
Marginal Consistency: Unifying Constraint
Propagation on Commutative Semirings

Tomáš Werner

Center for Machine Perception
Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University

Karlovo náměst́ı 13, 12135 Praha, Czech Republic

Abstract. We generalise the linear programming relaxation approach
to Weighted CSP by Schlesinger and the max-sum diffusion algorithm by
Koval and Kovalevsky twice: from Weighted CSP to Semiring CSP, and
from binary networks to networks of arbitrary arity. This generalisation
reveals a deep property of constraint networks on commutative semir-
ings: by locally changing constraint values, any network can be trans-
formed into an equivalent form in which all corresponding marginals of
each constraint pair coincide. We call this state marginal consistency.
It corresponds to a local minimum of an upper bound on the Semiring
CSP. We further show that a hierarchy of gradually tighter bounds is
obtained by adding neutral constraints with higher arity. We argue that
marginal consistency is a fundamental concept to unify local consistency
techniques in constraint networks on commutative semirings.

1 Introduction

Given1 a set of variables, the Weighted Constraint Satisfaction Problem (WCSP)
[1] is defined as maximising a sum of given functions of subsets of the variables.
One of the approaches to WCSP is the linear programming (LP) relaxation of
its integer LP formulation, first proposed by Schlesinger [2]. The LP dual of
this relaxation can be interpreted as minimising an upper bound on the WCSP
objective function by equivalent transformations, which are changes of constraint
weights that preserve the objective function. Schlesinger’s co-workers Kovalevsky
and Koval [3] formulated a simple network algorithm, the max-sum diffusion, to
minimise the upper bound. The works [2, 3] have been recently surveyed in [4].

The LP relaxation approach to WCSP has been independently proposed by
others [5–9] and has been shown very successful on a number of sparse large-scale
binary WCSP instances originating from practical computer vision problems [10].

In our previous works, we proposed two generalisations of the LP relaxation
approach [2] and the max-sum diffusion. First, observing that the max-sum dif-
fusion resembles algorithms to enforce arc consistency in CSP, in [11, 12] we
generalised it to Semirings CSPs [13]. We remark that enforcing soft arc consis-
tency as proposed in [14, 9] is related to but different from the max-sum diffusion
(though it yields the same upper bound); it is closer to the augmenting DAG
1 This research has been supported by the European Commission grant 215078

(DIPLECS) and the Czech government grant MSM6840770038.

algorithm by Koval and Schlesinger [15, 4, 16]. Second, in [17] we generalised the
max-sum diffusion, originally formulated for binary problems [3], to problems
of arbitrary arity. In [17] we also showed that a hierarchy of gradually tighter
LP relaxations of WCSP can be obtained simply by adding zero constraints of
higher arity. Suitable zero constraints can be added dynamically, which in com-
binatorial optimisation terms can be understood as a cutting plane algorithm.

Here we apply the two generalisations simultaneously. This reveals a deep
property of constraint networks on commutative semirings which was not fully
apparent before: by locally changing constraint values, any constraint network
can be transformed to an equivalent form in which all corresponding marginals
of each pair of constraints coincide. We call this state marginal consistency.
It corresponds to a local minimum of an upper bound on the true objective
function. Marginal consistency can be enforced for any semiring under mild
assumptions, including the max-min, max-sum, and sum-product semirings.

An important feature of the proposed framework is its simplicity: it hinges
on only two concepts, local equivalent transformations and marginal consistency,
which combined together yield enforcing marginal consistency. This simplicity
suggests that marginal consistency is a fundamental concept to unify local con-
sistencies in constraint networks on commutative semirings.

As our second contribution, we show that by adding neutral constraints of
higher arity to the network, a hierarchy of gradually tighter levels of consistency
is obtained, corresponding to gradually tighter upper bounds on the problem.

For the crisp CSP, marginal consistency corresponds to pairwise consistency.
Several other crisp local consistencies (generalised arc consistency, k-consistency)
are obtained by straightforward modifications of marginal consistency.

