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Abstract
This chapter provides an overview of some mathematical and computational models that have been proposed
over the past few years for defining data attachment terms on shape spaces of curves or surfaces. In all these
models, shapes are seen as elements of a space of generalized distributions, such as currents or varifolds. Then
norms are defined through Reproducing Kernel Hilbert Spaces (RKHS) which lead to shape distances that can be
conveniently computed in practice. These were originally introduced in conjunction with diffeomorphic methods in
Computational Anatomy, and have indeed proved to be very efficient in this field. We provide a basic description
of these different models and their practical implementation, then discuss the respective properties and potential
advantages or downsides of each of them in diffeomorphic registration problems.

1. Introduction
In Chapter 4, following the classical setting proposed by Grenander, metrics on shape spaces were
defined through the action of diffeomorphism groups equipped with right-invariant metrics. In
particular, the LDDMM framework inntroduced earlier provides a convenient way to generate
diffeomorphic transformations and such right-invariant metrics. In that case, the resulting dis-
tance between two given shapes is given through the solution of an exact registration problem
obtained by optimizing the deformation cost over all possible deformation fields that match the
source shape on the target.

This approach, however, only applies if both shapes belong to the same orbit ; in other
words, if there exists a deformation in the group that can exactly deform one shape on the other.
Such an assumption is routinely violated in practical scenarios involving shapes extracted from
biomedical imaging data. Indeed, those shapes are typically affected by many other variations
including noise, potential topological variations or segmentation artifacts all of which are poorly
modeled within a pure diffeomorphic setting. From a statistical perspective, it is in fact more
reasonable to make the computation of shape distances rather as insensitive as possible to those
types of perturbations which are not morphologically relevant.

To that end, a standard approach is to relax the exact matching constraint by instead con-
sidering inexact registration. Specifically, the original boundary value problem is replaced by
the minimization of a composite functional involving a weighted combination of the previous
deformation cost and a fidelity or data attachment term between the deformed source shape and
the target. The registration problem is thus a priori well-posed even for a target outside the
orbit of the source shape. The fidelity term and its weight will typically depend on the nature of
the shapes (landmarks, images, curves...) as well as the expected noise model and level on the
observations. This inexact formulation for LDDMM (as well as for other deformation models)
has been very standard in early applications to landmarks [JM00] or images [BMTY05]. In those
works, fidelity terms consist in the simple Euclidean norm between the landmark positions or the
sum of squared differences of the pixel values of the images.

Regarding the construction of fidelity terms, shape spaces of curves, surfaces and more gen-
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erally submanifolds of Rk constitute a particularly challenging case if compared for instance to
landmarks or images. The main reason is that submanifolds embody a fundamental invariance to
reparametrization and thus cannot be a priori treated as labelled point sets like in the situation
of landmarks. In concrete applications, such shapes are discretized as vertices and meshes. Yet
meshes obtained e.g from different subjects generally do not contain the same number of ver-
tices and no predefined correspondences exist between them that could provide a straightforward
equivalent to Euclidean distances. Many approaches have thus resolved to first extracting and
pairing feature points from the two meshes in order to reduce the problem to registration of the
obtained landmarks.

This chapter is dedicated to a particular class of methods providing efficient and robust metrics
between submanifolds themselves (discrete or continuous) that completely bypass the need for
such preprocessing steps. The primary objective is to get adequate fidelity terms to be embedded
into inexact registration frameworks for curves and surfaces. Namely, one seeks metrics that are
intrinsically independent of a specific shape parametrization or sampling rate, that can be evalu-
ated and differentiated directly in competitive computational time, and that can compare a large
class of objects beyond smooth geometries while being reasonably robust to the aforementioned
shape artifacts.

The frameworks presented in this chapter all follow the general philosophy and mathematical
ideas introduced in the field of Geometric Measure Theory [Fed69, Alm66, All72] in which shapes
like submanifolds are basically represented in certain spaces of generalized measures such as
currents, varifolds or normal cycles. The sections below present and compare several of these
approaches and computational models, since the earliest work of [GTY04] in this context, by
emphasizing the relevance and applicability to shape analysis and computational anatomy. We
also point out to the reader that some recent and related works such as [FCVP17] have exploited
alternative ideas from optimal transport theory for similar purpose. We do not present those
works here for the sake of general concision.

2. General setting and notations
In the entire chapter, and although the mathematical settings readily extend to general subman-
ifolds, we will restrict the presentation to the cases of curves and surfaces embedded in R2 or
R3 as these constitute the bulk of the applications considered in this book. The methods we
introduce below can equally deal with smooth curves and surfaces but also piecewise smooth
and discrete objects, which are all encompassed by the notion of rectifiable subsets in geometric
measure theory.

Unless stated otherwise, curves and surfaces are meant in the sense of rectifiable curves and
rectifiable surfaces. For the sake of concision and clarity, we will however not introduce in detail
the precise definition and properties of rectifiable subsets; the interested reader is referred for
example to [Mor95]. Instead, we will here adopt the following intuitive setting: we will call
M⊂ Rk a rectifiable curve (resp. surface) embedded in the ambient space Rk with either k = 2
or k = 3, if for almost every x ∈M, there exists a tangent space TxM of dimension one (resp.
two) ofM at x. This basically allows for the presence of isolated singularities like in a polygonal
curve or polyhedral surface. A very important notion for the rest of the chapter will be the one of
orientation. If an orientation ofM is given, i.e the subspaces TxM are oriented in a “continuous”
way on M, then we will equivalently represent TxM by a single unit vector in Sk−1, which is
either the oriented tangent vector ~t(x) in the case of a curve or the oriented unit normal vector
~n(x) in the case of a surface.
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3. Currents
The use of currents in computational anatomy has been introduced first to define fidelity metrics
between surfaces in [GV06], and between curves in [GQMY08]. These works extend the earlier
work on matching distributions [GTY04] which can be seen in turn as a particular case of the
currents model, as will be shown later.

3.1. Curves and surfaces as currents
LetM be an oriented shape, i.e a curve in Rk (k = 2 or k = 3), or an oriented surface in R3. As
mentioned in Section 2, we only assume regularity at almost every point in M, which allows for
shapes with or without boundary, and possibly several disconnected components and branching
parts.

For any continuous vector field ~w : Rk → Rk in the ambient space Rk, one may compute its
integral along M, which can be denoted [M](~w), and writes:
• if M is a curve:

[M](~w) :=
∫
M

〈
~w(x),~t(x)

〉
d`(x). (0.1)

• if M is a surface:

[M](~w) :=
∫
M
〈~w(x), ~n(x)〉 dS(x). (0.2)

The application ~w → [M](~w) defines a linear mapping between the space of continuous vector
fields into R, which characterizes the shapeM. This mapping [M] is called the current associated
withM. The main advantage of this somewhat abstract setting is to view shapes as elements of
a vector space, allowing to consider linear combinations of such elements, and to define norms,
which is the basis of the construction.

Let us define more precisely these notions:

Definition 1. • A current S is a continuous linear mapping ~w 7→ S(~w) from C0(Rk,Rk) (the
space of continuous vector fields of Rk that vanish at infinity), into R.

• The current associated with an oriented shapeM is the current [M] defined by formula
(0.1) or (0.2) for any ~w ∈ C0(Rk,Rk).

Let us make a few remarks about this definition. First, the continuity requirement for the
linear mapping is equivalent to the inequality

|S(~w)| ≤ ‖~w‖∞,

satisfied for all ~w ∈ C0(Rk,Rk). Second, we assume that vector fields vanish at infinity to get
completeness of the space C0(Rk,Rk) with respect to the infinity norm.

