances in hardware have made double-precision computations faster than in the early
days when operations with doubles were ten times slower. There also exist specialized cores
capable of performing very specific operations at blazing speed. For instance, Nvidia Tensor Cores
compute a 4×4 matrix multiplication added to another 4×4 matrix — known as fused multiply-add
— ten times faster than a standard implementation. This is obviously targeted at the ML community,
as this operation is at the core of DNN models, but any code using this pattern can benefit from it.

3.2.2 Tiled reduction scheme to avoid memory transfers

The general reduction used in KeOps follows a standard implementation of a fast parallel scheme.
We rely on the well-known N-body simulation example — described in the eponymous chapter
of [60] — to compute reductions of symbolic matrices, as shown in Equation (3.2). The reduction
operation follows a one-dimensional computation plan along the dimension i, as illustrated in
Figure 3.1a. To clarify the concept, consider a simple sum reduction: γi =

∑
j F (xi, yj).

A first straightforward but naïve approach is to assign a thread to each value of i, allowing
it to compute γi by iterating over the reduction index j and calculating F (xi, yj) on the fly.
Unfortunately, this approach is not very efficient. Even though the computation is parallelized
across thousands of cores, the vast majority of time is spent not on calculations but on memory
transfers involving the yjs. This inefficiency arises because we do not take advantage of the block
structure mentioned in Section 3.2.1.

A well-known note9 from NVIDIA developers illustrates how crucial a good understanding
of hardware structure is in SIMT programming. By making clever use of low-latency memory,
sequential addressing, loop unrolling, and other optimizations purely based on hardware-specific
features, it is possible to achieve a 30× speedup on a simple sum reduction.

The key to efficient programming in our case is to split the reduction into tiles, leveraging
the low latency of the shared memory buffer and block-wise memory accesses. This approach is
implemented in KeOps and illustrated in Figure 3.1b. The computation plan, still applied to the
variable i, is divided into blocks of size k ≪ N . Each thread within a block accesses the low-latency
shared memory with both read and write permissions. The main loop over j is then split into tiles
that are processed sequentially. For each tile, shared memory is first populated with the required
values to compute the F (xi, yj) belonging to it. The tile set to K , as the threads fetch a single
yj simultaneously. A synchronization barrier is then invoked, ensuring that shared memory is
fully loaded before proceeding. Next, the reduction is performed on this tile, and the result is
accumulated into the variable containing the partial sum computed so far.

9See https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

51

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

3. Kernel Methods in Action

A
=

0
A

=
1

A
=

2
A

=
3

i
∈

J1
,N

K
=
⌈N
/K
⌉

bl
oc

ks
of

K
th

re
ad

s

th
re

ad
i
=
k
+
A
K

,
k
∈

J1
,K

K

F (xi , yj)

B = 0 B = 1 B = 2

j ∈ [[1,M]] = ⌈M/K⌉ tiles

i
∈

J0
,N

J
th

re
ad

i

F (xi , yj)

j ∈ J0,MJ

(a) Naïve reduction scheme

A
=

0
A

=
1

A
=

2
A

=
3

i
∈

J0
,N

J
=
⌈N
/K
⌉

bl
oc

ks
of

K
th

re
ad

s

th
re

ad
i
=
k
+
A
K

,
k
∈

J0
,K

J

F (xi , yj)

B = 0 B = 1 B = 2

j ∈ J0,MJ = ⌈M/K⌉ tiles

shared

(b) Tiled reduction scheme using shared memory

Figure 3.1: Comparison of reduction schemes.

3.2.3 Advanced computational plan

Large internal dimension

The first development of KeOps was done with shape analysis applications in mind. In this field,
the sizes N and M are large, typically ranging from 1000 to 107, while D is small — around 10, for
instance. In this setup, the shared memory size described in Section 3.2.1 is not a real limitation.
However, feedback from users in the machine learning community, where models can involve
dimensions D ranging from 100 to 1000, has reported performance drops.

The main limitation of KeOps’ reduction scheme stems from the overflow of shared memory
registers in the reduction of Figure 3.1b. This results in decreased performance on large feature
vectors with D > 100. Indeed, with a default block size K = 192 and D = 100, we need to store
around 80kB, which is the typical size of the shared memory. The compiler then allocates extra
space in the slow global memory, leading to large transfer times when the threads access the
data. This is known as register spilling.

A common optimization strategy, when the formula F is separable along the coordinate
corresponding to the internal dimension, is to split the computation into chunks10. This approach
allows sequential loading of only a subset of the D coordinates required to compute F , reducing
memory overhead. For instance, given a chunk size C ∈ N, and if a (sub)formula corresponds to
the squared Euclidean norm F (xi, yj) =

∑D
k=1(xi,k − yj,k)2, the computation can be restructured

so that each chunk represents a partial sum over C consecutive terms. Currently, this technique is
implemented only for sum and scalar product operations, which cover the case of radial kernels.
Selecting optimal chunk, block, and tile sizes depends on the hardware specifications.

10There are blocks, tiles, and now chunks — different names as they apply at different stages, but following a common
pattern.

52

3. Kernel Methods in Action

Block partial reductions

In parallel computing, the ideal scenario is when all threads perform similar tasks. It is often
more efficient to compute extra, unnecessary terms rather than introduce conditionals that
desynchronize threads, leading to waiting times at synchronization barriers. However, partial
reductions can sometimes be beneficial, particularly when the kernel has small compact support
or when most of the interactions are negligible. KeOps supports the specification of block-wise
sparsity masks as optional attributes. Block reduction tiles are encoded using a collection of
so-called ranges, represented as tuples of indices (istart, iend, jstart, jend). These ranges help focus
the computational effort on a specific subset of the full set of interaction pairs J1, NK→ J1,MK.
This approach enables pruning negligible terms from symbolic reductions while preserving the
contiguous memory accesses that are crucial for CUDA kernel performance.

However, users should be mindful of the number of ranges utilized, as they may become
significant in size. Since M and N can be large, these ranges are stored as long integer (int64),
potentially leading to non-negligible memory overhead.

3.3 Providing High Level Computational tools

Few researchers developing applied mathematical methods possess the expertise or have the
time to delve deeply into the SIMT subtleties outlined above. There is a need for high-level, yet
performance-competitive, tools to develop, test, and deploy original methods in laboratories.
KeOps aims to automate the generation of efficient code for large tensor reductions.

As mentioned earlier, other high-end metaprogramming tools could be used to perform efficient
computations related to kernel methods. However, development efforts in these libraries have
mostly focused on supporting atomic or specialized (in machine learning or physics) algebraic
operations and cross-hardware compatibility. The academic niche of KeOps is its ability to align
with the mathematical concept of kernel operators in all their variety. Despite its limited range of
supported backends (CUDA and C++), it has found its audience in various communities, as kernel
operators are ubiquitous tools in many practical fields.

In shape analysis, it has been widely used to implement increasingly refined deformation
models [Proc9] and efficient distance measures between shapes [Proc2]. In machine learning, it
has been applied with transformers [68] and the Sinkhorn algorithm. The Python Optimal Transport
library [24] has benefited from these advancements, as have Gaussian processes, particularly
through the GPyTorch library [28]. It has also been successfully applied in biological research,
notably for studying protein structures [61, 1], and in large-scale data analysis [53].

3.3.1 The Symbolic Tensor abstraction

Tensor data

Modern scientific libraries now fully implements both dense and sparse tensor-like data structure
type, as illustrated Figure 3.2. Dense data structures are the most commonly used and store every
coefficient explicitly in memory. They are supported by well-established and portable libraries,
ranging from low-level operations (e.g., BLAS, MKL, cuBLAS) to advanced linear algebra routines
(e.g., LAPACK, MKL). Dense array manipulation is versatile, efficient, and user-friendly — even across

53

3. Kernel Methods in Action

M [i, j]

(a) Dense tensor

(in, jn,Mn)

(b) Sparse tensor

F (xi, yj)

(c) Symbolic tensor

Figure 3.2: Scientific computing libraries represent most objects as tensors

programming languages11. For example, the Python scientific computing community has made
significant efforts to define a standard API for tensor-like objects12, aiming to ensure compatibility
across various implementations such as NumPy arrays, PyTorch tensors, JAX tensors, and others.

In many graph-related problems common in modern applications, the majority of tensor
entries are zero. In such cases, sparse data structures offer a significant advantage by storing
only the indices and corresponding values of the non-zero entries. Various formats exist — such
as Dictionary of Keys or List of Lists or Compressed Sparse Row/Column — and standard linear
algebra libraries have been adapted accordingly, making sparse support widely available. While
sparse structures significantly reduce memory usage, they are not always well suited for massively
parallel computing architectures. Although libraries like cuSPARSE provide some support, efficiently
utilizing the full capacity of computational devices remains a challenge. This is particularly true
when threads do not follow similar data access patterns, which limits occupancy and performance.

Symbolic Tensors

Introduced in version 2 of KeOps, symbolic tensors (known as LazyTensor in the current version of
KeOps) provide an abstraction for seamlessly manipulating operations described by Equation (3.2).
When working with kernels, the full tensor ηℓ,i,j,k is generally not sparse. However, Assumption (3.1)
ensures that the elements required to fully define it remain memory-efficient.

A symbolic tensor is a user-friendly class with syntactic sugar that encapsulates all the infor-
mation required to evaluate a formula efficiently and transparently. Its two main attributes are: (1)
a string representing the generic mathematical formula, and (2) metadata about the variables
referenced in that formula. Several pieces of information are essential for unambiguously evaluat-
ing a symbolic tensor: the index assigned to each variable in the formula, indicating its position
among the function’s arguments; the internal dimension of each variable; and the dimensionality
of the formula’s output. Additionally, it is necessary to track whether the underlying data is stored
contiguously and whether it resides on the CPU or GPU, in order to avoid unnecessary memory
transfers.

Internal dimension

A wide range of common mathematical operations can be applied to a symbolic tensor. These
operations act only on the internal dimensions (indexed by k). Standard mathematical operators

11Two conventions coexist: column-major storage (used in FORTRAN, R, Matlab) and row-major storage (used in C,
Python)

12See the initiative at https://data-apis.org/

54

https://data-apis.org/

3. Kernel Methods in Action

from pykeops.torch import LazyTensor

def gaussian_kernel(x, y, sigma2):
x_i = LazyTensor(x[:, None, :]) # ([M, 1], D)
y_j = LazyTensor(y[None, :, :]) # ([1, N], D)
D_ij = ((x_i - y_j) ** 2).sum(-1) # ([M, N], 1) SymbolicTensor (squared distances)
return (-D_ij / sigma2).exp() # ([M, N], 1) SymbolicTensor (Gaussian kernel)

x = torch.randn(M, D) # (M, D) torch tensor
y = torch.randn(N, D) # (N, D) torch tensor
p = torch.randn(N, D) # (N, D) torch tensor

K_ij = gaussian_kernel(x, y) # ([M, N]) SymbolicTensor (Gaussian kernel)
v = K_ij @ p # MatMult ([M, N], 1) @ (N, D) = (N, D) torch tensor

Listing 1: The adaptation of a Gaussian convolution implementation from PyTorch to KeOps
required only minimal modifications, limited to the orange-highlighted lines.

such as +, -, *, /, **, etc., are fully supported, along with a variety of mathematical functions
including exp, cos, tensordot, and many others13.

Given the following dummy dataset,

import numpy as np
M, N, D = 1e6, 2e6, 3
x = np.random.randn(M, D) # (M, D) numpy array
y = np.random.randn(N, D) # (N, D) numpy array

we can create symbolic tensors representing the squared Euclidean distance between these data
points. Operations applied to a symbolic tensor are recorded and assembled into a formula, which
is internally parsed as an abstract syntax tree (AST). The variables in the expression correspond to
the leaves of this tree. They can be explicitly declared as follows:

from pykeops.numpy import Vi, Vj
x_i = Vi(x) # [(M, 1), D] SymbolicTensor
y_j = Vj(y) # [(1, N), D] SymbolicTensor
eta = ((x_i - y_j) ** 2).sum() # [(M, N),] SymbolicTensor

Here, the Vi (resp. Vj) constructor outputs a LazyTensor indexed by i (resp. j) and representing
a variable. Another constructor uses a modified view of the tensor, allowing KeOps to infer the
variable type (i or j) directly from the shape attribute. The two lines below are equivalent to the
declarations shown above:

from pykeops.numpy import LazyTensor
x_i = LazyTensor(x[:, np.newaxis, :]) # [(M, 1), D] SymbolicTensor
y_j = LazyTensor(y[np.newaxis, :, :]) # [(1, N), D] SymbolicTensor

The memory footprint of eta is negligible as it only stores the following information

13See the full list at https://github.com/getkeops/keops/tree/main/keopscore/keopscore/formulas/maths

55

https://github.com/getkeops/keops/tree/main/keopscore/keopscore/formulas/maths

3. Kernel Methods in Action

print(eta)
KeOps LazyTensor
formula: Sum(Square((Var(0, D, 0) - Var(1, D, 1))))
shape: (M, N)

The formula involves two variables, where the triplet Var(pos, dim, type) specifies the position
in the function argument list, the internal dimension, and the variable type (i or j).