2 Notation and basic definitions

In the sequel, 2V resp.
(
V
k

)
denotes the set of all resp. of k-element subsets of set

V . R denotes the reals, R+ the non-negative reals, and R++ the positive reals.
Equality of functions is denoted by ≡. Strict (non-strict) inclusion is ⊂ (⊆).

The notation we are going to introduce in this section is not typical in the
constraints literature but is common in machine learning and statistical mechan-
ics (e.g. [18]). Unfortunately, it is often used without a rigorous definition. To
prevent confusion, we will develop this notation in more detail than is usual.

Let V be a finite, totally ordered set of variables. To emphasise the variable
ordering, when defining a subset of V by enumerating its elements we will use
round brackets () instead of curly brackets { }. Each variable v ∈ V is assigned a
finite set Xv, the domain of the variable. An element of Xv is a state of variable
v and is denoted by xv. The joint domain of variables A ⊆ V is the Cartesian
product XA =×v∈A Xv, where the order of the factors in the product is given
by the order on V . A tuple xA ∈ XA is a joint state2 of variables A.

Example 1. Let V = (1, 2, 3, 4) and X1 = X2 = X3 = X4 = {a, b}. A joint state
x134 = (x1, x3, x4) ∈ X134 of variables A = (1, 3, 4) ⊆ V is e.g. (a, a, b). ut
2 In other works, a joint state is called a (partial) instantiation or simply a tuple.

For B ⊆ A, whenever symbols xA and xB appear in the scope of a single
logical expression they do not denote independent joint states but xB denotes
the restriction of xA to variables B. This ‘implicit restriction’ results in simpler
expressions than if the restriction were denoted explicitly, e.g. by xA|B .

Example 2. Let A = (1, 2, 3, 4) and B = (1, 2). The set {xA | xA\B ∈ XA\B }
denotes the set { (x1, x2, x3, x4) | x3 ∈ X3, x4 ∈ X4 } for some fixed x1 ∈ X1

and x2 ∈ X2. The sentence “let yA be such that yB = xB” means “let quadruple
(y1, y2, y3, y4) be such that y1 = x1 and y2 = x2”. ut

Let S be a set of weights. A constraint with scope A ⊆ V is a function
fA: XA → S. The arity of the constraint is the size of its scope, |A|.

Let E ⊆ 2V be a set of subsets of V , i.e., a hypergraph. Each hyperedge A ∈ E
is assigned a constraint fA: XA → S. Note, this notation assumes that no two
constraint have the same scope. All the constraints together can be understood
as a single mapping f : T (E) → S with T (E) = { (A, xA) | A ∈ E, xA ∈ XA },
where the image of (A, xA) ∈ T (E) under f is denoted by fA(xA).

A constraint network is a tuple (V, {Xv}, E, f). However, since the variable
set V and the domains Xv will be the same in the whole paper, we will refer
to a constraint network only as ‘network f with structure E’ or, when also E is
clear from context, as ‘network f ’. The arity of the network is maxA∈E |A|.

Let ⊕ and � be binary operations closed on S. Our aim is to calculate or
approximate the expression ⊕

xV ∈XV

⊙
A∈E

fA(xA) (1)

For this expression to be uniquely defined, both operations are assumed to be as-
sociative and commutative, thus (S,⊕) and (S,�) are commutative semigroups.
For later purposes, we further assume that � distributes over ⊕, thus (S,⊕,�)
is a commutative semiring. Then, (1) is known as the Semiring CSP [13, 1].

Example 3. Let V = (1, 2, 3, 4) and E = {(2, 3, 4), (1, 2), (3, 4), (3)}. Expres-
sion (1) reads

⊕
x1,x2,x3,x4

[f234(x2, x3, x4) � f12(x1, x2) � f34(x3, x4) � f3(x3)]
where e.g. f234 is a ternary function of variables 2, 3, 4. ut

We denote a⊕n = a⊕ · · · ⊕ a (n-times). The solution of equation a⊕n = b (if
it exists) is denoted a = b⊕1/n. Similarly we define a�n and a�1/n.

A commutative semiring may have a zero element 0 satisfying a⊕0 = a and
a� 0 = 0 and/or a unit element 1 satisfying a� 1 = a.