3.2. Kernel metrics on currents
The next step is to define a tractable distance between currents which will be used as a data fidelity
term. This is done using the framework of Reproducing Kernel Hilbert Spaces (RKHS) [Aro50].
As previously, we first give the main idea before stating precise definitions. The construction
starts by the choice of a kernel function K : Rk × Rk → R. The kernel metric between two shapes
M1,M2 is then defined as the quantity

〈[M1], [M2]〉W ′ :=
∫
M1

∫
M2

K(x, y)
〈
~t1(x),~t2(y))

〉
d`1(x) d`2(y), (0.3)
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for curves, or

〈[M1], [M2]〉W ′ :=
∫
M1

∫
M2

K(x, y) 〈~n1(x), ~n2(y))〉 dS1(x) dS2(y). (0.4)

The notation 〈[M1], [M2]〉W ′ means that the formula defines an inner product between the cur-
rents associated with the shapes, as will be detailed in the following definitions. Assuming this
point for the moment, one may use the associated norm to define a dissimilarity between two
shapes:

‖[M1]− [M2]‖2W ′ = 〈[M1], [M1]〉W ′ − 2 〈[M1], [M2]〉W ′ + 〈[M2], [M2]〉W ′ (0.5)

To go further and define precisely these notions, we need to use the theory of reproducing ker-
nels for spaces of vector-valued functions. The theory of reproducing kernels was first developed
by Aronszajn [Aro50] in the scalar case, which is the most commonly used setting, with applica-
tions in many fields such as scattered data interpolation [Duc77] and statistical learning [HSS08].
Shortly after Aronszajn, Laurent Schwartz [Sch64] extended the theory to a more general and
abstract setting, including de facto the case of vector-valued functions. Several other works have
focused on this case [CDVTU10, MP05, DR04, CA04, DVUV13]. The following definitions and
theorem rephrase results found in [MG14]. We refer to this work for a detailed study. Here we
only consider the case of scalar kernels for simplicity (but still for vector-valued functions spaces).

Definition 2. • Let K : Rk × Rk → R and s ∈ N. We say that K is an s-admissible kernel if
1. K is a positive kernel, i.e for any n ≥ 1, any x1, . . . , xn ∈ Rk, the n× n matrix with entries

K(xi, xj) is a positive semi-definite symmetric matrix.
2. For any x ∈ Rk, K(·, x) ∈ C2s

0 (Rk × Rk,R) (i.e. it is of class C2s and vanishes at infinity).
It is called simply admissible if it is 0-admissible.

• Let s ∈ N. A Hilbert space W of vector fields ~w : Rk → Rk is called s-admissible if W is
continuously embedded in Cs

0(Rk,Rk). It is called simply admissible if it is 0-admissible.

Typical examples of such kernels used in applications are the Gaussian kernel K(x, y) =
exp(‖x− y‖2/σ2), or the Cauchy kernel K(x, y) = 1

1+‖x−y‖2/σ2 , where x, y are points in Rk and
σ > 0 is a fixed scale parameter.

Let us mention that for all material presented here, including the use of the derived discrete
formulation for LDDMM registration algorithms, the 0-admissibility (i.e. continuity) assumption
is sufficient. However a stronger 1-admissibility assumption is usually required for some theoretical
results to hold for registration problems in the non-discrete case [Gla05]. This is not an issue
at all in practice since usual kernels such as the Gaussian and Cauchy kernels, have in fact C∞
regularity, which implies that their corresponding Hilbert space will be p-admissible for any p, as
ensured by the following theorem:

Theorem 1. ([MG14], th. 2.6 and 2.11) Any p-admissible kernel K is associated with a unique
p-admissible Hilbert space W of vector fields in Rk, such that

∀x, α ∈ Rk, ∀w ∈ W, 〈K(·, x)α,w〉W = 〈w(x), α〉 .

K is called the reproducing kernel of space W .

Combining Definitions 1 and 2, we see that by choosing an admissible kernel K, one defines
an admissible Hilbert space W of vector fields such that any current S belongs to its dual space
W ′, since

∀~w ∈ W, |S(~w)| ≤ ‖~w‖∞ ≤ ‖~w‖W .

Hence one can consider the canonical inner product in W ′ between any two currents. Now to
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derive formula (0.3), let us first rewrite the action of a single current associated with a curve M
on a vector field ~w:

[M](~w) =
∫
M

〈
~w(x),~t(x)

〉
d`(x)

=
∫
M

〈
K(·, x)~t(x), ~w

〉
W
d`(x)

=
〈∫
M
K(·, x)~t(x)d`(x) , ~w

〉
W

This shows that x 7→
∫
MK(·, x)~t(x) is the unique Riesz representer in W of the current [M] in

W ′. This representer is simply a convolution of the tangent bundle of the curve with the kernel.
Consequently, considering now two currents [M1], [M2], one obtains the following expression of
their inner product:

〈[M1], [M2]〉W ′ = [M1]
(
x 7→

∫
M2

K(x, y)~t2(y)d`2(y)
)

=
∫
M1

∫
M2

K(x, y)
〈
~t1(x),~t2(y)

〉
d`1(x) d`2(y)

In the case of surfaces, the derivation of equation (0.4) is strictly similar.

3.3. The discrete model
The computation of the kernel metric (0.3) and (0.4) between shapes requires a discretization
of the integrals and unit tangent or normal vectors. In practice shapes are given as meshes:
unions of line segments in the case of curves, of triangles in the case of surfaces, with connectivity
information.

Let us assume thatM is such a mesh, i.e M is a union of line or triangle elements f1, . . . , fm.
We will denote fki the vertices of each element fi, with k = 1, 2 for curves and k = 1, 2, 3 for
surfaces. We assume that the orientation is encoded through the ordering of these vertices. We
can further define for each element fi:
• for curves: its center cfi = (f1

i + f2
i )/2, tangent vector ~τfi = (f2

i − f1
i ), length `fi = ‖~τfi‖, and

unit tangent vector ~tfi = ~τfi/`fi ,
• for surfaces: its center cfi = (f1

i + f2
i + f3

i )/3, normal vector ~νfi = 1
2((f2

i − f1
i )× (f3

i − f1
i )),

area Sfi = ‖~νfi‖, and unit normal vector ~nfi = ~νfi/Sfi

A simple discrete approximation of formula (0.3) is obtained by first writing the double integral
as a double sum of double integrals over each pair of triangles and then approximating the values
of the kernel K(x, y) by a single value at the centers of the elements. For curves this reads

〈[M1], [M2]〉W ′ =
∫
M1

∫
M2

K(x, y)
〈
~t1(x),~t2(y)

〉
d`1(x) d`2(y)

=
m1∑
i=1

m2∑
j=1

∫
f1,i

∫
f2,j

K(x, y)
〈
~tf1,i ,~tf2,j

〉
d`1(x) d`2(y)

≈
m1∑
i=1

m2∑
j=1

∫
f1,i

∫
f2,j

K(cf1,i , cf2,j )
〈
~tf1,i ,~tf2,j

〉
d`1(x) d`2(y)

≈
m1∑
i=1

m2∑
j=1

K(cf1,i , cf2,j )
〈
~tf1,i ,~tf2,j

〉
`f1,i `f1,i

=
m1∑
i=1

m2∑
j=1

K(cf1,i , cf2,j )
〈
~τf1,i , ~τf2,j

〉
A nice characteristic of this approximation is that it corresponds to the exact expression of
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the inner product in W ′ when replacing the currents [M1], [M2] by sums of Dirac functionals
(located at the faces centers). More precisely, we can define:

[M1] ≈ [M1]d =
m1∑
i=1

δ
~τf1,i
cf1,i

and [M2] ≈ [M2]d =
m2∑
j=1

δ
~τf2,j
cf2,j

(0.6)

where for any x, ~u ∈ Rk, δ~ux denotes the evaluation functional ~w 7→ 〈~w(x), ~u〉. Using the definition
of the reproducing kernel K, one then gets exactly that

〈[M1]d, [M2]d〉W ′ =
m1∑
i=1

m2∑
j=1

K(cf1,i , cf2,j )
〈
~τf1,i , ~τf2,j

〉
. (0.7)

The approximation in the case of surfaces is again strictly similar and yields

〈[M1]d, [M2]d〉W ′ =
m1∑
i=1

m2∑
j=1

K(cf1,i , cf2,j )
〈
~νf1,i , ~νf2,j

〉
. (0.8)

The approximation error can be easily computed, either directly from the formula, or using the
Dirac currents representation. This is postponed to Section 4 since as we will see metrics on
currents can be viewed as special cases of metrics on varifolds.