The current implementation of LazyTensor is not yet complete, as the inner dimension is nec-
essarily flattened. For instance, when a variable x ∈ RM×D0×D1 is represented, it is implemented
as a LazyTensor with shape [M, D0 * D1].

mat = np.random.randn(M, D, D)
vec = np.random.randn(N, D)

mat_i = Vi(mat.reshape(M, D * D)) # flatten the inner dimension
vec_j = Vj(vec) # already flattened

In practice, to emulate multi-index operations on LazyTensor, the user must explicitly provide
the sizes of the inner dimensions. High-level slicing and broadcasting operations are not yet
supported and must be implemented manually. For instance, consider the following tensor field
contraction: ηi,j,k =

∑
k1
xi,k0,k1

yj,k1
which corresponds to a matrix-vector multiplication. It could

be written

eta = mat_i.matvecmult(vec_j) # unflatten implicitly

As KeOps ensures that the internal dimension of vec_j divides the dimension of mat_i in order
to perform the contraction. However, under the hood, it calls the generic keops_tensordot()
operation, which can be somewhat verbose

eta = mat_i.keops_tensordot(vec_j,
(D, D), (D,), # unflatten explicitly
(1,), (0,)) # contraction indices

Efforts are ongoing to fully abstract away this additional boilerplate for the user. The next version
of LazyTensor allowing this will be called SymbolicTensors.

Reductions

When considering a kernel operator, we are primarily interested in the result of applying this
operator to an input vector. This is the case when computing the scalar product in a Reproducing
Kernel Hilbert Space (RKHS), where the key element is a function that evaluates the kernel along
the data, rather than the kernel matrix itself. Similarly, this is true when searching for nearest
neighbors, where the most relevant information is often the shortest distance, rather than the full
distance matrix.

This is why we do not need to access the actual values of the tensor η, which could correspond
to the dense version of eta in our example. As a result, any mathematical operation on symbolic
tensors can be processed lazily, meaning that the actual computations are only performed when
a reduction on the external variable is invoked.

56

3. Kernel Methods in Action

Many reduction operations have been implemented in KeOps14. The ones used in the exam-
ples of Section 3.1.2 include sum_reduction, argkmin_reduction, and logsumexp_reduction. To
distinguish these from operations acting on internal dimensions, the keyword _reduction has
been appended to their names. The user should specify the index i or j to be reduced via the
axis or dim parameter. Invoking these methods triggers the compilation of optimized code and
generates an executable, which is then used within the program.

Coming back to our example with the squared Euclidean norm, if we are interested in a nearest
neighbor query, we simply need to apply the following reduction:

indices = eta.argKmin_reduction(K=1, axis=1) # (M, 1) numpy array

This returns the full list of indices corresponding to the points in y that are nearest neighbors
to the points in x. The parameter K=1 specifies the number of argmins to be returned, and the
reduction is applied along the j index (i.e., axis=1).

Sometimes, it is useful to apply the same formula to different data. A LazyTensor can be
declared with symbolic variables, which serve as placeholders and do not explicitly link to an
existing data array. In this case, the CUDA kernel is compiled, but no computations are triggered.
Instead, a function capable of applying this kernel is returned. The LazyTensor with symbolic
variables can then be called with actual data as arguments when the user needs to perform the
reduction15:

eta = ((Vi(0, D) - Vj(1, D)) ** 2).sum() # symbolicTensor with placeholders
eta_fun = eta.argKmin_reduction(K=1, axis=1) # a function with two args
indices = eta_fun(x, y) # (M, 1) numpy array

These constructors take the position of the variable in the argument list and the internal dimension
D of each variable. For example, Vi(0, D) essentially means that the first variable (at position
0) has an internal dimension of D. Knowing this information for each variable is required at
compile time, allowing KeOps to generate optimized code, such as templates or loop unrolling.
Therefore, each time a formula involves a different internal dimension, a new compilation occurs,
as described in Section 3.4.2 below. However, it is important to note that the external dimensions
are only known at runtime, as reductions can be applied to different observed data.

3.3.2 Automatic differentiation

Automatic differentiation (AD) has existed for decades, dating back to the 1960s [79]. However, in
the past ten years, with the rise of machine learning libraries such as PyTorch, JAX, and TensorFlow,
AD has become compatible with high-level scientific languages. AD is also useful when dealing
with kernel methods, and KeOps provides an internal AD engine for symbolic tensors. Every
differentiable KeOps operation comes with its corresponding differential operations, required for
both forward and reverse-mode AD. Additionally, we have made the LazyTensor abstraction fully
compatible with the PyTorch AD engine, enabling the use of KeOps operations in any Torch script.

The formula F : Rn → Rd can be written as a composition F = Fp ◦ · · · ◦ F1 of p functions
Fi : Ei−1 → Ei, where Ei = Rdi . With these notations d0 = n and dp = d. Evaluating the gradient
of F with the backpropagation algorithm requires:

14A full list is available at https://www.kernel-operations.io/keops/api/math-operations.html#reductions
15See https://www.kernel-operations.io/keops/_auto_tutorials/a_LazyTensors/plot_lazytensors_c.html

57

https://www.kernel-operations.io/keops/api/math-operations.html#reductions
https://www.kernel-operations.io/keops/_auto_tutorials/a_LazyTensors/plot_lazytensors_c.html

3. Kernel Methods in Action

Rn E0 E1 E2 · · · Ep R

x x0 x1 x2 · · · xp F (x)

∇xF (x) x∗0 x∗1 x∗2 · · · x∗p 1

Rn E0 E1 E2 · · · Ep R

out ∂xF1 ∂xF2 · · · ∂xFp in

in F1 F2 · · · Fp out

∈ ∈ ∈ ∈ ∈ ∈
∈ ∈ ∈ ∈ ∈ ∈

Figure 3.3: Reverse automatic differentiation principle. The first row depicts the forward pass, while
the second row illustrates the backward pass.

1. A Forward pass to evaluate the functions

Fi : Ei−1 → Ei

x 7→ Fi(x)

and thus compute the value F (x).

2. A Backward pass to evaluate the (adjoints of the) differentials

∂Fi : Ei−1 × Ei → Ei−1

(xi−1, x
∗
i) 7→ [dF ∗

i (xi−1)](x
∗
i) = x∗i−1

and compute the gradient of F at location x, applied to an arbitrary e in the space of outputs.
When F is real-valued (i.e., d = 1), choosing e = 1 yields ∇F (x) = ∂xF (x) · 1. This step is
sometimes called the vector-Jacobian product (VJP). It is often the memory bottleneck of
many algorithms [33], as it requires storing the intermediate values of the forward pass, as
illustrate by the blue arrows in Figure 3.3.

At a low level, KeOps enables us to compute gradients efficiently using the Grad instruction.
Given a formula F , the symbolic expression Grad(F, V, E) represents the formula for the gradient
[∂V F (x)](E) with respect to the variable V , evaluated on the input variable E. If V is a variable
placeholder that appears in the expression for F, and if E has the same dimension and category
as F, then Grad(F, V, E) can be fed into KeOps just like any other symbolic expression. The
resulting output will have the same dimension and category as the variable V, making it compatible
for tasks such as gradient descent or higher-order differentiation. KeOps fully supports nested
gradient calculations, such as Grad(Grad(...,...,...),...,...).

The formula derived by the Grad operator may lead to long and complex expressions, especially
for higher-order derivatives. To manage these potentially suboptimal formulas, KeOps includes
a recursive formula simplifier accessible through the auto_factorize option16. It automatically
factorizes expressions to reduce their complexity. This can sometimes help avoid large intermediate
results within the internal dimensions, which risk overwhelming the shared memory.

Additionally, KeOps provides higher-level operators, such as Divergence and Laplacian, which
have been implemented and can be used directly in KeOps formulas. These operators are optimized
and maintains computational efficiency compared to naïve implementations17.

16See https://www.kernel-operations.io/keops/python/api/common/GenericLazyTensor.html#pykeops.comm
on.lazy_tensor.GenericLazyTensor.auto_factorize

17See Symbolic gradients and linear operators section of https://www.kernel-operations.io/keops/api/math-ope
rations.html#math-operators

58

https://www.kernel-operations.io/keops/python/api/common/GenericLazyTensor.html#pykeops.common.lazy_tensor.GenericLazyTensor.auto_factorize
https://www.kernel-operations.io/keops/python/api/common/GenericLazyTensor.html#pykeops.common.lazy_tensor.GenericLazyTensor.auto_factorize
https://www.kernel-operations.io/keops/api/math-operations.html#math-operators
https://www.kernel-operations.io/keops/api/math-operations.html#math-operators

3. Kernel Methods in Action

3.3.3 Advanced linear algebra operations with kernels

LinearOperator compatibility

As emphasized in Section 3.3.1, many methods do not require knowledge of the individual entries
of a linear operator matrix to be effective. The lazy evaluation of KeOps reductions fits into
this framework, which is common in high-level scientific libraries. We have also discussed the
Jacobian-vector product (JVP)18 (and VJP for the backward pass) in forward (and backward) AD
engines. This abstraction is similarly used in iterative methods for sparse linear algebra in SciPy
through the scipy.sparse.linalg.LinearOperator19 class. For instance, these include: Linear
problem solvers, such as cg() (conjugate gradient) or gmres() (Generalized Minimal Residual);
and matrix factorizations like eigsh() (for largest eigenvalues) or svds() (partial Singular Value
Decomposition), among others.

To convert a LazyTensor into a LinearOperator, the only methods that need to be provided
are the shape attribute, which returns the dimensions M and N , and the callable methods
matvec() or rmatvec(). These correspond exactly to the functions returned by symbolic tensors
with placeholders, as described in Section 3.3.1, with reductions applied to the j — or i — variable,
respectively.

Let us provide two examples that illustrate the usefulness of this feature. First, given a
regularization parameter α > 0 and vectors x ∈ RM×D , b ∈ RM , suppose we need to compute
a = (α Id+Kxx)

−1b, where K is a Gaussian kernel. We can then call the conjugate gradient
method with the following code — the gaussian_kernel() is declared in Listing 1:

from scipy.sparse.linalg import aslinearoperator, cg
from scipy.sparse import diags
x = np.random.randn(M, D)
G_ij = gaussian_kernel(x, x) # ([M, M]) SymbolicTensor
K_ij = aslinearoperator(G_ij) # ([M, M]) linearOperator
alphaId_ij = aslinearoperator(

diags(alpha * np.ones(M))) # ([M, M]) LinearOperator

b = np.random.randn((M, 1)) # (M, 1) numpy array
a = cg(K_ij + alphaId_ij, b) # (M, 1) numpy array

Second, we consider the problem of computing the first five eigenvalues of the kernel K . This can
be done simply by writing:

from scipy.sparse.linalg import eigs
eigenvalues, eigenvectors = eigsh(K_ij, k=5) # (5,) and (M, 5) numpy arrays

It returns the eigenspaces computed using the Implicitly Restarted Lanczos Method, as imple-
mented in the ARPACK software package. Optimized routines from SciPy can now be applied to
symbolic tensors of size in the millions. For further examples, refer to the KeOps documentation.

18https://docs.jax.dev/en/latest/_autosummary/jax.jvp.html
19https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#sci

py.sparse.linalg.LinearOperator

59

https://docs.jax.dev/en/latest/_autosummary/jax.jvp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator

3. Kernel Methods in Action

Solve reduction

The main limitation of casting LazyTensor as SciPy LinearOperator lies in the memory transfers
required at each iteration of the solver. Since SciPy relies on NumPy and C++ or FORTRAN routines,
arrays are stored in CPU memory, and KeOps must transfer the data back and forth between the
CPU and GPU at each call of the LinearOperator methods matvec() or rmatvec() routines. Users
should also be aware that KeOps avoids silent type downcasting from FP64 (the default in NumPy)
to FP32 (the default on the GPU), which helps preserve precision but can result in significant
performance degradation on older GPUs.