3 Equivalent networks

Different networks f can give rise to the same objective function of (1), i.e.,
changing the weights of certain constraints in certain ways preserves the objective
function

⊙
A∈E fA(xA). This is captured by the concept of equivalent networks.

Definition 1. Constraint networks f, f ′: T (E) → S are equivalent iff they
have the same variables V , domains Xv and structure E, and

∀xV ∈ XV :
⊙
A∈E

fA(xA) =
⊙
A∈E

f ′A(xA)

A change of f to an equivalent network is an equivalent transformation.

This equivalence factorises the set of all constraint networks to equivalence
classes, each class giving rise to one objective function.

Some equivalent transformations are local in the sense sense that they affect
only a small part of the network. More precisely, any such transformation changes
some of the weights of a single pair of constraints, fA and fB .

Definition 2. A pencil is a triplet (A,B, xB) such that A ∈ E, B ∈ E, B ⊂ A,
and xB ∈ XB.

Definition 3. An equivalent transformation is local if there exists a pencil
(A,B, xB) such that the transformation changes only the weights fC(xC) for
(C, xC) ∈ {(B, xB)} ∪ { (A, xA) | xA\B ∈ XA\B } and it changes them in such a
way that the expression fA(xA)� fB(xB) is preserved for all xA\B ∈ XA\B.

Example 4. Let A = (1,2,3), B = (1,3), Xv = {a,b,c} for v ∈ V , xB = (x1,x3) =
(a,b). A local equivalent transformation on pencil (A,B,xB) is any change of
the weights f123(a,a,b), f123(a,b,b), f123(a,c,b), f13(a,b) that preserves the ex-
pressions f123(a,a,b)�f13(a,b), f123(a,b,b)�f13(a,b), f123(a,c,b)�f13(a,b). ut
Remark 1. Definition 3 is not the most general form of local equivalent trans-
formations, e.g., it allows no transformation between fA and fB if B 6⊂ A. The
most general form is as follows: for any quadruple (A,B,C, xC) with A ∈ E,
B ∈ E, C ⊆ A ∩ B (where not necessarily C ∈ E), change the weights fD(xD)
for (D,xD) ∈ { (A, xA) | xA\C ∈ XA\C } ∪ { (B, xB) | xB\C ∈ XB\C } such that
the expression fA(xA) � fB(xB) is preserved for all x(A∪B)\C . Definition 3 is
obtained from this for B ⊂ A and C = A ∩B = B. ut

Composing local equivalent transformations yields an equivalent transforma-
tion. The converse is not true in general: there may be two equivalent networks
that are not connected by a sequence of local equivalent transformations.

Example 5. Let (S,�) = ({0, 1},min). Let f : T (E) → {0, 1} represent an un-
satisfiable crisp CSP. Then f is equivalent to the zero network f ≡ 0 but this in
general is not achieved by a sequence of local equivalent transformations. More-
over, testing if f is equivalent to the zero network f ≡ 0 is NP-complete. ut

3.1 Equivalent transformations for a group

An important special case is when (S,�) is a group, i.e., it has division, denoted
by �. Then, all possible local equivalent transformations on a pencil (A,B, xB)
can be parameterised by a single weight ϕA,B(xB) as follows:

f ′A(xA) = fA(xA)� ϕA,B(xB), ∀xA\B ∈ XA\B (2a)
f ′B(xB) = fB(xB)� ϕA,B(xB) (2b)

because [fA(xA)� ϕA,B(xB)]� [fB(xB)� ϕA,B(xB)] = fA(xA)� fB(xB).
Let a weight ϕA,B(xB) be assigned to every pencil (A,B, xB). All these

weights together can be understood as a single mapping ϕ from the set of all
pencils to S. Let fϕ denote the network obtained by composing local equivalent
transformations (2) on all the pencils (in any order). It is given by

fϕ
A(xA) = fA(xA)�

⊙
B|B∈E,B⊂A

ϕA,B(xB)�
⊙

B|B∈E,B⊃A

ϕB,A(xA) (3)

For binary networks, it was proved that any equivalent transformation can
be obtained as a composition of local equivalent transformations [19, 4]. We
conjecture, currently without proof, that this extends to networks of any arity.