3.4. Examples of registration using currents metrics
We present here some experiments of diffeomorphic registration of surfaces using kernel metrics
on currents as data attachment term. Let us briefly precise the problem : given two shapes M1,
M2, the registration is performed through the minimization of

J(φ) = γ d(id, φ)2 + ‖[φ(M1)]− [M2]‖2W ′ ,

where φ denotes a one-to-one mapping belonging to a specific group of diffeomorphisms endowed
with a right-invariant metric d (see chapter ??). In a discrete setting, assuming M1 and M2
are meshes, [φ(M1)] and [M2] are replaced by their discrete approximations, which reduces the
problem to a finite-dimensional LDDMM problem. This is tackled down using a geodesic shooting
algorithm, optimizing over initial momentum vectors located at vertices of M1.

Figure 0.1 shows two examples of registrations of hippocampal cortical surfaces segmented
from MRI images as described in [RBT+12]; the first one is acquired with high resolution and
the other one with low resolution. Registration was performed using an LDDMM algorithm with
kernel metrics on currents as data attachment term. The deformation kernel was chosen to be a
sum of four Cauchy kernels with widths σV = 10, 5, 2.5, 1.125 (in mm), while the kernel on currents
was chosen to be a Cauchy kernel with width σW = 1. To avoid local minima, two registrations
with larger scale (σW = 20 and σW = 5) were performed first and used as initializations. As can
be noticed in these examples, registrations using currents metrics for such closed shapes perform
very well. Currents are also very efficient when dealing with rough or noisy segmentations, as
they locally average orientations through the kernel (see Figure 0.2).

Diffeomorphic registration using currents has been used for several shape analysis applications
in medical imaging (see for example [VQGM07, DFP+11b, MKB+11]). It has also been the
basis for extensions, mainly for template estimation problems [GJ06, MMY10] and methods for
analysing longitudinal datasets [DPT+09].

The need for more sophisticated methods like varifolds and normal cycles comes when dealing
with shapes presenting singular features like boundaries, branching points, or high curvature
points.
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Figure 0.1 Examples of diffeomorphic registrations using kernel metrics on currents. Top row: hippocampal surfaces
at high resolution ; bottom row: hippocampal surfaces at low resolution. From left to right: source surface, target
surface, deformed source.

Template and target Current matching Result vs Ground truth
Figure 0.2 Registration between a sphere (blue) and a noisy frog (orange). The “true” smooth frog surface (red
wireframe) is not used to estimate the registration. It is only used to benchmark with the results.

4. Varifolds
Despite the clear benefits of kernel-based metrics on currents for the problem of shape comparison,
there are two important aspects that are worth emphasizing. First, the current representation
and metrics are strongly tied to the orientation given to both shapes. While it is often not a
difficult issue to find proper and consistent orientation like in the case of closed curves or surfaces
for example, some cases are much more involved, if not simply ill-posed. A striking example
are fiber bundles with potential crossing or tangle, as we illustrate later in Section 4.4. Another
particularity of currents is the linearity of the representation. As we saw, this can be a strength
when (properly oriented) data are corrupted by noise since the resulting oscillations tend to cancel
out. However, it can also result in artificial destruction or creation of thin structures which may
be incorrectly equated to noise in this model, cf. [CT13].

Part of these issues can be addressed through the extended framework of varifolds. Varifolds
were introduced in geometric measure theory in the works of [Alm66, All72] and first adapted to
the context of computational anatomy in [CT13] as a way to eliminate the previous orientation
requirement. In the latest work [KCC17], a little more general framework named oriented varifold
was proposed, leading to a class of metrics that can, or not, rely on the orientation and allows
to recover previous frameworks of currents and varifolds as particular cases. We adopt and
summarize this latter approach in what follows. Note that, with a slight abuse of vocabulary, we
will call here in short a varifold what corresponds in all rigor to an oriented varifold.

4.1. Representation by varifolds
In the same spirit as Section 3, we will again characterize curves and surfaces through their effect
on certain spaces of test functions. With the notations of Section 2:
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Definition 3. • A varifold is a distribution on the product Rk × Sk−1, namely a continuous
linear form on a given space W of smooth test functions Rk × Sk−1 → R.

• If M is an oriented curve, we associate the varifold {M} ∈ W ′ defined, for any test function
w ∈ W , by the line integral:

{M}(w) =
∫
M
w
(
x,~t(x)

)
d`(x) . (0.9)

• IfM is an oriented surface, we associate the varifold {M} ∈ W ′ defined, for any test function
w ∈ W , by the surface integral:

{M}(w) =
∫
M
w (x, ~n(x)) dS(x) . (0.10)

The product Rk × Sk−1 can be interpreted here as the space of position × tangent space direc-
tion and formulas (0.9) and (0.10) amount in representing a curve or a surface as the distribution
of its points with unit tangent or normal vector attached. We point out that an important
difference with currents is that the dependency of w in ~t (or ~n) is not anymore constrained to
be linear. However, equations (0.9) and (0.10) still rely, a priori, on an orientation of M. We
will see that it is not a necessity if the space of test functions W in the previous definitions is
carefully chosen in order to recover invariance to the choice of orientation. More fundamentally,
the actual specification of W is in fact critical and can lead to a wide range of properties of the
representations and metrics, as we discuss in the next section.

4.2. Kernel metrics
As with currents, we will once again focus on the particular class of test functions given by
RKHS. In the context of varifolds, an admissible space W is a Hilbert space that is continuously
embedded in C0(Rk × Sk−1), the space of continuous test functions on Rk × Sk−1 that decay to 0
at infinity. By the standard theory of RKHS, such a space is equivalently described by a positive
and continuous kernel K on Rk × Sk−1.

In the rest of this section, following the setting of [KCC17], we will restrict to real valued and
separable kernels K, namely

K((x, u), (y, v)) = Kp(x, y)Ks(u, v) for all (x, u), (y, v) ∈ Rk × Sk−1,

where Kp, Ks are continuous positive kernels on Rk and Sk−1 respectively and such that Kp(x, y)
vanish as ‖(x, y)‖ → +∞.

With those assumptions, W and its dual W ′ are Hilbert spaces, and we write ‖ · ‖W ′ the
Hilbert norm on W ′. Moreover for any rectifiable curve or surface M, we have that {M} ∈ W ′
and the resulting inner product then writes as:

〈{M1}, {M2}〉W ′ =
∫
M1

∫
M2

Kp(x, y)Ks(~t1(x),~t2(y))d`(x)d`(y) (0.11)

for curves or

〈{M1}, {M2}〉W ′ =
∫
M1

∫
M2

Kp(x, y)Ks(~n1(x), ~n2(y))dS(x)dS(y) (0.12)

for surfaces.
Now, this gives a new class of candidates for fidelity terms which we define by

dW ({M1}, {M2})2 = ‖{M1} − {M2}‖2W ′ = ‖{M1}‖2W ′ − 2〈{M1}, {M2}〉W ′ + ‖{M2}‖2W ′ .
(0.13)

In other words, this is the “distance” on curves or surfaces induced by the representation of
varifolds and the Hilbert metric on W ′. Note that since the representation {M} does not de-
pend on a parametrization of M, the quantity dW (M1,M2) is independent of the choice of a
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parametrization for M1 or M2. From formulas (0.11) and (0.12), we see that, in essence, such
metrics are comparing the relative positions of pointsM1 andM2 through the kernel Kp jointly
with the relative direction of their tangent spaces as measured by Ks.