Note that a similar effort is currently under development through the PyTorch Tensor API via
the LinearOperator20 project. However, this project is still in its early stages. To address this, we
provide a conjugate gradient implementation that allows users to solve linear systems involving
kernel operators. Thanks to the PyTorch tensor framework, data remains on the GPU throughout
the iterations, avoiding costly memory transfers.

The evaluation of the conjugate gradient method is viewed as a reduction along the j variable. It
can be easily called with the .solve() method. Similar to the scipy.sparse.linalg.cg example
above, the syntax is as follows, using the declared gaussian_kernel() from Listing 1:

b = torch.randn(M, 1) # (M, 1) torch tensor
K_xx = gaussian_kernel(x, x) # ([M, M]) SymbolicTensor
a = K_xx.solve(b, alpha=.5) # (M, 1) torch tensor

A few warnings for users: computing in FP32 may lead to numerical instability. Additionally, adding
a preconditioner is crucial for achieving good performance21.

3.4 Implementation details and structure of the library

The KeOps project is divided into two independent components. The first is a low-level module,
which can be thought of as an Application Programming Interface (API). It contains the internal
keopscore metaprogramming engine that generates and compiles the code corresponding to a
given formula. Built on top of this core, the bindings — implemented as PykeOps for Python and
RKeOps for R — act as interfaces between user commands and the engine, exposing high-level
functionality. This second module is responsible for triggering computations when results are
needed and transferring data to the appropriate device if necessary.

An overview of the data flow in KeOps using the Python binding with PyTorch is shown in Figure
3.4. This is the most commonly used setup, as it demonstrates how PyKeOps integrates seamlessly
with PyTorch’s automatic differentiation engine. Other bindings follow a similar pipeline. The main
steps are: (1) the creation of a generic formula from symbolic tensor expressions; (2) parallel code
generation and binary compilation; (3) execution of the computation on the data, with the result
returned to the user.

3.4.1 KeOps formulas

The internal engine of KeOps is designed to generate an optimized and parallelized routine from a
given formula — an expression involving mathematical functions and a set of variables — which can

20https://github.com/cornellius-gp/linear_operator
21https://www.kernel-operations.io/keops/_auto_benchmarks/plot_benchmark_invkernel.html#sphx-glr-a

uto-benchmarks-plot-benchmark-invkernel-py

60

https://github.com/cornellius-gp/linear_operator
https://www.kernel-operations.io/keops/_auto_benchmarks/plot_benchmark_invkernel.html#sphx-glr-auto-benchmarks-plot-benchmark-invkernel-py
https://www.kernel-operations.io/keops/_auto_benchmarks/plot_benchmark_invkernel.html#sphx-glr-auto-benchmarks-plot-benchmark-invkernel-py

3. Kernel Methods in Action

get_keops_dll() Cache nvrtc_jit libnvrtc

Genred() pykeops_nvrtc

SymbolicTensor() torch.autograd.
Function()

libcuda

torch.Tensor torch.Tensor GPU

ctype

pybind11

pickle

.backward(), .jvp()requires_grad=True

Da
ta

Fo
rm

ul
a

Fo
rm

ul
a

Data

Form
ula

applied
to

Data

kernel.{ptx,cubin}

in
pu

t

Grad(Formula)

output

kernel.cu
ke

op
sc

or
e

Py
Ke

Op
s

to
rc

h

Nv
id

ia
Dr

iv
er

/C
ud

a
To

ol
ki

t

Figure 3.4: Workflow of the KeOps stack with PyTorch bindings. Blue boxes represent Python
entities, while yellow ellipses denote dynamic libraries written in C/C++/CUDA. Dotted orange
arrows indicate potential points where a data copy may occur.

then be applied to user data either immediately or at a later stage. On the Python side, the formula
is handled by the pykeops.Genred() module (where Genred stands for Generic Reduction), which
subsequently calls the keopscore.get_keops_dll() entry point in the keopscore package to
retrieve the corresponding computational routine.

The formula and variables are provided as a string, where each token must correspond to a
valid class from the keopscore.formulas module. This module defines the full KeOps grammar,
including standard mathematical operations on inner dimensions (exp, cos, +, . . .), reduction
operators on outer dimensions (sum, min, prod, . . .), and differential operators acting on complete
formulas (Grad, Div, Laplacian, . . .). Each class implements two methods: one for generating
the code corresponding to the direct evaluation of the operation (called Op in mathematical
operations and FinalizeOutput() in reductions), and another for generating the corresponding
derivative formula (called DiffT() for the adjoint of the differential). An example for the log
operation is provided in Listing 2 and can be compared to with the C++ implementation of KeOps
version 1 in the Listing page 48 of [23].

The keopscore module then uses the Python parser to recursively evaluate the formula
expression, calling the Op method for each term to inject the corresponding code for direct
evaluation into a formatted file containing the raw source code. Generating the gradient formula
(i.e., the backward pass in reverse-mode automatic differentiation) is achieved by calling the DiffT
methods recursively, which can then, in turn, be used to inject the corresponding evaluation code
into a source file.

Currently, the KeOps engine can generate code in C++ (as .cpp files), leveraging the OpenMP

61

3. Kernel Methods in Action

class Log(Operation):
"""the logarithm operation"""
def __init__(self, arg):

arg is another instance of Operation
self.children = arg
self.string_id = "Log"

def Op(self, out_var, arg_var) -> str:
c++/cuda code to evaluate the log
loop = f"for(int k = 0; k < {out_var.dim}; k++)"
code = f" {out_var.id}[k] = log({arg_var.id}[k]);"
return "\n".join(loop, log_code)

def DiffT(self, v, gradin):
return an Operation that could be use in the backward pass of the AD engine
f = self.children
df = 1 / f
return f.DiffT(v, gradin) * df

Listing 2: The (pseudocode) implementation of log operation in KeOps version 2.

library for multicore CPU parallelization, or in C++/CUDA (as .cu files) for execution on Nvidia GPUs
via the CUDA toolkit and Nvidia driver stack. The compilation process differs slightly between
these two targets and is detailed in the following sections.

3.4.2 Just-In-Time Compilation

KeOps Cache System

Generating the source code corresponding to a given formula involves simple string manipulations
and is fast, typically taking only a few milliseconds. Compiling this code into a binary takes longer
— ranging from a few tenths of a second to several seconds depending on the compiler — but this
process is performed only once. When a formula is passed to get_keops_dll(), the system checks
an internal cache for an existing binary corresponding to the requested operation and compatible
with the user’s target device. If such a binary exists, it is returned immediately. Otherwise, if the
formula is encountered for the first time, get_keops_dll() proceeds with the full compilation
process.

The cache system is implemented using Python’s pickle serialization module. Since the
compiled binary depends on the hardware architecture, it may need to be recompiled when the
system configuration changes. The cache can be safely cleared at any time by deleting its directory
— by default, KeOps stores cached binaries in $HOME/.cache/keopsX.X.X.

CPU and OpenMP backend

The routines generated with the C++/OpenMP backend run exclusively on multicore CPUs. This
backend is primarily intended for development purposes, enabling users to test KeOps on systems
without an Nvidia GPU. Reduction operations are implemented using straightforward for loops
(with optional range-based variants) and parallelized via OpenMP pragmas. These computational

62

3. Kernel Methods in Action

schemes, available in keopscore.mapreduces.cpu22, have a low memory footprint since no shared
data buffers are used. Their performance depends entirely on compiler optimizations and may
vary significantly with both the formula and the underlying hardware.

The compilation procedure is as follows. Each formula and hardware architecture are referenced
through a unique hash. Two .cpp files are created with this identifier. The first contains the code
parallelized for the reduction, while the second, acting as a main file, includes the pybind11 [40]
bridge between C++ objects and the Python module. Compilation is carried out using either g++ or
clang via a CMake23 recipe and produces a single dynamically linked shared object that can be
imported seamlessly into Python as a standard module. This module includes methods to perform
the user-requested reduction and can be serialized with pickle into a cache file, as described in
Section 3.4.2.

GPU with CUDA and runtime compiler

Version 1 of the KeOps compilation stack with the C++/CUDA backend used exactly the same
compilation procedure as in CPU mode, described in Section 3.4.2, except that it relied on the
Nvidia compiler nvcc to generate the binary corresponding to a given formula.

To reduce compilation time, KeOps version 2 now uses the Nvidia Runtime Compiler nvrtc24

to produce binaries that are launched directly by the GPU driver through libnvrtc and libcuda.
This process is illustrated in Figure 3.4. When PyKeOps is launched for the first time, it generates
two shared libraries that will be used later for all the formulas. This compilation stack requires
both the CUDA toolkit (which provides libnvrtc) and the Nvidia driver (which provides libcuda)
to be installed on the system. Issues related to detecting these two libraries are a primary topic
of concerns raised by users.

The first shared library, called nvrtc_jit, is part of the keopscore Python module. It generates
a binary kernel from the raw CUDA source code .cu file corresponding to a formula reduction with
its unique hash identifier. The different computation schemes described Sections 3.2.225 and 3.2.3
are available in the keopscore.mapreduce.gpu module. This binary kernel is produced either as
a .cubin or .ptx file, which represent the binary and text versions of the IR language26 of CUDA.
These objects can be serialized in a cache file using pickle, ensuring that this compilation step
is only performed the first time a formula is used. This significantly reduces overhead when the
same formula is applied multiple times to different data.

The second shared library, named pykeops_nvrtc, serves as a gateway for computation and
is part of the pykeops binder. Like the C++/OpenMP backend, it is linked to Python through the
pybind11 library. It accepts any binary kernel provided by keopscore along with their associated
data tensors and launches the computation of the reduction on the GPU. It then exposes the
result to the user on the Python side. The pykeops_nvrtc shared library handles the necessary
data transfers, potentially copying data between the CPU memory (host) and the GPU memory
(device) as needed.

22See https://github.com/getkeops/keops/tree/main/keopscore/keopscore/mapreduce/cpu
23See https://cmake.org/
24See https://docs.nvidia.com/cuda/nvrtc/
25See https://github.com/getkeops/keops/blob/main/keopscore/keopscore/mapreduce/gpu/GpuReduc1D.py
26A kind of high-level assembly language.

63

https://github.com/getkeops/keops/tree/main/keopscore/keopscore/mapreduce/cpu
https://cmake.org/
https://docs.nvidia.com/cuda/nvrtc/
https://github.com/getkeops/keops/blob/main/keopscore/keopscore/mapreduce/gpu/GpuReduc1D.py

3. Kernel Methods in Action

3.4.3 High level Binders

The binders provide a high-level interface for computing reductions from interpreted scientific
programming languages such as Python or R. Leveraging symbolic tensor abstractions, they offer
syntax similar to that of popular tensor-based libraries like NumPy, PyTorch, or R matrices. Version
1 of KeOps also included support for Matlab (via KeOpsLab) and a C++ API (KeOps++). However,
these two interfaces were discontinued in Version 2 to concentrate development efforts on the
platforms most widely used by the community.

Since each language has its own specificities, a binder must include both an implementation
of symbolic tensors to construct formulas and an interface that bridges the language either to
C/C++/CUDA — for direct interaction with the Nvidia driver — or to Python, using PyKeOps and
NumPy as an intermediate layer (see the discussion in Section 3.4.3).

PyKeOps binder for Python

The PyKeOps binder is compatible with both numpy.ndarray and torch.Tensor objects. While
NumPy is the only strict dependency of KeOps, PyTorch is a recommended module due to its richer
GPU integration. In particular, the PyTorch backend offers the most comprehensive support: it
handles torch.cuda.Tensor types in FP64, FP32, and FP16 precisions, avoids unnecessary data
transfers between host and device, and integrates seamlessly with PyTorch’s AD engine. That said,
PyTorch — being primarily designed for machine learning — lacks some advanced linear algebra
capabilities provided by the SciPy library, which is based on NumPy.

The central element of PyKeOps is the Genred() class. Given a formula — either constructed
using symbolic tensors or provided directly by the user — it queries the keopscore module to
trigger JIT compilation. The resulting binary kernel is then passed to the pykeops_nvrtc gateway
that bridges PyKeOps with the Nvidia driver, which launches the computation directly on the GPU.
Meanwhile, PyKeOps inspects the location of the input tensors (CPU or GPU memory), performs
memory transfers if necessary, and allocates memory for the output before executing the reduction.