4 Marginal consistency

Definition 4. Given a function fA: XA → S and a set B ⊆ A, we define the
function fA|B : XB → S by

fA|B(xB) =
⊕
xA\B

fA(xA) (4)

We call fA|B(xB) ∈ S the marginal3 of fA associated with (B, xB) ∈ T (E).

Example 6. Let A = (1, 2, 3, 4) and B = (1, 3). The marginal of fA associated
with (B, xB) is given by f1234|13(x1, x3) =

⊕
x2,x4

f1234(x1, x2, x3, x4). ut

Definition 5. A constraint network f : T (E) → S is marginal consistent iff
fA|A∩B(xA∩B) = fB |A∩B(xA∩B) for all A ∈ E, B ∈ E, and xA∩B ∈ XA∩B.

Example 7. A network f with structure E = {(1), (1, 2), (2, 3)} is marginal con-
sistent iff f1 ≡ f12|1, f1|∅ ≡ f23|∅, and f12|2 ≡ f23|2. Note that f1|1 ≡ f1. ut

Definition 6. A pencil (A,B,xB) is marginal consistent iff fA|B(xB)=fB(xB).

One would expect that making all the pencils marginal consistent makes
the network marginal consistent. However, this holds only under an additional
condition on hypergraph E, e.g., if E is closed to intersection (A,B ∈ E implies
A ∩B ∈ E). As we will show in §8, this does not cause much loss of generality.

Example 8. The network in Example 7 has pencils { ((1, 2), (1), x1) | x1 ∈ X1 }.
Making these pencils marginal consistent covers only the equality f1 ≡ f12|1.

Closing E by intersection yields E = {∅, (1), (2), (1, 2), (2, 3)}. Now, marginal
consistency of all the pencils in the network implies all the three equalities. ut

Remark 2. The requirement that E is closed to intersection could be avoided
by defining marginal consistency not for a pencil (A,B, xB) but for a triplet
(A,B, xA∩B) as follows: a triplet (A,B, xA∩B) with A,B ∈ E is marginal con-
sistent iff fA|A∩B(xA∩B) = fB |A∩B(xA∩B). However, Definition 6 is more con-
venient because there are fewer pairs (A,B) with B ⊂ A in E than all the pairs.
3 In the constraints literature, marginals are more often called projections.

In fact, marginal consistency of a part of a network could be defined even in a
more general way: a quadruple (A,B,C, xC) with A ∈ E, B ∈ E, C ⊆ A ∩B is
marginal consistent iff fA|C(xC) = fB |C(xC). Compare to Remark 1. ut

5 Enforcing marginal consistency

5.1 Enforcing marginal consistency of a pencil

Enforcing marginal consistency of a pencil is a local equivalent transformation
on the pencil that makes it marginal consistent. Denoting for brevity

fA(xA) = ai, i = xA\B ∈ XA\B (5a)
fB(xB) = b (5b)

enforcing marginal consistency of pencil (A,B, xB) means, by Definitions 3 and
6, that we are given weights ai, b and look for weights a′i, b

′ satisfying

a′i � b′ = ai � b ∀ i (6a)⊕
i

a′i = b′ (6b)

For the enforcing to be possible, system (6) must be solvable for any ai, b. We in
addition require (although this may be arguable) that the solution be unique.

While solving (6) in a concrete semiring is typically easy, solving it in the
abstract semiring is difficult. That would mean, characterise the semirings in
which (6) is uniquely solvable and give an algorithm to find the solution. We
have not accomplished this. Yet we observed that in almost all semirings in which
(6) is uniquely solvable, the solution can be written in a closed form as

b′ =
(
b�

⊕
i

ai

)�1/2

(7a)

a′i = ai � b� b′ (7b)

where the operations a�1/2 and � are defined below.
In (7b), we assume that the semigroup (S,�) is uniquely 2-divisible, i.e., the

equation a � a = b has a unique solution for every b, denoted by a = b�1/2.
Then (7a) is verified by summing (6a) over i and substituting

⊕
i a′i from (6b)

to (6a). This shows that for (6) to have a unique solution, it is necessary that
the semigroup (S,�) is uniquely 2-divisible.