As a side note, ‖ · ‖W ′ gives a metric on the distribution space W ′ but dW may still only
result in a pseudo-distance as two varifolds {M1} and {M2} may coincide in W ′ even though
M1 and M2 are distinct. This happens essentially if the space of test functions W is not rich
enough. Sufficient conditions on the kernels Kp and Ks to recover a true distance are given in
[KCC17], to which we refer for more details. Similarly, specific regularity conditions are necessary
to guarantee existence of solutions to registration problems involving those fidelity terms.

Remark 1. In shape analysis, another usual property of metrics that is very often desired is
invariance to rigid motions, namely for all (R, a) ∈ Ok o R

k and all M1,M2

〈{RM1 + a}, {RM2 + a}〉W ′ = 〈{M1}, {M2}〉W ′ .

Within the setting presented here, this can be satisfied easily by restricting Kp to the class of
radial kernels Kp(x, y) = ρ(‖x− y‖2) with ρ : R+ → R and Ks to the class of zonal kernels on
Sk−1, i.e such that Ks(~u,~v) = γ(〈~u,~v〉) with γ : [−1, 1]→ R.

Let us now consider a few specific examples of kernels, which all result in rigid-invariant dis-
tances between shapes. For Kp, common choices include Gaussian kernels Kp(x, y) = e−‖x−y‖

2/σ2

or Cauchy kernels Kp(x, y) = 1
1+‖x−y‖2/σ2 , where in both cases σ is a scale parameter that deter-

mines the spatial sensitivity of the metric. Sums of kernels with different scales can be also used
in order to define multiscale distances. The choice of the spherical kernel Ks has very important
impact on the resulting metric, we discuss a few special cases below.

Example 1. If Ks(~u,~v) = 1 then the metric is essentially insensitive to the tangent or normal
vectors’ components in the two shapes. Equivalently, it can be interpreted as viewing shapes as
standard distributions on Rk and comparing them through the metrics obtained by the single
kernel Kp. This exactly corresponds to the simplest model of measures that was introduced in
[GTY04] originally to treat point clouds.

Example 2. If Ks(~u,~v) = 〈~u,~v〉, i.e the restriction of the linear kernel of Rk to Sk−1, then we
find, as a particular case, the metrics based on currents of formulas (0.3) and (0.4).

Example 3. Another possible choice is Ks(~u,~v) = e−2〈~u,~v〉/σ2
s which is the restriction of a Gaus-

sian kernel of width σs > 0 on Sk−1. Such a kernel induces non-linearity with respect to u and v
which, as we will see, leads to important differences with currents.

Example 4. WhenKs is chosen to be orientation-invariant, i.e ifKs(~u,~v) = Ks(~u,−~v) = Ks(−~u,~v),
then interestingly the metric defined by formula (0.11) or (0.12) is completely independent of the
orientation given to vectors ~t(x) or ~n(x). In that case, orienting M1 or M2 is unnecessary and
one can basically select any of the two possible unit vector at each point x. This leads to the
particular class of metrics on varifolds that were considered in [CT13]. Examples of such sym-
metric kernels, besides the trivial one of Example 1, are Ks(u, v) = 〈~u,~v〉2 which is known as the
Binet kernel on the sphere or Ks(~u,~v) = e−2〈~u,~v〉2/σ2

s (the squared scalar product makes the kernel
orientation-invariant).

This framework for constructing fidelity terms also enables simple multiscale registration
strategies. One approach which is used in some of the examples presented previously and below
consist in solving sequentially several registration problems using finer and finer kernel sizes. An-
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other possible approach is to directly combine different scales in the fidelity metric by considering
sums of kernels for Kp and/or Ks, which is inspired from a similar idea proposed in the context
of multiscale deformation models by [RVW+11].

4.3. Discrete model
The discrete model for currents’ representation and metrics introduced in Section 3.3 can be
easily adapted to the more general situation of varifolds. Adopting the same notations, given two
curve or surface meshes, one can approximate the double integrals in the kernel metrics given by
equations (0.11) and (0.12) respectively as:

〈{M1}, {M2}〉W ′ ≈
m1∑
i=1

m2∑
j=1

Kp(cf1,i , cf2,j )Ks(~tf1,i ,~tf2,j )‖~τf1,i‖ ‖~τf2,i‖ (0.14)

and

〈{M1}, {M2}〉W ′ ≈
m1∑
i=1

m2∑
j=1

Kp(cf1,i , cf2,j )Ks(~nf1,i , ~nf2,j )‖~νf1,i‖ ‖~νf2,i‖. (0.15)

Note once again that if Ks(~u,~v) = 〈~u,~v〉 then we find the same expressions as in equations (0.7)
and (0.8). Recall also that the orientation of vectors ~tfi or ~nfi depends on the ordering of
vertices in each face, which in general needs to be defined consistently across faces. Yet with the
orientation-invariant kernels of Example 4, orienting the mesh is unneeded as any orientation at
each face gives the same value in (0.14) and (0.15).

These discrete formulas can be also interpreted as the varifold inner products between the
approximations of {M1} and {M2} as finite combinations of Diracs:

{M1} ≈ {M1}d =
m1∑
i=1
‖~νf1,i‖ δ(cf1,i

,~tf1,i
) and {M2} ≈ {M2}d =

m2∑
j=1
‖~νf2,j‖ δ(cf2,j

,~tf2,j
)

in the case of curves and with similar equivalent expressions for surfaces. In the above equations,
a Dirac varifold δ(x,~u) is the linear functional defined for any w ∈ W by δ(x,~u)(w) = w(x, ~u). Then,
for any polygonal curve or polyhedral surface, one can show (cf. [CT13] and [KCC17]) that, with
the assumptions on kernels introduced in Section 4.2 and the extra assumptions that both kernels
are C1, there exists a constant C ≥ 0:

‖{M} − {M}d‖W ′ ≤ C|M|max
i

diam(fi) (0.16)

where |M| is the total length or area of M and diam(fi) is the diameter of the face fi. In other
words, the approximation error for the varifold norm is controlled by the maximum diameter of
the mesh faces and will thus be small if the mesh is sufficiently refined. Similar approximation
bounds then follow for the discrete metric formulas of (0.14) and (0.15). In addition, the gradient
of the metric and distance with respect e.g. to the vertices’ positions inM1 is easily obtained by
simple chain rule differentiation.

4.4. Examples and applications
We now illustrate several different properties and potential advantages or downsides of the pre-
vious metrics through a few examples of diffeomorphic registration on curves and surfaces. As
previously, we rely on the LDDMM model for the deformation framework coupled here with
general varifold data attachment terms. In all these experiments, spatial kernels Kp are chosen
Gaussian (we denote by σ the width parameter) and we focus primarily on the effects of the
second kernel Ks for which we compare the choices of Examples 2, 3 and 4.

Figure 0.3 shows a fairly challenging registration experiment on closed curves. With currents
(linear kernel), notice the appearance of degenerate structures and the fact that the two humps are
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Source and Target Linear

Unoriented Gaussian
Figure 0.3 Diffeomorphic registration of a template horse (blue) to the target (orange). The estimated deformed
template is shown for some varifold metrics using various kernels Ks.