RKeOps binder for R

The RKeOps binder was completely rewritten with the release of KeOps version 2. In version 1, it
relied on the Rcpp library [22] to directly trigger the compilation of binaries for given formulas.
While Rcpp is the standard approach to link R code with C++/CUDA, it imposes significant main-
tenance overhead: any change in the core KeOps API required synchronized updates across all
binders (including Python and MATLAB).

With the full refactoring and rewrite of the metaprogramming engine in keopscore, RKeOps
was redesigned to delegate the compilation and GPU interfacing to PyKeOps, using the excellent
Reticulate library [76]. Although this introduces some installation overhead — such as creating
a Python virtual environment — this is offset by significantly reducing the amount of R-specific
implementation, thereby simplifying development. For example, the memory layout mismatch
between R (column-major, inherited from FORTRAN) and Python/C (row-major) is handled directly
by Reticulate. RKeOps uses the NumPy backend of PyKeOps exclusively, as R matrices reside in
CPU memory.

Version 2 of RKeOps implements its own version of symbolic tensors, called Lazytensor27. The
syntax has been designed to closely mirror that of PyKeOps, as shown in Listing 3. This alignment

27See https://github.com/getkeops/keops/blob/main/rkeops/R/lazytensor_preprocess.R

64

https://github.com/getkeops/keops/blob/main/rkeops/R/lazytensor_preprocess.R

3. Kernel Methods in Action

library("rkeops")
Gaussian_Kernel <- function(x, y, sigma2) {

Turn our Tensors into KeOps symbolic variables:
x_i <- LazyTensor(x, "i") # (M, D) symbolic object
y_j <- LazyTensor(y, "j") # (N, D) symbolic object

D_ij <- sum((x_i - y_j)^2) # (M, N) symbolic matrix of pairwise squared distances
K_ij <- exp(- D_ij / sigma2) # (M, N) symbolic matrix

return(K_ij)
}

X <- matrix(runif(nx*D), nrow=M) # matrix M x D
Y <- matrix(runif(ny*D), nrow=N) # matrix N x D
P <- matrix(runif(ny*D), nrow=N) # matrix N x D

V <- sum(Gaussian_Kernel(X, Y, s) * LazyTensor(B, "j"), index="j")

Listing 3: An example of RKeOps code, similar to Listing 1

is convenient in the short term, enabling users to switch easily between languages. However, it
poses long-term maintenance risks28.

28We warmly recommend the article https://www.construct.net/en/blogs/ashleys-blog-2/reality-long-ter
m-software-1892 for insights on software maintenance challenges.

65

https://www.construct.net/en/blogs/ashleys-blog-2/reality-long-term-software-1892
https://www.construct.net/en/blogs/ashleys-blog-2/reality-long-term-software-1892

3. Kernel Methods in Action

66

Conclusion and Perspectives

Position/features data analysis in biological data

The work presented in this thesis has consistently been driven by the need to develop original
methods for the practical analysis of specific measurement (feature) with a geometric component
(positions): the OCT dataset for glaucoma detection using functional shapes (fshapes), and the ADNI
MRI dataset for understanding the progression of Alzheimer’s disease through longitudinal data
analysis. The models introduced here, which can be seen as extension of the LDDMM framework,
are mathematically grounded, with results ensuring the existence and smoothness of solutions
to the posed problems. The implementations have been optimized to accommodate a generic
formulation and remain scalable to large datasets. All software developed is freely available and
adheres to open science principles. Nevertheless, routinely analyzing high-dimensional shapes
using this family of methods on small- to medium-sized datasets29 — as is often the case in clinical
settings — or applying such models outside the immediate research community presents ongoing
difficulties. In this section, I outline several perspectives for future work in two main directions
aimed at addressing this limitation.

The first direction concerns the biological relevance of deformation models. In practice, shape
analysis methods often rely on arbitrary default choices — such as the use of radial Gaussian RKHS
— which are rarely adapted to the specific data at hand. This is due to several factors: computational
demands, the limited size of available datasets, or simply inherited conventions from earlier work.
A current line of research for me involves incorporating physical or biological constraints into
these models, with the aim of generating more realistic deformations and narrowing the gap with
mechanical models.

Secondly, I will present some perspectives on the analysis of emerging data modalities. Recent
advances, particularly in omics sequencing technologies, have opened up new opportunities.
Beyond single-cell data, it is now possible to measure gene expression within tissue samples while
preserving spatial resolution. This makes it theoretically possible to compare biological tissues
across scales, from molecular to phenotypic. Developing deformation models to preprocess and
analyze such data is both a challenging and exciting task.

Modular deformations

Using standard non-rigid deformation models to study the evolution of biological shapes may lead
to unrealistic results. Incorporating biomechanical constraints can help produce more coherent
and biologically plausible deformations. The estimation of deformation in a leaf groth model is a
good example as illustrated in Figure 3.5.

29With very few notable exceptions, which are often limited to highly specific data and models; see, e.g., https:
//mricloud.org/.

67

https://mricloud.org/
https://mricloud.org/

Conclusion and Perspectives

(a) Raw data [17] (b) LDDMM (c) IMODAL

Figure 3.5: Curve registration. The source curve is shown in blue, the target in green, and the
deformed source in red. The unstructured deformation model (b) fails to capture basipetal growth,
in contrast to the constrained deformation model (c).

The deformation modules introduced in the PhD thesis [34] of B. Gris (CNRS) provide a framework
for generating non-rigid deformations under arbitrary constraints [35]. The core idea is a modular
approach that allows users to construct deformation models by combining multiple elementary
components that evolve jointly. This enables the generation of a wide range of deformations
while keeping the overall model both simple and interpretable [Proc9]. In particular, the evolution
between two shapes can be modeled using a non-rigid deformation that satisfies specific elastic
constraints. These are known as implicit deformation modules, and their theoretical development,
using the space of featured landmark, is detailed in [PreP1]. As in Chapter 1, a kinetic energy
is naturally associated with a given collection of modules, and modeling shape evolution then
becomes an optimal control problem.

One of the long-term motivations behind this work is the modeling of cortical growth to better
understand the variability of folding patterns, which is a key phenotype in human neuroimaging. A
common assumption in biomechanical folding models is that these patterns are partly determined
by mechanical constraints [75]. The idea of applying modular deformation models to species
such as the ferret is currently being discussed in collaboration with B. Gris and R. Torro (Institut
Pasteur). As a first step, we aim to adapt the framework of implicit deformation modules to more
accurately capture cortical gyrification. This will involve designing modules specifically tailored to
this process and investigating the influence of their parameters.

To study surfaces derived from real datasets, it will also be necessary to improve the computa-
tional efficiency and robustness of the current algorithms. The main implementation has been
carried out in the IMODAL software [Soft4], which is still under active development. Particularly
we plan to focus on the following areas:

Scalability: Improving computational efficiency is essential for processing large datasets. The
main bottleneck lies in the matrix inversion step required for computing modular geodesic
shooting. Currently, we use a conjugate gradient method to solve the linear system, but a
key question is how to design effective preconditioners that are compatible with the KeOps
framework. Theoretical results on convergence rates [31] suggest that good preconditioners
should be full-rank while having a small number of distinct eigenvalues.

Statistical robustness: The estimation of optimal trajectories and growth parameters suffers
from identifiability issues. To address this, we plan to employ appropriate regularization

68

Conclusion and Perspectives

techniques — such as L1 regularization for sparsity — to ensure that the resulting trajectories
are both biologically meaningful and interpretable [21]. Another promising approach is to
adopt a multiscale framework, in which deformation modules are computed at different
resolutions. Once the full registration is obtained, selecting modules at a specific scale
allows us to filter out the influence of other scales and better capture complex deformation
patterns, as illustrated in Section 3.2 of [Proc9].

Practical usability: An open challenge is to move beyond the proof-of-concept implementations
provided in the IMODAL documentation and make these models more accessible to practi-
tioners. While generating and positioning modules in 2D datasets is feasible using Python
scripts, the process becomes tedious in 3D due to the lack of effective navigation tools. A
potential solution is to develop a user interface — possibly interactive — that enables users
to explore the dataset intuitively and select the most relevant elements from a dictionary of
modules.

Analysis of spatial transcriptomic data

Spatial transcriptomics is a recent technology that enables precise measurement of both gene
expression (features) and its spatial localization within a tissue sample. As is often the case with
emerging technologies, multiple standards currently coexist — some with short lifespans — making
it challenging to design a versatile yet scalable model formulation. The goal here is to develop
methods capable of comparing these various subcellular-scale datasets by establishing a common
reference coordinate system, and enabling analysis across scales. For example, to study the spatial
organization of gene expression in the mouse brain, Figure 3.6 illustrates the registration of brain
atlas regions (Allen CCFv3) onto a spatial transcriptomics data (MERFISH). It gives a more accurate
interpretation of gene expression patterns within the context of brain structure.

The mathematical treatment of such data is particularly challenging, as it combines discrete
information (e.g., gene expression levels, atlas ontology) with continuous spatial localization. I
became interested in this topic in 2023 while collaborating with K. Stouffer, a visiting PhD student
from CIS, on the analysis of spatial transcriptomics data from the mouse brain across multiple
modalities (MERFISH and BARSeq). This research area is especially appealing to me, as it aligns
closely with the focus of the MIAT laboratory (INRAE), which I recently joined. It provides a natural
bridge between omics data — widely studied at MIAT — and spatial information, which lies at the
heart of shape analysis. I plan to further develop this line of research in the coming years, and
briefly describe below the direct continuation of our work presented in the preprint [Art15].

In [74], a deformation model framework was proposed based on a Varifold representation of the
acquired data. This approach is particularly promising, as kernel-based distances can effectively
handle heterogeneous data—such as gene expression and subcortical anatomical regions from
the atlas—by capturing shared position/feature patterns. The framework introduces a norm ∥ ·∥W∗

to measure the similarity between varifolds, defined analogously to Section 1.5.3.
In a spatial transcriptomics acquisition, each mRNA read, indexed by i, is represented as a

single weighted Dirac mass in the varifold space: wiδxi
⊗ pi, where wiδxi

encodes the spatial
location with gene expression intensity wi > 0, and pi is a conditional probability distribution
over a D-dimensional feature space, capturing gene expression characteristics a xi ∈ R3. A full
acquisition comprising N measurements is then represented by a weighted sum of Dirac masses:

µ =

N∑
i=1

wiδxi
⊗ pi.

69

Conclusion and Perspectives

Figure 3.6: Registration of a brain atlas (Allen CCFv3) onto spatial transcriptomics data (MERFISH)
from [74]. The left image shows the original atlas (source), and the right image displays the
MERFISH gene expression data (target). The middle image presents the geometrically transformed
atlas, now equipped with gene features π, allowing direct comparison with the MERFISH data.

The registration problem between two varifold µ and µ′ optimizes over the diffeomorphism: inf
ϕ∈Diff

penalty(ϕ) + ∥ϕ · µ− µ′∥2W∗

with ϕ · µ =
∑N

i=1 |dxi
ϕ|wiδϕ(xi) ⊗ pi

(3.3)

where action of diffeomorphisms on varifolds involves the Jacobian determinant |dxi
ϕ|wi of the

transformation ϕ, ensuring that total gene expression remains coherent across the deformation.
In practice, an additional spatial mask is applied to account for the partial acquisition typically
encountered in spatial transcriptomics data [Art15].

When registration is performed between two different modalities, the formulation of prob-
lem (3.3) must be adapted to account for the differences in feature spaces. In the CCFv3-to-MERFISH
example shown in Figure 3.6, it is assumed that for each atlas region ℓ, there exists a distribution
πℓ over the target feature space (i.e., the set of genes detected by MERFISH) that characterizes the
typical gene expression profile for that region. The underlying idea is that different tissue types
are distinguished by different gene expression patterns. These region-specific distributions πℓ
are estimated during the registration process, along with the spatial deformation. To regularize
this estimation, an additional penalty term is introduced, taking the form of a Kullback–Leibler
divergence.30

A full acquisition can reach up to N = 6 · 109 mRNA reads over a feature space of dimension
D = 1000. Standard kernel methods struggle to scale to such high-dimensional and high-
volume data, as commonly found in transcriptomics. To address this, practical solutions have
been implemented in [Art15], where the data is approximated by a lower-dimensional varifold
representation using the KeOps library. Nonetheless, even with this approximation, the number of
points N can still reach tens of millions, with feature dimensions D around 100 — pushing the
upper bounds of KeOps’ efficient performance.