Formula (7b) is obvious if (S,�) is a group. If (S,�) is only a semigroup, we
do not have division. However, it is a classical result that in some semigroups,
a weaker form of division can be introduced. A semigroup (S,�) is an inverse
semigroup (e.g. [20]) iff for every a there is a unique b such that

a� b� a = a, b� a� b = b

We call a and b the inverse of each other and define division by c� a = c� b. It
has been shown [21, §5] that so defined division is useful for local computations

in a constraint network with a tractable structure (join trees or hypertrees).
With this division, (7b) uniquely solves (6a) in many semirings.

Example 9. Examples of semirings in which system (6) is uniquely solvable are
(R++,+,×), (R+,+,×), (R,max,+), (R∪{−∞},max,+), any distributive lat-
tice, and the semiring defined in [13, §2.4.5]. For all of them, (S,�) is a uniquely
2-divisible inverse semigroup. In semiring (R+,min,+) system (6) is uniquely
solvable despite that the semigroup (R+,+) is not inverse. ut

Example 10. Examples of semirings in which system (6) is not uniquely solvable
are (N,max,+), ([k, 0],max,+k) where k < 0 and +k is the truncated addition
defined by a +k b = max{a + b, k}, and (R,+,×). ut

Switching back from our temporary notation by plugging (5) into (7) yields
the formula to enforce marginal consistency of pencil (A,B, xB):

f ′B(xB) =
[
fB(xB)� fA|B(xB)

]�1/2 (8a)
f ′A(xA) = fA(xA)� fB(xB)� f ′B(xB), ∀xA\B (8b)

Formula (8) changes values of the constraints, which has the drawback that if
fA was originally represented intensionally (as a black box function), we need to
switch to extensional representation (storing all its weights explicitly in mem-
ory). This can be avoided by using the parameterised form (3) of equivalent
transformations, in which we need to store only the variables ϕA,B(xB) but the
constraints themselves are not changed. This may mean an important saving of
memory when |XA| � |XB |. By (8) and (2), variable ϕA,B(xB) is updated as

ϕA,B(xB)← ϕA,B(xB)�
[
fϕ

B(xB)� fϕ
A|B(xB)

]�1/2 (9)

5.2 Enforcing marginal consistency of a network

Having solved enforcing marginal consistency of a single pencil (A,B, xB), let
us now turn to enforcing it for the whole network.

Observation 1 Let the semiring (S,⊕,�) be such that system (6) is uniquely
solvable. Enforcing marginal consistency repetitively for different pencils con-
verges to a state when the whole network is marginal consistent. The pencils can
be visited in any order such that each has a non-zero probability to be visited.

Currently, we have neither a prove of this observation (convergence has not
been proved even for semiring (R,max,+), see §7.2) nor a counter-example.

Using the parameterised form (9), the algorithm can thus look like this:

loop
for (A,B, xB) such that (A,B) ∈ J , xB ∈ XB do

ϕA,B(xB)← ϕA,B(xB)�
[
fϕ

B(xB)� fϕ
A|B(xB)

]�1/2

end for
end loop

We will refer to the algorithm as the (⊕,�) marginal consistency algo-
rithm and to any of its fixed points as a (⊕,�) marginal consistency closure.
Depending on the semiring, convergence may be achieved in a finite or an infinite
number of iterations and the closure may be unique or non-unique.

6 Upper bound

A relation ≤ can be defined on semigroup (S,⊕) by

a ≤ b ⇐⇒ (a = b) or (∃c ∈ S: a⊕ c = b) (10)

Note, the condition a = b in (10) is redundant if the semiring has a zero element.
The relation ≤ is reflexive and transitive, hence a preorder. It is known as Green’s
preorder [20, §II.1]. It follows [21, §2] that the semiring operations are monotonic
with respect to ≤, i.e., a ≤ b implies a⊕ c ≤ b⊕ c and a� c ≤ b� c. Often the
semigroup (S,⊕) is such that the relation ≤ is antisymmetric, hence a partial
or a total order. Then both (S,⊕) and (S,�) become ordered semigroups.