Template and target Current matching Varifold matching
Figure 0.4 Registration between an ellipsoid and an hippocampal surface (left) with the linear kernel (middle) and the
Binet kernel (right). The hippocampal surface is segmented from a MRI and contains several segmentation artifacts
(spikes).

not well recovered: this is a downside consequence of the cancellation effect that was discussed
above. It is again very specific to the linearity of this model as these effects do not occur
with the two other metrics. Orientation-invariant kernels like the Binet kernel of Example 4 still
display difficulties in recovering the convoluted double hump by instead creating a single ’average’
hump. In this particular example where orientation is well-defined and relevant, oriented but
nonlinear kernels like the spherical Gaussian of Example 3 achieve the most accurate registration
as evidenced in the figure.

The previous observations can clearly have impact on registration of real data as well. We show
one example among others in Figure 0.4 where an ellipsoid (blue) is registered on an hippocampal
surface segmented from an MRI (orange). We compare the estimated registrations using the
linear and Binet kernels for the orientation. There are differences to be noticed between the two
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Figure 0.5 Registration of white matter fiber bundles using the Binet kernel for the fidelity term. Two views are shown
in which the template is in green, the target in red and the registered template in blue.

results, most notably around the thin part of the hippocampal surface where the overlapping of
the registered surface is less accurate in the case of the linear kernel compared to the matching
obtained with the Binet kernel (red arrow). This is a clear manifestation of the cancellation of
thin shape structures in the representation of currents.

Finally, orientation-invariant fidelity terms can prove very useful in the case of fiber bundle data
for which defining an orientation of each fiber that is consistent can be particularly cumbersome
and even ill-posed in some situations. We show an example of registration between two white
matter fiber tracts in Figure 0.5 using the unoriented Binet kernel.

Besides theses cases, the benefits of oriented or unoriented varifold metrics have also been
put to use in several other applications to shape analysis of medical data which include cortical
surfaces [RLLS16], complexes of subcortical surfaces [DPC+14] or lung vessels [PCD+16].

5. Normal cycles
Currents and varifolds provide representations for oriented or unoriented shapes which rely on
first order information of the shape (i.e tangential or normal directions). Depending on the
applications, it may be useful to have a second-order model, that takes into account the curvature.
For this purpose, we define in this section an alternative representation based on normal cycles.
This is a summary of the work presented in [RG16].

Rather than the shape itself, the idea of normal cycles is to consider its unit normal bundle,
i.e the shape attached with its normal vectors at each point. More precisely, the normal cycle is
the current associated with the unit normal bundle. It has been introduced first by Zähle [Zä86]
as a generalization of curvatures for sets with singularities.

In this section, we propose to briefly present the representation of shapes with normal cycles.
We will see that this representation takes into account the boundary of the shapes (e.g extremities
and branching points for curves), and thus is sensitive to topological change. Moreover, it is
sensitive to high-curvature regions of the shape. By introducing kernel metrics on normal cycles
(as for currents and varifolds), we are once again able to obtain an explicit form for the metric
between discrete shapes represented as normal cycles.

5.1. Differential forms and currents
Similarly to currents and varifolds, normal cycles are defined through their evaluation on test
functions. To define adequate spaces of test functions in that case, we need to recall some notions
about differential forms and currents in more general dimensions than the setting of Section 3.

Definition 4. . Let k ∈ N∗.
• A m-differential form, or simply m-form, is a mapping x 7→ ω(x) from Rk to the space of

alternating m-linear forms of Rk.
• A m-current in Rk is a continuous linear mapping from the space of continuous m-forms to R.
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The space of test functions that we will consider in the following will be Ωk−1
0 (Rk × Sk−1), the

space of continuous k − 1-differential forms on Rk × Sk−1, vanishing at infinity.

Remark 2. For curves in R2 (k = 2, m = 1) or surfaces in R3 (k = 3, m = 2), one can canonically
identify a m-differential form to a continuous vector field, and we retrieve the definition given in
Section 3.

5.2. Unit normal bundle and normal cycle
To keep the discussion as simple as possible, we will only consider curves and surfaces in R3.
However, the notion of normal cycles can be generalized to any m-dimensional surface in Rk.

Definition 5 (Unit normal bundle and normal cycle). Consider M a compact C2 curve or
surface (possibly with a boundary)
• The unit normal bundle of M is

NM = {(x, n) | x ∈M, ~n ∈ Nor(M, x)}

where Nor(M, x) is the set of all the unit normal vectors of M at point x.
• The normal cycle of M, denoted N(M) is the current associated with NM:

N(M)(ω) := [NM](ω) =
∫
NM

〈ω(x, ~n), τNM(x, ~n)〉dS(x, ~n).

where τNM(x, ~n) is the unit tangent vector to NM at point (x, ~n) and ω ∈ Ωk−1
0 (Rk × Sk−1).

Remark 3. NM is a 2-dimensional surface in R3 × S2 independently of the dimensionality of
M. Indeed, it can be canonically associated with an ε-expansion of the initial shape, for ε small
enough. See [RG16] and the references therein for more details. Thus, the integration over the
unit normal bundle is a surface area integration. Hence the notation dS(x, ~n) in the definition of
normal cycles.

Figure 0.6 Illustration of the unit normal bundle for a regular non closed curve in the plane. The curve is in black, the
unit normal vectors associated with four points are represented as red arrows, and the resulting unit normal bundle is
represented in blue, with its canonical orientation. Note that this representation is only illustrative, as the true normal
bundle belongs to the space R2 × S1 in this case.

The unit normal bundle of a smooth curve with extremities is depicted in Figure 0.6. Note
that extremities have non-negligible contributions in the normal bundle and thus are taken into
account in the normal cycle. This is a major difference with currents or varifolds. Note also that
since the unit normal bundle can be depicted as a closed hypersurface (as in Figure 0.6), it has
a canonical orientation that is independent of the orientation of the initial shape.

5.3. Normal cycles for discrete curves or surfaces
The unit normal bundle is well-defined for smooth enough sets, specifically sets with positive reach
(see [Fed59], section 4). This class of sets encompasses compact C2 submanifolds with boundary
(which we will refer to as C2 sets in the following). However, it is, a priori, not well defined in
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general for union of C2 sets, as for instance with discrete curves or surfaces. Fortunately, it is
possible to extend the notion of normal cycles for such sets using the following additive property:

Proposition 1 (Additive property, [Zä87]). Consider M =M1 ∪M2 such that M1 and M2
and M1 ∩M2 are C2 sets (possibly with boundary). Then we can define

N(M) := N(M1) +N(M2)−N(M1 ∩M2)

This property allows to define the normal cycles for shapes that are the union of compact
C2 sets with boundaries. This case encompasses the one of discrete curves or surfaces. Such a
normal cycle corresponds to a generalized unit normal bundle which is illustrated in Figures 0.7
and 0.8.

Figure 0.7 Representation of the generalized unit
normal bundle of a blue discrete curve. For curves
we observe two parts for the normal bundle: a cylin-
drical part (in purple), associated with the edges and
a spherical part (in blue) associated with the vertices.

Figure 0.8 Representation of the generalized unit nor-
mal bundle of triangles (in black). It comprises three
parts: a planar part (in purple) associated with the inte-
rior, a cylindrical part (in blue) associated to the edges
and a spherical part (in yellow) associated with the ver-
tices.

5.4. Kernel metrics on normal cycles
Since normal cycles are currents associated with unit normal bundles, we can again rely on the
theory of RKHS presented in Sections 3.2 and 4.2. It is left to design a scalar kernel K on R3 × S2,
that will be a product of a spatial kernel Kp and a spherical kernel Ks. This has already been
presented in Section 4.2.