Future work in the direct lineof [Art15] will focus on two main directions. First, we aim to
reduce the computational complexity of kernel operations while preserving the current syntax, by
implementing approximate kernel methods using the ranges framework, inspired by fast multipole
methods. This approach must include theoretical bounds on the approximation error to ensure
reliable performance.

Second, we plan to enhance computational efficiency for high-dimensional feature spaces,
particularly when the number of dimensions exceedsD > 100. Current parallel reduction strategies

30Note: There is a notation switch between p and π in Equation (3) in [74] and Equation (12) in [Art15].

70

Conclusion and Perspectives

in KeOps are not well-suited for such settings (see Section 3.2.3). To address this, we propose
developing a more sophisticated reduction scheme based on a 2D computational grid that leverages
the larger cache memory available in modern GPUs. This design is expected to significantly
accelerate computations, potentially scaling up to dimensions around 1000. However, going
beyond this threshold will likely saturate memory resources and remains a challenging optimization
problem.

Crowd sourced data in machine learning

This section presents a topic rather independant from the previous ones. This is about machine
learning classification of images with crowd-sourced data.

Context

I have been working on the treatment of crowd-sourced data for machine learning with J. Salmon
since 2020. In supervised classification, one assumes a sample of n pairs (xi, yi), where xi ∈ X
(typically images) and yi ∈ Y is the corresponding label. In crowdsourcing, however, each xi

is labeled by multiple, often non-expert, annotators. The true label yi is unknown; instead, we
observe a distribution ŷi over Y (see Figure 3.7). When there is strong consensus, ŷi becomes
a Dirac mass, recovering the standard supervised setting. Such data have become increasingly
common with the rise of participatory projects.

Image #7681
CIFAR-10 label: airplane

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

(a) True label: airplane

Image #6750
CIFAR-10 label: deer

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

(b) True label: deer

Image #9246
CIFAR-10 label: cat

ai
rp

la
n

e
au

to
m

ob
ile

b
ir

d
ca

t
d

ee
r

d
og

fr
og

h
or

se
sh

ip
tr

u
ck

0%

10%

20%

30%

40%

50%

V
ot

es
d

is
tr

ib
u

ti
on

(c) True label: cat

Figure 3.7: Three examples from the CIFAR-10H dataset [64], a dataset obtained by re-labeling
CIFAR-10 using Amazon Mechanical Turks service with a variable number of voters for each image.
(a) airplane is easy to classify. (b) Poor image quality makes the task ambiguous. (c) A black cat
(cat) is confused with the antlers of a deer (deer).

With A. Joly (INRIA) and J. Salmon, we co-supervised T. Lefort during his Master’s and PhD [45]. His
research focused on detecting label ambiguity in crowd-sourced data to identify ambiguous tasks
assigned to workers [Art13]. He also developed PeerAnot, a framework for handling crowdsourced
image classification datasets and benchmarking aggregation strategies (i.e., how to infer labels yi
from worker votes ŷi) [Art12]. This work was part of a larger project involving Pl@ntNet31, a citizen
science platform for plant identification [Art14].

The following section outlines the future of this project (funding application planned for 2025)
and the main research directions we intend to pursue. The project aims to improve data quality
collected via crowdsourcing and enhance machine learning performance in this setting.

31Available at https://plantnet.org/

71

https://plantnet.org/

Conclusion and Perspectives

is valid if

For all

(Validation)

(Confidence update)

(Label update)

Labels update and validation
Weights update

Initialization

Users :Users : Weights : Labels :

For all

get valid images authored by

get images identified by

(Accuracy update)

Figure 3.8: Pl@ntNet label validation scheme

The Pl@ntNet project

Advances in machine learning and citizen science are introducing new tools to applied fields
like ecology [26]. Platforms such as Pl@ntNet, iNaturalist, and eBird combine amateur and
expert contributions to train deep neural networks (DNNs) and offer flexible tools for species
identification, benefiting both the general public and experts. However, challenges emerge due to
the nature of the collected data and the need to quantify uncertainty in predictions.

A common challenge for these approaches is providing the general public with efficient and
reliable tools, despite the heterogeneity of collected labels. A major weakness is the lack of
statistical guarantees for DNN predictions, compounded by the uncertainty of user-collected
labels, as user expertise varies.

A key example is Pl@ntNet, developed by members of this consortium over 15 years, with
a community of 25 million users. Primarily a mobile application, users photograph plants, and
the app suggests possible species. The underlying machine learning relies on DNNs trained on
extensive image datasets to deliver predictions in milliseconds.

The Pl@ntNet platform enables contributors to validate plant observations through a voting
system that incorporates a label aggregation strategy. Users can vote on the identification of
plant observations submitted by others. To improve data reliability, Pl@ntNet estimates each
user’s expertise through a confidence score, which is recursively calculated on the basis of the
correctness of their identifications (see Figure 3.8). Observations receive a consensus-based label
when enough trusted users agree. This ensures that inputs of botanical experts are properly
weighted while preventing noisy or unreliable data from being used in AI training.

Although the application is already successful, the quality of the collected data and the
predictions made by the DNN are not always reliable. Errors in DNN predictions can mislead users
during labeling, degrading the quality of the collected data. The goal of this project is to provide a
statistical framework and software to improve, assess, and robustly validate DNN predictions in
this context.

User’s confusion matrix estimation at scale

In applications like Pl@ntNet though (that can handle more than 75,000 species), many classes
have very few observations, as illustrated in Figure 3.9. One potential use of confusion matrices

72

Conclusion and Perspectives

0% 20% 40% 60% 80% 100%
Cumulative share of labels

11%
20%

40%

60%

80%

100%

C
um

ul
at

iv
e

sh
ar

e
of

 im
ag

es

Full Pl@ntNet
Imagenet
CIFAR100

Figure 3.9: Pl@ntNet has a long-tail label distribution (unlike CIFAR-10 and Imagenet): for instance
80% of species are obtained for 11% of the images ⇐⇒ 20% of species represents 89% of the
total images.

c
a
t

d
o
g

h
o
r
s
e

d
e
e
r

f
r
o
g

b
i
r
d

a
i
r
p
l
a
n
e

s
h
i
p

a
u
t
o
m
o
b
i
l
e

t
r
u
c
k

Proposed label

cat
dog

horse
deer
frog
bird

airplane
ship

automobile
truck

T
ru

e
la

b
el

Worker ID: 203

(a) Good worker: very few confu-
sions

c
a
t

d
o
g

h
o
r
s
e

d
e
e
r

f
r
o
g

b
i
r
d

a
i
r
p
l
a
n
e

s
h
i
p

a
u
t
o
m
o
b
i
l
e

t
r
u
c
k

Proposed label

cat
dog

horse
deer
frog
bird

airplane
ship

automobile
truck

T
ru

e
la

b
el

Worker ID: 1098

(b) Bad worker: cat, cat, cat, ..
c
a
t

d
o
g

h
o
r
s
e

d
e
e
r

f
r
o
g

b
i
r
d

a
i
r
p
l
a
n
e

s
h
i
p

a
u
t
o
m
o
b
i
l
e

t
r
u
c
k

Proposed label

cat
dog

horse
deer
frog
bird

airplane
ship

automobile
truck

T
ru

e
la

b
el

Worker ID: 2561

(c) Bad worker: random, random, ...

Figure 3.10: Examples of confusion matrices, estimated with the Dawid and Skene algorithm [18],
on CIFAR-10H. The larger the square, the larger are the coefficients of the confusion matrices.

(see Figure 3.10) is to group species with similar confusion patterns, such as similar number
of confusions or entropy. The optimal decision threshold is likely similar for these species.
Additionally, model uncertainty related to the number of images must be considered. Visually
similar species are challenging to distinguish, but those with more training data are likely to be
predicted more often due to better representation. Using a confusion matrix could enable re-
weighting overpredictions for common species, thereby favoring rare species crucial for assessing
habitat health.

A crucial modeling tool in this context is the confusion matrix, which assesses the likelihood of
one label being mistaken for another. These matrices are essential for understanding label quality
and enhancing image recommendations for labeling by users. While applicable at the project scale,
they often need to be tailored to individual users to incorporate their expertise, potentially with a
time-dependent component. Given the scale of the problem, managing over 25 million confusion
matrices (one per user) poses significant statistical and computational challenges, especially
with a large number of labels. A scalable solution is required, relying on efficient algorithms and
compact structures like sparse matrices to process these matrices and recommend images for
labeling.

The propose research direction is user’s confusion matrix estimation at scale. To improve label
accuracy, a scalable method for estimating user-specific confusion matrices will be developed.

73

Conclusion and Perspectives

These matrices assess the likelihood of mislabeling and must be efficiently computed for a large-
scale platform like Pl@ntNet, where over 25 million users contribute to more than 75K labels.
The task will involve designing efficient algorithms and compact data structures (such as sparse
matrices) to model individual user expertise while possibly integrating time-dependent factors to
track improvements over time.

74

AA
pp

en
d
ix

Scientific Production

A.1 List of Publications

In this section, I present an exhaustive list of my work and links to the full texts. The abstract is
reproduced when the work is not yet accessible online.

Peer-Reviewed Journals

[Art1] J. Bigot et B. Charlier. On the consistency of Fréchet means in deformable models for
curve and image analysis. Electronic Journal of Statistics, Vol 5: 1054–1089, 2011. http:
//projecteuclid.org/euclid.ejs/1316092868

[Art2] B. Charlier. Necessary and sufficient condition for the existence of a Fréchet mean on the
circle. ESAIM: Probability and Statistics, Vol 17: 635–649, 2013. http://dx.doi.org/10.1051
/ps/2012015

[Art3] B. Charlier, N. Charon, A. Trouvé. The fshape framework for the variability analysis of
functional shapes. Foundations of Computational Mathematics, Vol 17: 287–357, 2017. http:
//link.springer.com/article/10.1007/s10208-015-9288-2

[Art4] S. Lee, N. Charon, B. Charlier, K. Popuri, E. Lebed, M. Sarunic, A. Trouvé, F. Beg. Atlas-based
Shape Analysis and Classification of Retinal Optical Coherence Tomography Images using
the Functional Shape (fshape). Medical Image Analysis, Vol 35: 570–581, 2016. http://www.
sciencedirect.com/science/article/pii/S1361841516301608

[Art5] S. Lee, M.L. Heisler, K. Popuri, N. Charon, B. Charlier, A. Trouvé, P. J. Mackenzie, M. V. Sarunic, M. F.
Beg. Age and glaucoma-related changes in retinal nerve fiber layer and choroid: point-wise
analysis and visualization using functional shapes registration. Frontiers in Neuroscience,
Vol 11, 2017. http://journal.frontiersin.org/article/10.3389/fnins.2017.00381

[Art6] N. Charon, B. Charlier, A. Trouvé. Metamorphoses of functional shapes in Sobolev spaces.
Foundations of Computational Mathematics, Vol 18: 1535–1596, 2018. https://link.sprin
ger.com/article/10.1007/s10208-018-9374-3

A1

http://projecteuclid.org/euclid.ejs/1316092868
http://projecteuclid.org/euclid.ejs/1316092868
http://dx.doi.org/10.1051/ps/2012015
http://dx.doi.org/10.1051/ps/2012015
http://link.springer.com/article/10.1007/s10208-015-9288-2
http://link.springer.com/article/10.1007/s10208-015-9288-2
http://www.sciencedirect.com/science/article/pii/S1361841516301608
http://www.sciencedirect.com/science/article/pii/S1361841516301608
http://journal.frontiersin.org/article/10.3389/fnins.2017.00381
https://link.springer.com/article/10.1007/s10208-018-9374-3
https://link.springer.com/article/10.1007/s10208-018-9374-3

A. Scientific Production

[Art7] M. Louis, B. Charlier, P. Jusselin, S. Pal, S. Durrleman. A Fanning Scheme for the Parallel
Transport Along Geodesics on Riemannian Manifolds. SIAM Journal on Numerical Analysis,
Vol 56(4): 2563–2584, 2018. https://epubs.siam.org/doi/abs/10.1137/17M1130617

[Art8] P. Piras, V. Varano, M. Louis, A. Profico, S. Durrleman, B. Charlier, F. Milicchio, L. Teresi. Trans-
porting Deformations of Face Emotions in the Shape Spaces: A Comparison of Different
Approaches. J Math Imaging Vis, Vol 63: 875–893, 2021. https://doi.org/10.1007/s10851
-021-01030-6