In this section, we assume that the semiring (S,⊕,�) satisfies two additional
properties we did not need before. First, we assume that the equation a⊕n = b
has a solution, a = b⊕1/n, for every b, i.e., the semigroup (S,⊕) is divisible.
Second, we assume the following inequality holds for any a1, . . . , an ∈ S:

n⊙
i=1

ai ≤
[(n⊕

i=1

ai

)⊕1/n]�n

(11)

In semiring (R+,+,×), (11) is the well-known arithmetic-geometric average in-
equality

(∏
i ai

)1/n ≤ 1
n

(∑
i ai

)
. We do not know whether (11) can be derived

from more elementary properties of the semiring, hence we assume it as an in-
dependent axiom. Note, for all the semirings in Example 9, the preorder ≤ is a
partial or total order and the semiring satisfies the above two properties.

Theorem 1. For any f : T (E)→ S, we have⊕
xV

⊙
A∈E

fA(xA) ≤
⊙
A∈E

⊕
xA

fA(xA) ≤
[[⊕

A∈E

⊕
xA

fA(xA)
]⊕1/|E|]�|E|

(12)

If f is marginal consistent then the middle and right-hand expressions equal.

Proof. Using distributivity, multiply out the factors in the middle expression.
This yields the terms present in the left-hand expression and some additional
terms. The first inequality in (12) follows from (10), where c are the extra terms.

The second inequality in (12) follows from (11).
At marginal consistency, the weights

⊕
xA

fA(xA) = fA|∅ for A ∈ E are all
equal. The equality claim trivially follows. ut

Theorem 1 gives two upper bounds on problem (1). We will refer to them as
the first resp. the second (⊕,�) upper bound. At marginal consistency, the
two bounds coincide, therefore we will speak only about a single bound.

The bounds can be improved by equivalent transformations. Ideally, we would
like to find the least upper bound in the whole equivalence class. If this is not
possible, we at least want to decrease it by local equivalent transformations. This
is in a simple way related to marginal consistency.

Theorem 2. Enforcing marginal consistency of any pencil does not increase the
value of expression

⊕
A∈E

⊕
xA

fA(xA).

Proof. Let us use notation (5) and denote a =
⊕

i ai. It suffices to prove that
enforcing marginal consistency does not increase the expression a ⊕ b. By (7a)
and (6b), after enforcing marginal consistency we have a′ = b′ = (a � b)�1/2.
Thus a′ ⊕ b′ = [(a� b)�1/2]⊕2. By (11), we have a′ ⊕ b′ ≤ a⊕ b. ut

The theorem only says that enforcing marginal consistency of a pencil does
not make the upper bound worse, it does not ensure it strictly improves. However,
a stronger statement relating the upper bound and marginal consistency holds:
if the network is marginal consistent then the upper bound cannot be improved
by any local equivalent transformation.

6.1 The case of idempotent semiring addition and total order

If ≤ is a total order and ⊕ is idempotent, ⊕ necessarily is the maximum with
respect to ≤ and problem (1) is known as the Valued CSP [22, 13]. In this case,
the networks for which the upper bound is tight can be characterised in a simple
way, by satisfiability of a CSP. We will formulate this only for the first bound in
(12), the second bound is analogical. We omit the proof which is rather simple.

Definition 7. A joint state (A, xA) ∈ T (E) is active iff fA(xA) = maxyA
fA(yA).

The CSP f̄ : T (E)→ {0, 1} is defined such that f̄A(xA) = 1 iff (A, xA) is active.

Theorem 3. Let the operation ⊕ be idempotent and the preorder ≤ be a total
order. The first inequality in (12) holds with equality iff f̄ is satisfiable.

For semiring ({0, 1},max,min), Theorem 3 holds trivially because f̄ = f .
However, the theorem is important for semiring ([0, 1],max,min) and mainly
for (R,max,+), where f̄ is crucial for reasoning about optimality of the upper
bound. Marginal consistency of f̄ relates to marginal consistency of f as follows.

Theorem 4. For B ⊂ A, if fA|B(xB) = fB(xB) then f̄A|B(xB) = f̄B(xB).