In this framework, the inner product between two curves or two surfaces represented as normal
cycles takes the form

〈N(M1), N(M2)〉W ′ =
∫
NM1

∫
NM2

Kp(x, y)Ks(~u,~v)〈τ1(x, ~u), τ2(y,~v)〉dS(x, ~u)dS(y,~v) (0.17)

where τ1(x, ~u) is the tangent vector of the unit normal bundle at point (x, ~u). Notice that this
expression is true only for compact C2 curves or surfaces (possibly with boundary). It can be
extended to discrete curves or surfaces through the previous additivity property. Let us add a
few remarks. First of all, one can notice that this expression is similar for curves or surfaces:
the normal bundle is indeed 2-dimensional in R3 × S2, independently of the actual dimension of
the shape. Secondly, the contribution of normal vectors through the kernel Ks but also through
the tangent vector to the normal bundle τ1 shows that curvature is taken into account by those
metrics in contrast to the previous approaches of currents or varifolds.

The choice of the spherical kernel is mainly driven by the possibility to explicitly compute
such inner products between two discrete shapes. With discrete curves, those metrics have been
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implemented with constant (as in example 1), linear (example 2) or Sobolev kernels (i.e the
reproducing kernel of some Sobolev space on the sphere S2 which has explicit expansion in the
spherical harmonics basis). In the case of surfaces however, current implementations are restricted
to the constant spherical kernel, even though it provides less theoretical guarantees (namely,
the space of test functions W is not rich enough to ensure that the associated pseudo-distance
dW (M,M′) = ||N(M)−N(M′)||2W ′ is a real distance, see again [RG16] for a precise discussion
on these topics).

5.5. Discrete inner product
In the case of discrete curves or surfaces, as shown in Figure 0.8, the unit normal bundle consists
of several components: spherical (in green) associated to vertices, cylindrical (in red) associated
to edges, and for surfaces planar components (in light blue) associated to faces. The expression
of the full inner product is greatly simplified thanks to the following result:

Proposition 2. The spherical, cylindrical and planar components are orthogonal with respect to
the kernel metric on normal cycles defined in Section 5.4 by formula (0.17)

Numerical computation involves integrating over the planar, cylindrical and spherical parts.
We approximate the spatial integration as for currents or varifolds. The integration over the
normal part is explicitly calculated. For the sake of simplicity, we here only express it for the
constant spherical kernel (Ks(~u,~v) = 1), equivalent derivations for the linear or Sobolev kernels
may be found in [RG16]. In the case of curves, it reads:

〈N(M1), N(M2)〉W ′ = π2

4

m1∑
i=1

m2∑
j=1

Kp(xi, yj)
〈
~Ai, ~Bj

〉
(0.18)

where ~Ai =
∑
k f

i
k/|f ik| is the sum of the normalized edges with xi as vertex, and oriented outward

from xi. For surfaces:

〈N(M1), N(M2)〉W ′ = π2

4

ne∑
i=1

me∑
j=1

Kp(ci, dj)
〈
~fi, ~gj

〉〈 ∑
{T |fi edge of T}

~nT,~fi
,

∑
{T ′|gj edge of T ′}

~nT ′, ~gj

〉

+ π2

4
∑

xi vertex
of ∂M1

∑
yj vertex
of ∂M2

Kp(xi, yj)
〈
~Ai, ~Bj

〉
(0.19)

where the first double sum is a double loop on the edges (there are ne edges inM and me inM2)
and where ~Ai =

∑
k f

i
k/|f ik| is the sum of the normalized edges of the border, with xi as vertex,

and oriented outward from xi, ci is the middle of the edge ~fi. ~nTi,~fi
is the normal vector of the

triangle Ti such that nTi,~fi
× ~fi is oriented inward for the triangle T . Bj is the similar notation

as Ai for the triangulation M2. Note that with the constant normal kernel, the inner product
involves only the cylindrical part, i.e quantities associated with the edges of the triangles (and
thus, with the discrete mean curvature).

Since the expression of the inner product (and thus the metric) is explicit in the discrete case,
it is easy to obtain the gradient with respect to the vertices of M1 by a chain rule.

Remark 4. With the linear spherical kernel, the inner product involves the spherical part (as-
sociated with the vertices and thus the Gaussian curvature) and the planar part. Interestingly,
this planar part then corresponds to the inner product obtained from the varifold representation
with the Binet spherical kernel introduced in Section 4.2.
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t = 0 t = 1/3 t = 2/3 t = 1
Figure 0.9 Top row: registration of blue to orange brain sulci. The deformation kernel is a Cauchy kernel of width
σV = 20. The data attachment term is normal cycles with a Sobolev kernel of order 3 for Ks and Gaussian spatial
kernel for Kp. Bottom row: zoom on the registration of two sulci. Each row shows the evolution of the deformation
with time. One can observe that since normal cycles take into account the extremities, the matching is convincing.

The crucial difference between normal cycles and currents or varifolds is that any part of the
discrete shape has a non negligible component in the unit normal bundle and will be taken into
account by the metric. Hence, there is an explicit term associated with the boundaries of shapes.
For registration purpose, this feature will enforce the matching of boundaries, corners but also of
branching points.

5.6. Examples and applications
This section aims to illustrate some of the properties of normal cycles.

First, we show an example on curves. The data consist of brain sulcal curves that were
automatically segmented and labelled from anatomical Magnetic Resonance Imaging (MRI) brain
images, following the method described in [ACG+11]. We chose two individuals and six labelled
corresponding sulcal curves for each individual. We thank Guillaume Auzias for extracting and
providing us the dataset of sulcal curves used in our experiments. The data fit in a box of size
120× 140× 110.

The matching is performed with a single deformation, but 6 data attachment terms with
normal cycles: one for each pair of corresponding sulci. The details of the registration procedure
are precised in Figure 0.9. The matching is complex since the number of branching points is not
necessarily the same for corresponding curves, and two curves to match can be really twisted
from one to another. Moreover, the fact that a single deformation is required for the whole brain
implies high local variations. In Figure 0.9, we present the registration with normal cycles and
Sobolev normal kernel. The visualization of this three-dimensional configuration is not easy, but
the end points and corresponding branching points are well matched when possible (we recall
that there is not always a corresponding branching point). Moreover, the registration driven by
normal cycles allows complex local deformation (even though it is expensive) to reduce the data
attachment term.

In the bottom row, we present a zoom on two sulci to showcase the properties of a registration
with normal cycles. This specific example shows all the benefit that one can expect from the metric
on normal cycles. The natural consideration of the extremities and the branching points provides
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a convincing registration, even though this implies a deformation with high local variation. This
is even more striking on the left sulci. The deformation is a good compromise, even though there
are not the same number of branching points in the source and target.

As a second real data example, we consider the registration of retinal surfaces which are shown
in Figure 0.10. Those retina are surfaces in 3D segmented from Optical Coherence Tomography
images. The typical size is 8× 8mm and each retina is sampled with approximately 5000 points.
The data acquisition and preprocessing is described in [LFF+13]. In our simulations, we use a
Gaussian deformation kernel KV with σV = 0.6. All the details of the matching are in Figure
0.10. These surfaces have boundaries and corners which will be seen as region with singularities
for the kernel metric on normal cycles. This is not the case for the varifolds metric, which makes
the registration of the corresponding corners more involved. The matching of the borders is more
accurate with normal cycles while providing a much more regular deformation (see Figure 0.10).

t = 0 t = 1/2 t = 1
Figure 0.10 Each row represents the matching of two retina surfaces in 3D with kernel metric on normal cycles (top)
and varifolds (bottom). The target shape is in orange and the source shape is in blue. Each shape has 5000 points.
For the varifolds metric, the geometric kernel is Gaussian. The kernel Ks is Ks(~u,~v) = 〈~u,~v〉2 as in example 4, so that
no additional parameter is involved. The same parameters are used for each data attachment term. KV is a Gaussian
kernel with σV = 0.6.