[Art9] B. Charlier, J. Feydy, J. Glaunès, F.D. Collin, G. Durif. Kernel Operations on the GPU, with
Autodiff, without Memory Overflows. Journal of Machine Learning Research, Vol 22(74): 1–6,
2021. https://jmlr.org/papers/v22/20-275.html

[Art10] I. Koval, A. Bône, M. Louis, T. Lartigue, S. Bottani, A. Marcoux, J. Samper-González, N. Burgos,
B. Charlier, A. Bertrand, S. Epelbaum, O. Colliot, S. Allassonnière, S. Durrleman. AD Course
Map charts Alzheimer’s disease progression, Nature Scientific Reports, Vol 11(8020), 2021.
https://doi.org/10.1038/s41598-021-87434-1

[Art11] G. Nardi, B. Charlier, A. Trouvé. The matching problem between functional shapes via a
BV -penalty term: a Γ-convergence result, Interfaces and Free Boundaries, Vol 26(3): 381–414,
2024. https://arxiv.org/abs/1503.07685

[Art12] T. Lefort, B. Charlier, A. Joly, J. Salmon. Peerannot: classification for crowdsourced image
datasets with Python, Computo, 2024. https://openreview.net/pdf?id=lhhmJFa2bU

[Art13] T. Lefort, B. Charlier, A. Joly, J. Salmon. Identify ambiguous tasks combining crowdsourced
labels by weighting Areas Under the Margin, TMLR, 2024. https://arxiv.org/pdf/2209.1
5380.pdf

[Art14] T. Lefort, A. Affouard, P. Bonnet, B. Charlier, A. Joly, J. Salmon. Cooperative learning of
Pl@ntNet’s Artificial Intelligence algorithm, Methods in Ecology and Evolution, 2025. https:
//doi.org/10.1111/2041-210X.14486

[Art15] K. M. Stouffer, X. Chen, H. Zeng, B. Charlier, L. Younes, A. Trouvé, M. I. Miller. xIV-LDDMM Toolkit:
A Suite of Image-Varifold Based Technologies for Representing and Mapping 3D Imaging
and Spatial-omics Data Simultaneously Across Scales, Nature Communication in Biology ,
2025 (To appear). https://www.biorxiv.org/content/10.1101/2024.11.04.621983v1

Conference proceedings

[Proc1] A. Routier, M. Prastawa, B. Charlier, C. Doucet, J. Glaunès, S. Durrleman. Deformetrica: a
software for statistical analysis of anatomical shapes. OHBM 2015. https://hal.archives
-ouvertes.fr/hal-01187469

[Proc2] I. Kaltenmark, B. Charlier, N. Charon. A general framework for curve and surface comparison
and registration with oriented varifolds. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. http://openaccess.thecvf.com/cont
ent_cvpr_2017/papers/Kaltenmark_A_General_Framework_CVPR_2017_paper.pdf

[Proc3] J. Feydy, B. Charlier, F.-X. Vialard, G. Peyré. Optimal Transport for Diffeomorphic Registration.
MICCAI 2017. https://hal.archives-ouvertes.fr/hal-01540455

A2

https://epubs.siam.org/doi/abs/10.1137/17M1130617
https://doi.org/10.1007/s10851-021-01030-6
https://doi.org/10.1007/s10851-021-01030-6
https://jmlr.org/papers/v22/20-275.html
https://doi.org/10.1038/s41598-021-87434-1
https://arxiv.org/abs/1503.07685
https://openreview.net/pdf?id=lhhmJFa2bU
https://arxiv.org/pdf/2209.15380.pdf
https://arxiv.org/pdf/2209.15380.pdf
https://doi.org/10.1111/2041-210X.14486
https://doi.org/10.1111/2041-210X.14486
https://www.biorxiv.org/content/10.1101/2024.11.04.621983v1
https://hal.archives-ouvertes.fr/hal-01187469
https://hal.archives-ouvertes.fr/hal-01187469
http://openaccess.thecvf.com/content_cvpr_2017/papers/Kaltenmark_A_General_Framework_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Kaltenmark_A_General_Framework_CVPR_2017_paper.pdf
https://hal.archives-ouvertes.fr/hal-01540455

A. Scientific Production

[Proc4] K. Kumar, P. Gori, B. Charlier, S. Durrleman, O. Colliot, C Desrosiers. White Matter Fiber Seg-
mentation Using Functional Varifolds. 6th MICCAI Workshop on Mathematical Foundations
of Computational Anatomy, 2017. https://hal.inria.fr/hal-01589649

[Proc5] A. Bône, M. Louis, A. Routier, J. Samper, M. Bacci, B. Charlier, O. Colliot, S. Durrleman. Prediction
of the progression of subcortical brain structures in Alzheimer’s disease from baseline. 6th
MICCAI Workshop on Mathematical Foundations of Computational Anatomy, 2017. https:
//hal.inria.fr/hal-01563587

[Proc6] B. Charlier, J. Feydy, J. Glaunès, A. Trouvé. An efficient kernel product for automatic differenti-
ation libraries, with applications to measure transport, GFW03, 2017. http://www.math.ens
.fr/~feydy/Talks/GFSW03_2017/GFSW_Cambridge_2017_workingversion.pdf

[Proc7] M. Louis, R. Couronné, I. Koval, B. Charlier, S. Durrleman. Riemannian geometry learning for
disease progression modelling. 26th international conference on Information Processing in
Medical Imaging (IPMI), 2019. https://hal.archives-ouvertes.fr/hal-02079820/docu
ment

[Proc8] J. Feydy, B. Charlier, J. Glaunès, M. Bronstein. Fast geometric learning with symbolic matrices,
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020. https://procee
dings.neurips.cc/paper/2020/file/a6292668b36ef412fa3c4102d1311a62-Paper.pdf

[Proc9] L. Lacroix, B. Charlier, A. Trouvé, B. Gris. IMODAL: creating learnable user-defined deformation
models, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021. https://openaccess.thecvf.com/content/CVPR2021/papers/Lacroix_IM
ODAL_Creating_Learnable_User-Defined_Deformation_Models_CVPR_2021_paper.pdf

[Proc10] T. Moreau, M. Massias, A. Gramfort, Alexandre, P. Ablin, P.A. Bannier, B. Charlier, M. Dagréou, T.
Dupré la Tour, G. Durif, C. F. Dantas, Q. Klopfenstein, J. Larsson, E. Lai, T. Lefort, B. Malézieux,
B. Moufad, B. T. Nguyen, A. Rakotomamonjy, Z. Ramzi, J. Salmon, S. Vaiter. Benchopt: Repro-
ducible, efficient and collaborative optimization benchmarks, Advances in Neural Informa-
tion Processing Systems (NeurIPS 2022), 2022. https://openreview.net/forum?id=1uSzac
pyWLH

[Proc11] K. Stouffer, X. Chen, M. Rue, A. Trouvé, B. Charlier, M. Miller. 3D Cross-Modality Mapping of
Tissue Scale Brain Atlas to Cellular Scale Spatial Transcriptomics, Cosyne, 2024.

Book chapter

[Chap1] N. Charon, B. Charlier, J. Glaunès, P. Gori, P. Roussillon. Fidelity metrics between curves and
surfaces: currents, varifolds, and normal cycles. Riemannian Geometric Statistics in Medical
Image Analysis, Academic Press, 2020. https://www.sciencedirect.com/science/articl
e/pii/B9780128147252000212

Preprint

[PreP1] B. Charlier, B. Gris, A. Redjimi, A. Trouvé. Structured Deformation Modeling with Implicit
Deformation Modules.

Abstract: This paper presents a comprehensive theoretical exploration of implicit deformation modules
and their application in shape space and registration. The implicit deformation module framework

A3

https://hal.inria.fr/hal-01589649
https://hal.inria.fr/hal-01563587
https://hal.inria.fr/hal-01563587
http://www.math.ens.fr/~feydy/Talks/GFSW03_2017/GFSW_Cambridge_2017_workingversion.pdf
http://www.math.ens.fr/~feydy/Talks/GFSW03_2017/GFSW_Cambridge_2017_workingversion.pdf
https://hal.archives-ouvertes.fr/hal-02079820/document
https://hal.archives-ouvertes.fr/hal-02079820/document
https://proceedings.neurips.cc/paper/2020/file/a6292668b36ef412fa3c4102d1311a62-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a6292668b36ef412fa3c4102d1311a62-Paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Lacroix_IMODAL_Creating_Learnable_User-Defined_Deformation_Models_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Lacroix_IMODAL_Creating_Learnable_User-Defined_Deformation_Models_CVPR_2021_paper.pdf
https://openreview.net/forum?id=1uSzacpyWLH
https://openreview.net/forum?id=1uSzacpyWLH
https://www.sciencedirect.com/science/article/pii/B9780128147252000212
https://www.sciencedirect.com/science/article/pii/B9780128147252000212

A. Scientific Production

enables the generation of advanced structured deformations in a user-friendly and efficient manner. To
establish the well-posedness of deformations generated by these modules and to show the existence
of solutions to the resulting registration problem, we introduce the featured landmark shape space.
This concept extends the classical notion of shape by incorporating a semi-direct group action on
the space of locations and features. These contributions bridge the gap left by the paper [Proc9]
introducing IMODAL software [Soft4], which provides an implementation of some deformation modules
presented here (explicit and implicit of order one) but lacks advanced theoretical guarantees. Finally,
we demonstrate how complex structured deformation models can be estimated from data, supported
by practical examples.

A.2 List of Softwares

Here is a list of the most important projects I have participated in as the lead developer (unless
explicitly stated otherwise).

[Soft1] FshapesTk

FshapesTk est une boîte à outils qui permet l’estimation d’atlas de formes fonctionnelles (fshapes).
À partir d’un échantillon de formes fonctionnelles observées, un atlas consiste à calculer une
forme fonctionnelle moyenne ainsi que les déformations de cette moyenne vers les observations.
Bien qu’écrite principalement en Matlab, fshapesTk est rapide car les parties coûteuses du code
sont codées en Cuda et peuvent être exécutées sur un GPU.

Ce code contient une implémentation des métamorphoses de formes fonctionnelles tangen-
tielles et riemanniennes, distances entre formes (courants et varifolds fonctionnels, distance du
transport optimal avec régularisation entropique), etc. C’est avec ce logiciel qu’ont été générées
les simulations numériques des publications associées.

Auteurs: B. Charlier
Publications associées: [Art3, Art4, Art5, Art6, Art11], [Proc2, Proc3, Proc4]
Langage: Matlab, C/Cuda
Taille: 16 000 lignes de codes
Maturité: Stable. Le code a été développé entre 2012 et 2017
Codes: https://plmlab.math.cnrs.fr/benjamin.charlier/fshapesTk/

[Soft2] Deformetrica

Deformetrica est aussi un code pour l’analyse de formes (nuages de points, courbes, surfaces) qui
possède des fonctionnalités complémentaires à fshapesTk. Il permet de manipuler des données
géométriques longitudinales. Il est conçu principalement pour:

1. Le recalage (matching ou registration): calcule la déformation la moins coûteuse pour
apparier un objet sur un autre.

2. La construction d’atlas: calcule une forme moyenne à partir d’un échantillon d’objets
géométriques, ainsi que les déformations entre cette moyenne et chacune des données.

3. La régression géodésique: à partir des observations d’un objet à des temps différents, il
calcule la déformation de cet objet au plus près possible des différentes observations.

A4

https://plmlab.math.cnrs.fr/benjamin.charlier/fshapesTk/

A. Scientific Production

Auteurs: Projet initié par s. Durrleman. Une liste complète des contributeurs peut être trouvée
à la page http://www.deformetrica.org/#contributors. Les quatre développeurs
principaux sont A. Bône, B. Charlier, M. Louis et B. Martin

Publications associées: [Art7, Art8, Proc1, Proc5]
Langage: Python, C++, C/Cuda
Taille: 35 000 lignes de codes
Maturité: Stable. Portage en Python en 2017. N’est plus activement maintenu.
Utilisateurs connus: quelques milliers de téléchargements
Codes: https://gitlab.com/icm-institute/aramislab/deformetrica

Web: http://www.deformetrica.org/ (hors ligne en 2025)

[Soft3] KeOps

KeOps (Kernel Operations) pour calculer des opérations dans les espaces à noyau à l’aide d’un
GPU. Le but de cette bibliothèque est de fournir des fonctions simples et optimisées dans les
principaux langages scriptés pour faire ce type de calculs.