6. Computational aspects
6.1. Fast Kernel Computations
The metrics presented in this chapter all use embeddings of shapes in some RKHS. Such “kernels
methods” are convenient tools as they allow to define simple yet intuitive distances between shapes
by choosing meaningful kernels tailored to particular applications. Moreover, kernel methods lead
to natural and efficient discrete approximations of the continuous models which are amenable to
treat real datasets.

As we have seen in the previous sections, the considered metrics are then defined based on the
inner product resulting from the RKHS structure. The explicit formulas (0.7), (0.8) or (0.14),
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1 import numpy as np # load numpy library
2
3 def squared_distances (x, y):# matrix of the squared norms
4 return np.sum ((x[:,np.newaxis ,:] - y[np.newaxis ,: ,:]) ** 2, axis =2)
5
6 M = np.exp(- squared_distances (c_f1 , c_f2) / (sigma*sigma))
7 S = np.sum( tau_f1 * (np. matmul (M, tau_f2 )) # final results

Figure 0.11 An implementation of Gaussian kernel sum (0.21) in Python using numpy

(0.15) or (0.18), (0.19), of these various inner products all involve computations of the form:

S =
m1∑
i=1

m2∑
j=1

Fi,j , (0.20)

where Fi,j ’s are real numbers depending (possibly non linearly) on some known quantities such
as points position (the variables cfi ∈ Rk) or tangent spaces orientation (variables ~τfi , ~νfi ∈ Rk),
etc. . . Computing a single Fi,j in (0.20) requires, in general, several operations such as kernel
evaluations. It yields to a total computational complexity ofO(m1m2) to evaluate a single distance
between two shapes (m1 and m2 being the number of segments/triangles in the shapes). This
quadratic complexity is one of the main obstacles to apply kernel based distances on real data.
Indeed, many practical cases involve data where m1 and m2 can reach an order of magnitude up
to 107 or more.

There are two main strategies to efficiently perform computations of kernel based distances:
“brute force” exact computations using parallel architectures and methods computing an approx-
imate value of S but with a much lower complexity (typically quasi-linear instead of quadratic).
We discuss some possible methods in the remainder of this section.

6.1.1. Exact computations
By exact computations, we here mean that all Fi,j ’s are evaluated up to the machine precision
before computing the full double sum in (0.20). The methods described in this section can be
used to compute any kernels.

Linear Algebra library
The first natural way to perform exact kernel computations is to use one of the standard linear
algebra libraries (such as BLAS, Armadillo, etc. . . ). Every scientific programming language now
has bindings to state-of-the-art linear algebra libraries that are able to take advantage of multiple
cores in modern central processing unit (CPU).

The basic idea here is to create an array of size m1 ×m2 containing all values Fi,j and perform
two summation (reduction) steps. For instance, the current inner product (0.21) below may be
written in Python as in Figure 0.11 where, under the hood, numpy calls BLAS optimized library
to perform the matrix multiplication and the final reduction step of line 7.

This solution is competitive in term of speed when the sizes m1 and m2 of the data at hand are
small (up to 103 typically as shown Figure 0.12). The bottleneck is the memory footprint since
storing the m1 ×m2 array M of floating-points numbers (line 6 of Figure 0.11) may be impossible.

Graphics Processing Unit (GPU)
Brute force computations using massively parallel architectures such as GPU are a very efficient
way to compute kernel based distances when the sizes m1 and m2 are moderate (in the range of
103 to 106). Using a GPU for very small values of m1 and m2 is in general counter productive
as there may be some overhead due to memory transfers between the standard memory and the
GPU memory. This being said, the performances of an implementation highly depend on the
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Figure 0.12 Average time to compute 200 Gaussian kernel sums depending on the size. The size increase exponentially:
at size i we have m1 = 200× 2i and m2 = 300× 2i.

environment and are subject to possible changes in the future.
Some high-level languages allow to execute (transparently for the end-user) the code of Figure

0.11 on a GPU. Nevertheless, the memory limitations remain the same. In fact, they are even
worst as the size of the memory on a GPU is usually much smaller than the standard memory
size. In Figure 0.12 we can see that a Nvidia GPU Tesla P100 with 16Go of RAM ran out of
memory for m1,m2 > 26000.

To overcome this problem, it is possible to use a so-called “tile implementation” method.
The idea is to divide the computations of the m1m2 terms Fi,j in small batches (the tiles) and
aggregate the results on the fly. In practice, the computations of the Fi,j and the reduction step
are then made on a single batch at a time reducing the amount of memory needed to compute S
and without loosing accuracy. The memory architecture of GPUs is particularly well suited for
this kind of job as it is possible to use a low latency memory called shared memory. Although,
this tile implementation is well documented, there is currently few high level libraries that can be
used for general matrix multiplications or operations as formula (0.20). A notable exception being
keops [CFG18] which is a Cuda/C++ software with Python, Matlab and R bindings designed to
compute operations on kernels. Performances are shown Figure 0.12.

6.1.2. Approximate methods
Even with a strong parallelized implementation using GPU, exact methods to compute kernel
based distances may be impossible to apply when m1 and m2 are greater than 107. The quadratic
complexity being simply too high in this range of values.

We present here two methods that are able to compute an approximated value of S of formula
(0.20) with a controlled error in at most a sublinear complexity. Unfortunately, approximation
methods may not be used with any general kernel. We will then assume here that the problem
has the following form:

S =
m1∑
i=1

〈
~τf1,i , [M~τf2 ]i

〉
where


M =

[
ρ(‖cf1,i − cf2,j‖2)

]
∈ M(m1,m2)

and
~τf2 = [τf2,j ] ∈ M(m2,k)

(0.21)

where ρ may be a Gaussian or Cauchy function. In formula (0.21), for any 1 ≤ i ≤ m1 we have
denoted [M~τf2 ]i the vector in Rk whose coordinates are given by the i-th row of [M~τf2 ]. Thence,
computing S can be done at the price of a convolution (the matrix product M~τf2 which is the
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costly part) followed by reduction step (the sum over the scalar product in Rk).

Grid method and Non-uniform Fast Fourier transform (NFFT)
These two methods can be employed to compute approximations of convolutions with radial scalar
kernels as used in equation (0.21). Both approaches rely on the fact that convolutions can be
written as a pointwise product in the frequency domain. The difficulty being here that points
do not a priori lie on an equispaced grid and the Fast Fourier Transform (FFT) can not be used
directly. The idea is then to interpolate the data on a regular grid (first step known as gridding
step) to be able to apply the FFT for the computation of convolutions (second step). Finally,
the results are evaluated at the initial data location (third step). The total cost of the method is
then quasi linear in terms of number of points in the shape and grid size. Nevertheless, a major
drawback is that the grid size explodes with the dimension of the ambient space limiting the
range of applications to k ≤ 3.

The grid method [Dur09] has been implemented in the software Deformetrica [DC18] for
Gaussian kernel and is used to compute current and varifolds norms with Binet kernels. The
NFFT could be used for similar tasks and two possible choices for implementations are [KKP09]
and [GL04].

Fast Multipole Methods (FMM)
FMM [GR87] are numerical methods coming from physics to approximate computations involving
kernels. Original motivations were to compute numerical solutions of the n-body problem or
solutions of some partial differential equations. Although, to the best of the authors’ knowledge,
these methods are not being currently used in our context, it is worth mentioning FMM as a
potential approach to make computations of formulas similar to (0.21) with m1,m2 above 107

numerically tractable.
The idea of FMM is to perform calculations in a hierarchical way by splitting the ambient

space Rk into adaptive sets of sub-regions whose sizes depend on the density of points in the
space. This partition is then used to make a batch computation of the sum. The evaluation
of an admissible kernel in each batch can be approximated with a controlled precision. Finally,
the approximated results are aggregated in a divide-and-conquer fashion reducing the overall
computational complexity to a sub-linear complexity in terms of the number of points. Moreover,
the memory needed to perform the overall calculation is also significantly decreased.

Let us finally mention a useful particular case of FMM: the Fast Gauss Transform [YDG03]
which was specifically developed to compute sums of the form (0.21) with Gaussian kernel. FGT
can then be used to compute current distances or varifold distances with a Binet kernel on the
orientation part.

6.2. Compact approximations
The approximation quality of the discrete models presented so far depends on the resolution
of the meshes, namely the number m1,m2 (and size) of segments and triangles for curves and
surfaces respectively. Due to the use of kernels, those representations may be redundant and thus
simplified prior to further processing. To focus the discussion, we will here restrict to the model
of currents presented in Section 3.

Take as example a mesh composed of two segments, which can be modeled as two Dirac
currents δτ1

c1 and δτ2
c2 as in equation (0.6). Using for instance a Gaussian kernel with scale parameter

equal to σ, one can easily verify that if ‖c1 − c2‖ � σ, δτ1
c1 + δτ2

c2 can be well approximated for
the ‖ · ‖W ′ norm by the single Dirac δτ1+τ2

c1+c2
2

. Exploiting this idea, one could approximate all
the segments in a neighbourhood of size σ (or cells for a surface mesh) with a single “average”
segment (i.e. point + orientation) modeled as a Dirac current. This representation would be less
redundant since the resulting Dirac currents would be (almost) orthogonal to each other (i.e. the
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distance between their centers would be greater than σ). In order to be an optimal decomposition,
the small set of Diracs should also accurately approximate the original shape.

A greedy approach of this idea is the one introduced in [DPTA09] and based on the matching
pursuit algorithm. It results in a set of N Dirac currents

∑N
i=1 δ

αi
xi

that well approximate the
original shape composed of m Dirac currents with a very high compression ratio (i.e. N � m).
Each Dirac current locally integrates the redundancy of the data at the scale of σ. An example
of this approximation approach is shown in Fig.0.13, where we employ a white matter fiber tract
resulting from a tractography algorithm applied on diffusion MRI. For more information, the
reader is referred to [DPTA09] and [DFP+11a].

The previous technique produces a very concise representation that works quite well in practice
for both curves and surfaces. However, it accurately approximates only the areas of the shape
characterized by a high density of segments (or cells). Moreover, it results in an ensemble of
disconnected oriented points that do not preserve the original connectivity of the shape. This
can complicate the interpretation and impede the studies where the connectivity of the meshes
is important as, for instance, when working with white matter fiber bundles. For this reason,
the authors in [GCMK+16] proposed to approximate an ensemble of curves, as a white matter
tract, by selecting a small set of weighted prototypes. Prototypes are chosen among the curves and
they approximate their neighbour and similar curves. Their weights are related to the number
of curves approximated. All curves, prototypes included, are modelled as weighted currents, an
extension of the framework of currents. This computational model takes into consideration both
the pathway of the curves and the location of their endpoints. Using the same notation as for
currents, and calling (a1, b1) and (a2, b2) the endpoints of two curves M1 and M2 respectively,
their inner product is:

〈[M1], [M2]〉W ′ ≈ Ka(a1, a2)Kb(b1, b2)
m1∑
i=1

m2∑
j=1

Kg(cf1,i , cf2,j )〈~τf1,i , ~τf2,j 〉 (0.22)

where Ka, Kb and Kg are three radial Gaussian kernels. Two curves are thus considered similar
if their endpoints are close to each other and if their trajectories are similar. As for currents, a
bundle B of two curvesM1 andM2 is represented as a sum in this framework [B] = [M1] + [M2].
If the two curves are similar, [B] could be well approximated by 2[M1] or 2[M2]. Using this idea,
an ensemble of similar curves can be represented with a single weighted prototype where the weight
is related to the number of curves approximated. A weighted prototype can be visualized as a
constant-radius tube where the curve chosen as prototype is the central axis and the radius is
proportional to the weight (see Fig.0.13). In order to find the best prototypes based on the metric
of weighted currents, the authors in [GCMK+16] proposed a greedy approach divided into two
steps. They first divide the bundle of curves into smaller subsets, called fascicles, and then select
the prototypes in each fascicle independently. Every fascicle is defined as a small subset of curves
which are considered similar in the framework of weighted currents. This subdivision is based
on the maximization of a quality function called modularity. The selection of prototypes is even
in this case based on an iterative algorithm inspired by orthogonal matching pursuit. The main
differences with respect to the previous algorithm are that the prototypes are chosen from the
original curves, thus preserving the connectivity, and that all parts of the original bundle, even
the small fascicles, are well approximated. However, it can only be used with curves and not with
surfaces. More details can be found in [GCMK+16].

6.3. Available implementations
Several open-source codes incorporate implementations of the distances that are described in this
chapter. We refer to Table 0.1 for a summary of some of these.
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Figure 0.13 Compact approximations of white matter tracts resulting from tractography algorithms applied on diffusion
MRI. The first row shows an approximation based on Dirac currents [DFP+11a]. The second row presents a different
tract approximated with weighted prototypes [GCMK+16].

Name language GPU Currents Varifolds Normal
Gauss Rad Binet Rad Cycles

Deformetrica [DC18] C++ X X X
FshapesTk [CCT18] Matlab X X X X X
LDDMM/NormalCycles [GR18] Matlab X X X X(*) X
MRICloud [JTL+14] C++ X X

Table 0.1 Available implementations of LDDMM registration algorithms described in this chapter. Gauss stands for
Gaussian radial kernel, Rad means any radial kernel, Binet is the varifold distance with Binet kernel for Ks. (*) Varifolds
in this code are only available as special case of normal cycles, which gives unefficient implementation.

7. Conclusion
In this chapter, we presented different mathematical and numerical models to quantify the dis-
crepancy between two curves or two surfaces. All these approaches rely on embedding shapes
into certain distribution or measure spaces on which kernel-based metrics are constructed. We
showed that the various possible choices of spaces and kernels provide in turn a large family of
fidelity metrics. One important advantage of this framework is its versatility and simplicity of use
that allows taking advantage of the properties of one particular metric over another one, tailored
to the specific data structure under study.

In particular, we emphasized that metrics based on the model of currents, while requiring
a consistent orientation of shapes, provide robustness to certain noisy features in the geometry.
Varifolds on the other hand prevent certain undesirable effects of currents like flattening or insen-
sitivity to some thin geometric structures, and with the adequate choice of kernels can also spare
the user from the need to orient the given meshes. Finally, the normal cycle approach leads to
a higher-order shape representation with metrics that incorporate comparison of the curvatures.
Although more costly to compute from a numerical point of view, normal cycles are particularly
well-suited for data involving branching structures, complex boundaries and corners...

In terms of applications, we mainly focused here on the use of such metrics as fidelity terms
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in LDDMM registration problems but this framework can be readily combined with other mod-
els for inexact registration, as for instance Sobolev elastic curve matching in the recent work of
[BBCMA18]. It can also be embedded in similar fashion within template/atlas estimation pro-
cedures on populations of shapes. As a final note, we also want to emphasize that the interest
of these methods goes beyond the sole issue of constructing fidelity terms for those problems.
We briefly mentioned in Section 6.2 the applications to sparse approximations of shapes, authors
in [KCC17] have also investigated clustering algorithms based on varifold metrics while several
works such as [CCT17, LCC+17] have proposed extensions of some of this chapter’s methods for
the purpose of joint analysis of shape and function in structuro-functional datasets.
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[Zä86] M. Zähle. Integral and current representation of Federer’s curvature measure. Arch. Maths., 23:557–
567, 1986.
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