La motivation de départ est le calcul rapide de convolutions discrètes (et de leurs dérivées)
apparaissant dans les méthodes utilisant des espaces de Hilbert à noyau auto-reproduisant. Les
applications sont multiples: elles touchent tous les domaines utilisant des méthodes à noyaux
(apprentissage, estimation de densité, estimation d’atlas, etc.).

Dans les versions v1.x, le moteur de génération de code de KeOps était développé directement
en C++/Cuda avec des bindings en Python, Matlab et R. Depuis 2022 et les versions v2.x, le moteur
de méta-programmation a été réécrit en Python. Cela a permis des gains très substantiels de
performance pour les temps de compilation et une meilleure compatibilité sur les serveurs de
calcul ne disposant pas d’une pile de compilation aisément accessible.

Le code Cuda généré par KeOps à partir des formules données par l’utilisateur est partic-
ulièrement efficace car il utilise une implémentation dite ’par tuile’ permettant de conserver
une empreinte mémoire en O(N) (contrairement aux bibliothèques tensorielles standards qui
stockent de l’ordre de O(N2) éléments). La bibliothèque KeOps dispose aussi d’un module de
différentiation automatique permettant de générer automatiquement du code Cuda optimisé à
partir d’une formule symbolique fournie par l’utilisateur au moment de la compilation.

Le développement de KeOps utilise les outils modernes: système de version git, documentation
générée automatiquement à partir des docstrings avec Sphinx, intégration continue, JIT via Nvidia
Runtime Compiler (nvrtc), etc.

Auteurs: B. Charlier, J. Feydy, J. Glaunès
Langage: C++/Cuda, Python, R
Taille: 60 000 lignes de codes
Maturité: Stable. Développement actif: des fonctionnalités sont ajoutées au fil de l’eau
Publications associées: [Proc6, Proc8, Proc9], [Chap1], [Art9]
Code: https://github.com/getkeops/keops/

Web: https://www.kernel-operations.io/

Utilisateurs connus: plus de 750 000 téléchargements à ce jour

[Soft4] IMODAL

IMODAL est un module Python pour l’appariement des formes (courbes, maillages ou images)

A5

http://www.deformetrica.org/#contributors
https://gitlab.com/icm-institute/aramislab/deformetrica
http://www.deformetrica.org/
https://github.com/getkeops/keops/
https://www.kernel-operations.io/

A. Scientific Production

avec de grandes déformations structurées. Les structures sont incorporées via des modules
de déformation qui génèrent des champs de vecteurs choisis de types particuliers. Ils peuvent
être définis explicitement (en générant des échelles ou des rotations locales par exemple) ou
implicitement à partir de contraintes. En outre, il est possible de les combiner de manière à ce
qu’une structure complexe puisse être facilement définie comme la superposition de structures
simples. Les trajectoires de ces champs vectoriels modulaires peuvent ensuite être intégrées pour
construire de grandes déformations modulaires. Leurs paramètres peuvent être optimisés pour
enregistrer les formes observées et analysées.

Auteurs: Benjamin Charlier, Barbara Gris, Leander Lacroix, Alain Trouvé
Langage: Python (Pytorch)
Taille: 50 000 lignes de codes
Maturité: En développement
Publication associée: [Proc9], [PreP1]
Code: https://github.com/imodal/imodal

Web: https://www.kernel-operations.io/im/

[Soft5] BenchOpt

Benchopt est une solution logiciel pour comparer des algorithmes d’optimisation de manière
simple, transparente et reproductible. Étant donné un programme d’optimisation (utilisant des
données simulées ou réelles), les performances des solveurs installés sur la machine sont
comparés et affichés de manière synthétique. Il est écrit en Python mais est disponible dans de
nombreux langages de programmation: il a été testé avec Python, R, Julia et des binaires C/C++. Il
peut être appelé en ligne de commande depuis un terminal.

Contrairement aux projets décrits ci-dessus, je suis contributeur de BenchOpt et non développeur
principal.

Auteurs: T. Moreau, M. Massias, A. Gramfort, et al.
Langage: Python
Taille: 20 000 lignes de codes
Maturité: En développement
Publication associée: [Proc10]
Code: https://github.com/benchopt/benchopt

Web: https://benchopt.github.io/

Utilisateurs connus: plus de 75 000 téléchargements à ce jour

A6

https://github.com/imodal/imodal
https://www.kernel-operations.io/im/
https://github.com/benchopt/benchopt
https://benchopt.github.io/

Bibliography

[1] G. Ahdritz, N. Bouatta, C. Floristean, S. Kadyan, Q. Xia, W. Gerecke, T. J. O’Donnell, D. Berenberg,
I. Fisk, N. Zanichelli, B. Zhang, A. Nowaczynski, B. Wang, M. M. Stepniewska-Dziubinska, S. Zhang,
A. Ojewole, M. E. Guney, S. Biderman, A. M. Watkins, S. Ra, P. Ribalta Lorenzo, L. Nivon, B. Weitzner,
Y.-E. A. Ban, P. K. Sorger, E. Mostaque, Z. Zhang, R. Bonneau, and M. AlQuraishi. OpenFold:
Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for
generalization. https://lupoglaz.github.io/OpenFold2/, 2022.

[2] W. K. Allard. On the first variation of a varifold. Annals of Mathematics, 95(3):417–491, May 1972.

[3] S. Allassonnière, A. Trouvé, and L. Younes. Geodesic shooting and diffeomorphic matching
via textured meshes. In Anand Rangarajan, Baba Vemuri, and Alan L. Yuille, editors, Energy
Minimization Methods in Computer Vision and Pattern Recognition, pages 365–381, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[4] Jr. Almgren and J. Frederick. Plateau’s Problem: An Invitation to Varifold Geometry. Mathematics
Monograph Series. W. A. Benjamin, New York, 1966.

[5] S. Arguillère, M. I. Miller, and L. Younes. Diffeomorphic surface registration with atrophy
constraints. SIAM Journal on Imaging Sciences, 9(3):975–1003, 2016.

[6] S. Arguillère, E. Trélat, A. Trouvé, and L. Younes. Shape deformation analysis from the optimal
control viewpoint. Journal de Mathématiques Pures et Appliquées, 104(1):139–178, 2015.

[7] V. I. Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
application à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16:319–361,
1966.

[8] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

[9] M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing Large Deformation Metric Mappings
via Geodesic Flows of Diffeomorphisms. International Journal of Computer Vision, 61(2):139–157,
Feb 2005.

[10] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Springer US, 2003.

[11] B. Buet, G. P. Leonardi, and S. Masnou. Weak and approximate curvatures of a measure: A
varifold perspective. Nonlinear Analysis, 222:112983, 2022.

[12] B. Buet, G.P. Leonardi, and S. Masnou. Discretization and approximation of surfaces using
varifolds. Geometric Flows, 3(1):28–56, 2018.

A7

https://lupoglaz.github.io/OpenFold2/

BIBLIOGRAPHY

[13] N. Charon and A. Trouvé. Functional currents : a new mathematical tool to model and analyse
functional shapes. Journal of Mathematical Imaging and Vision, 48:413–431, 2014.

[14] N. Charon and A. Trouvé. The Varifold Representation of Nonoriented Shapes for Diffeomorphic
Registration. SIAM Journal on Imaging Sciences, 7(1):1–39, Feb 2014.

[15] J. Chevallier, V. Debavelaere, and S. Allassonnière. A coherent framework for learning spa-
tiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data. SIAM
Journal on Imaging Sciences, 14(1):349–388, 2021.

[16] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems (NeurIPS), pages 2292–2300, 2013.

[17] M. Das Gupta and U. Nath. Divergence in patterns of leaf growth polarity is associated with
the expression divergence of mir396. Plant Cell, 27(10):2785–2799, Oct 2015.

[18] A.P. Dawid and A.M. Skene. Maximum likelihood estimation of observer error-rates using the
EM algorithm. JRSSC, 28(1):20–28, 1979.

[19] W. E. Deming and F. F. Stephan. On a least squares adjustment of a sampled frequency
table when the expected marginal totals are known. The Annals of Mathematical Statistics,
11(4):427–444, 1940.

[20] S. Durrleman, X. Pennec, A. Trouvé, and N. Ayache. A forward model to build unbiased atlases
from curves and surfaces. In Proc. of the International Workshop on the Mathematical
Foundations of Computational Anatomy, 2008.

[21] S. Durrleman, M. Prastawa, N. Charon, J. R. Korenberg, S. Joshi, G. Gerig, and A. Trouvé. Mor-
phometry of anatomical shape complexes with dense deformations and sparse parameters.
NeuroImage, 101:35–49, 2014.

[22] D. Eddelbuettel and R. Romain François. Rcpp: Seamless r and c++ integration. Journal of
Statistical Software, 40(8):1–18, 2011.

[23] J. Feydy. Analyse de données géométriques, au delà des convolutions. PhD thesis, Université
Paris-Saclay, 2020. Thèse de doctorat dirigée par Trouvé, Alain Mathématiques appliquées
université Paris-Saclay 2020.

[24] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T.H. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko,
A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and T. Vayer. Pot: Python
optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

[25] G. Flaubert. Correspondance, volume Volume 1. Louis Conard, 1926.

[26] Dilek Fraisl, Gerid Hager, Baptiste Bedessem, Margaret Gold, Pen-Yuan Hsing, Finn Danielsen,
Colleen B Hitchcock, Joseph M Hulbert, Jaume Piera, Helen Spiers, et al. Citizen science in
environmental and ecological sciences. Nature reviews methods primers, 2(1):64, 2022.

[27] A. Franquin. Gaffe à Lagaffe, volume 15 of Gaston Lagaffe. Marsu Productions, 1996.

[28] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. Gpytorch: Blackbox matrix-
matrix gaussian process inference with gpu acceleration. In Advances in Neural Information
Processing Systems, 2018.

A8

BIBLIOGRAPHY

[29] P. Gori, O. Colliot, Y. Worbe, L. Marrakchi-Kacem, S. Lecomte, C. Poupon, A. Hartmann, N. Ayache,
and S. Durrleman. Bayesian atlas estimation for the variability analysis of shape complexes.
In MICCAI, pages 267–274, 2013.

[30] R. Goscinny and A. Uderzo. Astérix et Cléopâtre, volume 6 of Les Aventures d’Astérix le Gaulois.
Dargaud, 1965.

[31] A. Greenbaum. Iterative methods for solving linear systems, volume 17 of Frontiers in applied
mathematics. Society for Industrial and Applied Mathematics, 1987.

[32] U. Grenander. General Pattern Theory: A Mathematical Study of Regular Structures. Clarendon
Press, Oxford, 1993.

[33] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Society for Industrial and Applied Mathematics (SIAM), 2nd edition, 2008.

[34] B. Gris. Approche modulaire sur les espaces de formes, géométrie sous-riemannienne et
anatomie computationnelle. Phd thesis, Université Paris-Saclay, 2016.

[35] B. Gris. Incorporation of a deformation prior in image reconstruction. Journal of Mathematical
Imaging and Vision, 61:691–709, 2019.

[36] N. Guigui and X. Pennec. Chapter 8 - parallel transport, a central tool in geometric statistics
for computational anatomy: Application to cardiac motion modeling. In F. Nielsen, S.R. Arni,
and C. R. Rao, editors, Geometry and Statistics, volume 46 of Handbook of Statistics, pages
285–326. Elsevier, 2022.

[37] N. Guigui and X. Pennec. Numerical accuracy of ladder schemes for parallel transport on
manifolds. Foundations of Computational Mathematics, 22:757–790, 2022.

[38] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand. Taichi: a language for high-
performance computation on spatially sparse data structures. ACM Trans. Graph., 38(6),
November 2019.

[39] C. R. Jack, M. A. Bernstein, N. C. Fox, P. Thompson, Alexander G., D. Harvey, B. Borowski, P. J.
Britson, J. L. Whitwell, C. Ward, A. M. Dale, J. P. Felmlee, J. L. Gunter, D. L.G. Hill, R. Killiany,
N. Schuff, S. Fox-Bosetti, C. Lin, C. Studholme, C. S. DeCarli, G. Krueger, H. A. Ward, G. J. Metzger, K.
T. Scott, R. Mallozzi, D. Blezek, J. Levy, J. P. Debbins, A. S. Fleisher, M. Albert, R. Green, G. Bartzokis,
G. Glover, J. Mugler, and M. W. Weiner. The alzheimer’s disease neuroimaging initiative (adni):
Mri methods. Journal of Magnetic Resonance Imaging, 27(4):685–691, April 2008.

[40] W. Jakob, J. Rhinelander, and D. Moldovan. pybind11 – seamless operability between c++11 and
python, 2017. https://github.com/pybind/pybind11.

[41] D. G. Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. Bull.
London Math. Soc., 16(2):81–121, 1984.

[42] D. G. Kendall, D. Barden, T. K. Carne, and H. Le. Shape and Shape Theory. Wiley Series in
Probability and Statistics. Wiley, 2009.

[43] A. Kheyfets, W. A. Miller, and G. A. Newton. Schild’s Ladder Parallel Transport Procedure for an
Arbitrary Connection. International Journal of Theoretical Physics, 39(12):2891–2898, 2000.

A9

BIBLIOGRAPHY

[44] S. Lee, S. X. Han, M. Young, M. F. Beg, M. V. Sarunic, and P. J. Mackenzie. Optic nerve head and
peripapillary morphometrics in myopic glaucoma. Investigative Ophthalmology & Visual
Science, 55(7):4378–4393, 07 2014.

[45] T. Lefort. Label ambiguity in crowdsourcing and expert feedback. Phd thesis, Univ. Montpellier,
2024.

[46] M. Lorenzi, N. Ayache, G. Frisoni, and X. Pennec. 4d registration of serial brain’s mr images: a
robust measure of changes applied to alzheimer’s disease. Spatio Temporal Image Analysis
Workshop (STIA), MICCAI, 2010.

[47] M. Lorenzi and X. Pennec. Geodesics, parallel transport & one-parameter subgroups for
diffeomorphic image registration. International journal of computer vision, 105(2):111–127,
2013.

[48] M. Lorenzi and X. Pennec. Efficient parallel transport of deformations in time series of images:
From schild to pole ladder. Journal of Mathematical Imaging and Vision, 50(1):5–17, 2014.

[49] J. Ma, M. I. Miller, and L. Younes. A bayesian generative model for surface template estimation.
International Journal of Biomedical Imaging, 2010(1):974957, 2010.

[50] E. Maheux, I. Koval, J. Ortholand, C. Birkenbihl, D. Archetti, V. Bouteloup, S. Epelbaum, C. Dufouil,
Hofmann-Apitius M., and Durrleman S. Forecasting individual progression trajectories in
alzheimer’s disease. Nature Communications, 14(1):761, 2023.

[51] K.V. Mardia and P.E. Jupp. Directional Statistics. Wiley Series in Probability and Statistics. Wiley,
2009.

[52] R. V. Marinescu, N. P. Oxtoby, A. L. Young, E. E. Bron, A. W. Toga, M. W. Weiner, F. Barkhof,
N. C. Fox, A. Eshaghi, T. Toni, M. Salaterski, V. Lunina, M. Ansart, S. Durrleman, P. Lu, S. Iddi,
D. Li, W. K. Thompson, M. C. Donohue, A. Nahon, Y. Levy, D. Halbersberg, M. Cohen, H. Liao,
T. Li, K. Yu, H. Zhu, J. G. Tamez-Peña, A. Ismail, T. Wood, H. C. Bravo, N. Nguyen, M.and Sun,
J. Feng, B.T. T. Yeo, G. Chen, K. Qi, S. Chen, D. Qiu, I. Buciuman, A. Kelner, R. Pop, D. Rimocea,
M. M. Ghazi, M. Nielsen, S. Ourselin, L. Sørensen, V. Venkatraghavan, K. Liu, C. Rabe, P. Manser,
S. M. Hill, J. Howlett, Z. Huang, S. Kiddle, S. Mukherjee, A. Rouanet, B. Taschler, B. D. M. Tom,
S. R. White, N. Faux, S. Sedai, J. de Velasco Oriol, E. E. V. Clemente, K. Estrada, L. Aksman,
A. Altmann, C. M. Stonnington, Y. Wang, J. Wu, V. Devadas, C. Fourrier, L. Lau Raket, A. Sotiras,
G. Erus, J. Doshi, C. Davatzikos, J. Vogel, A. Doyle, A. Tam, A. Diaz-Papkovich, E. Jammeh, I. Koval,
P. Moore, T. J. Lyons, J. Gallacher, J. Tohka, R. Ciszek, B. Jedynak, K. Pandya, M. Bilgel, W. Engels,
J. Cole, P. Golland, S. Klein, D. C. Alexander, The EuroPOND Consortium , and The Alzheimer’s
Disease Neuroimaging Initiative . The alzheimer’s disease prediction of longitudinal evolution
(tadpole) challenge: Results after 1 year follow-up. Machine Learning for Biomedical Imaging,
1:1–60, 2021.

[53] G. Meanti, L. Carratino, L. Rosasco, and A. Rudi. Kernel Methods Through the Roof: Handling
Billions of Points Efficiently. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

[54] C.T. Metz, S. Klein, M. Schaap, T. van Walsum, and W.J. Niessen. Nonrigid registration of dynamic
medical imaging data using nd + t b-splines and a groupwise optimization approach. Medical
Image Analysis, 15(2):238 – 249, 2011.

A10

BIBLIOGRAPHY

[55] P. Michor and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math.
Soc. (JEMS), 8(1):1–48, 2006.

[56] M. I. Miller, A. Trouvé, and L. Younes. Space-feature measures on meshes for mapping spatial
transcriptomics. Medical Image Analysis, 93:103068, 2024.

[57] N. Miolane, N. Guigui, A. Le Brigant, J. Mathe, B. Hou, Y. Thanwerdas, S. Heyder, O. Peltre,
N. Koep, H. Zaatiti, H. Hajri, Y. Cabanes, T. Gerald, P. Chauchat, C. Shewmake, D. Brooks, B. Kainz,
C. Donnat, S. Holmes, and X. Pennec. Geomstats: A python package for riemannian geometry
in machine learning. Journal of Machine Learning Research, 21(223):1–9, 2020.

[58] C. W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. Princeton University Press, 1973.

[59] D. Mumford. Pattern theory: The mathematics of perception. In Proceedings of ICM 2002,
Beijing, Vol. I, pages 401–422, Beijing, 2002. Higher Education Press.

[60] H. Nguyen. Gpu gems 3. Addison-Wesley Professional, first edition, 2007.

[61] O. Orasch, N. Weber, M. Müller, A. Amanzadi, C. Gasbarri, and C. Trummer. Protein-Protein
Interaction Prediction for Targeted Protein Degradation. International Journal of Molecular
Sciences, 23(13):7033, 2022.

[62] X. Pennec. Statistical computing on manifolds: from Riemannian geometry to computational
anatomy. In Frank Nielsen, editor, Emerging Trends in Visual Computing, volume 5416 of LNCS,
pages 347–386. Springer, 2008.

[63] X. Pennec. 3 - manifold-valued image processing with spd matrices. In X. Pennec, S. Sommer,
and T. Fletcher, editors, Riemannian Geometric Statistics in Medical Image Analysis, pages
75–134. Academic Press, 2020.

[64] J. C. Peterson, R. M. Battleday, T. L. Griffiths, and O. Russakovsky. Human uncertainty makes
classification more robust. In ICCV, pages 9617–9626, 2019.

[65] J.M. Peyrat, H. Delingette, M. Sermesant, X. Pennec, C. Xu, and N. Ayache. Registration of 4d
time-series of cardiac images with multichannel diffeomorphic demons. Med Image Comput
Comput Assist Interv, 2008.

[66] G. Peyré and M. Cuturi. Computational Optimal Transport: With Applications to Data Science.
Foundations and trends in machine learning. Now Publishers, 2019.

[67] Quino. Mafalda, volume 5. Edit. Jorge Alvarez, 1 edition, 1969.

[68] M. E. Sander, P. Ablin, M. Blondel, and G. Peyré. Sinkformers: Transformers with doubly stochas-
tic attention. In Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 3515–3530.
PMLR, 28–30 Mar 2022.

[69] J.-B. Schiratti, S. Allassonnière, O. Colliot, and S. Durrleman. Learning spatiotemporal tra-
jectories from manifold-valued longitudinal data. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, NIPS 28, pages 2404–2412. Curran Associates, Inc., 2015.

[70] Jean-Baptiste Schiratti, Stéphanie Allassonniere, Olivier Colliot, and Stanley Durrleman. A
Bayesian mixed-effects model to learn trajectories of changes from repeated manifold-valued
observations. Journal of Machine Learning Research, 18:1–33, December 2017.

A11

BIBLIOGRAPHY

[71] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. The MIT Press,
07 2004.

[72] N. Singh, J. Hinkle, S. Joshi, and P. T. Fletcher. Hierarchical geodesic models in diffeomorphisms.
International Journal of Computer Vision, 117(1):70–92, 2016.

[73] B. K. Sriperumbudur, K. Fukumizu, and G. Lanckriet. On the relation between universality,
characteristic kernels and RKHS embedding of measures. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS-10), volume 9, pages
773–780, 2010.

[74] K. M. Stouffer, A. Trouvé, L. Younes, M. Kunst, L Ng, H. Zeng, M. Anant, J. Fan, Y. Kim, X. Chen,
M Rue, and M. I. Miller. Cross-modality mapping using image varifolds to align tissue-scale
atlases to molecular-scale measures with application to 2d brain sections. Nat Commun,
15(3530), 2024.

[75] T. Tallinen, J. Y. Chung, J. S. Biggins, and L. Mahadevan. Gyrification from constrained cortical
expansion. Proceedings of the National Academy of Sciences, 111(35):12667–12672, 2014.

[76] K. Ushey, JJ Allaire, and Y. Tang. reticulate: Interface to ’Python’, 2025. R package version 1.42.0,
https://github.com/rstudio/reticulate.

[77] M. Vaillant and J. Glaunès. Surface matching via currents. In Information Processing in Medical
Imaging, volume 3565 of Lecture Notes in Computer Science. Springer, 2005.

[78] K. Vogtmann, A. Weinstein, and V.I. Arnold. Mathematical Methods of Classical Mechanics.
Graduate Texts in Mathematics. Springer New York, 1997.

[79] R. E. Wengert. A simple automatic derivative evaluation program. Communications of the
ACM, 7(8):463–464, Aug 1964.

[80] G. Wu, Q. Wang, J. Lian, and D. Shen. Estimating the 4d respiratory lung motion by spa-
tiotemporal registration and building super-resolution image. In MICCAI, pages 532–539,
2011.

[81] L. Younes. Jacobi fields in groups of diffeomorphisms and applications. Quarterly of applied
mathematics, pages 113–134, 2007.

[82] L. Younes. Shapes and Diffeomorphisms, volume 171 of Applied Mathematical Sciences.
Springer Berlin Heidelberg, 2010.

A12

	Résumé (version française)
	Foreword
	Introduction
	Shape Analysis for Geometric and Functional Data
	Functional shapes
	Informal definition
	Case Study: OCT Dataset
	From shapes to fshapes analysis

	Deformation of fshapes
	Fshape Bundle
	Metamorphoses
	Tangential model

	Distance Between Functional Shapes in the Functional Varifold Framework
	Measuring Distances Between Shapes
	Functional Shapes as Functional Varifolds
	RKHS Based Distances Between Fvarifold

	Registration of Fshapes and Atlas Estimation
	Registration (a.k.a. Matching)
	Atlas

	Numerical implementation
	Discrete fshapes
	Discrete functional norms
	Data attachment term and discrete Varifold norm
	Metamorphosis in the discrete setting

	Longitudinal Datasets and Shape Evolution
	A fanning scheme to compute the parallel transport on Riemannian manifolds
	Introduction
	Fanning scheme
	Convergence result
	Ladder Methods Strike Back

	Study of longitudinal datasets
	Context and Application Setting
	Geodesic regression in shape analysis
	Multimodal longitudinal data analysis

	Kernel Methods in Action: General Formulas and Real-World Scale Datasets
	Kernel Operation as Tensor reduction
	Tensor reduction
	Examples

	Reducing the memory footprint of kernel Operations
	Scientific computing with GPU programming
	Tiled reduction scheme to avoid memory transfers
	Advanced computational plan

	Providing High Level Computational tools
	The Symbolic Tensor abstraction
	Automatic differentiation
	Advanced linear algebra operations with kernels

	Implementation details and structure of the library
	KeOps formulas
	Just-In-Time Compilation
	High level Binders

	Conclusion and Perspectives
	Scientific Production
	List of Publications
	List of Softwares
	FshapesTk
	Deformetrica
	KeOps
	IMODAL
	BenchOpt

	Bibliography