7 Enforcing marginal consistency for important semirings

In this section, we discuss the properties of the marginal consistency algorithm
for important semirings in detail. The selection of the semirings is generic in the
sense that it covers the case of ⊕ and � both idempotent, of idempotent ⊕ and
non-idempotent �, and of ⊕ and � both non-idempotent. For each semiring, we
discuss the following questions:

– Does the marginal consistency algorithm converge in a finite or infinite num-
ber of iterations?

– Is the marginal consistency closure unique?

– Does the marginal consistency algorithm finds the global minimum of the
upper bound (12) in the class of equivalent networks?

– Is the upper bound evaluated at marginal consistency useful?

7.1 Distributive lattice

Here (S,⊕,�) is any distributive lattice (S,∧,∨), i.e., ≤ is a partial order and ∧
(∨) is the infimum (supremum) given by ≤. We have a�b = a∧b and a�1/n = a.

The marginal consistency algorithm converges in a finite number of iterations
and the closure is unique [13, 23]. Since not every equivalent transformation can
be obtained by composing local equivalent transformations, the algorithm does
not find the global minimum of the upper bound in the equivalence class. This
is expected because minimising the upper bound is NP-hard.

Special cases are semirings ([0, 1],max,min) (the Fuzzy CSP, i.e., the order
≤ is total) and ({0, 1},max,min) (the crisp CSP). Note what the upper bounds
mean for ({0, 1},max,min): the first bound equals 1 if all the constraints are
non-empty and 0 if at least one constraint is empty; the second bound equals 1
if at least one constraint is non-empty and 0 if all the constraints are empty.

7.2 The max-sum semiring

Here (S,⊕,�) = (R,max,+). We have a� b = a− b and a�1/n = a/n.
The marginal consistency algorithm is the max-sum diffusion, proposed for

binary networks in [3] and generalised to networks of higher arity in [17]. It
converges in an infinite number of iterations. The behaviour of the algorithm is
highly non-trivial, e.g., its convergence was only conjectured and never proved.
The convergence rate is rather slow, but still practical even for large instances.

Finding the least upper bound is tractable. As (R,+) is a group, parameter-
isation (3) covers the whole equivalence class. Then, minimising the first resp.
second upper bound leads to the convex nonsmooth minimisation problem

min
ϕ

∑
A∈E

max
xA

fϕ
A(xA) = |E|min

ϕ
max
A∈E

max
xA

fϕ
A(xA) (13)

which can be written as a linear program [2, 4, 17]. The LP dual of (13) reads

max
{

µ · f
∣∣∣ µ ≥ 0, ∀A:

∑
xA

µA(xA) = 1, ∀B ⊂ A:
∑

xA\B

µA(xA) = µB(xB)
}

where µ · f denotes the scalar product of µ and f understood as vectors. This is
a linear programming relaxation of problem (1). Note that in the dual we meet
marginal consistency again, but this time with respect to operation +.

In general, the marginal consistency closure is not unique and is not a solu-
tion of problem (13) [24, 8], see [4, Figures 5b,c,d] for examples. This is because
the marginal consistency algorithm can get stuck in a point when the upper
bound can be improved by changing no variable ϕA,B(xB) separately but only

by changing several of them simultaneously. In other words, the upper bound can
be improved by a sequence of local equivalent transformations but the marginal
consistency algorithm does not find this sequence. This can be seen as a mani-
festation of the fact that coordinate descent in general does not find the global
minimum of a convex nonsmooth function [25]. Despite that, the marginal con-
sistency closures are useful upper bounds on (1), which are often tight for highly
non-trivial instances [4, 17, 8, 10].

For semiring (R ∪ {−∞},max,+), we have 0 = −∞, a � 0 = a � 0 = 0,
and 0�1/2 = 0. Finding the least upper bound becomes intractable because of
the absorbing element −∞, for the reason as in Example 5. Two stages can
be discerned in the marginal consistency algorithm: after a finite number of
iterations the set of joint states (A, xA) with fA(xA) = −∞ stabilises, then the
algorithm proceeds on the finite joint states as in semiring (R,max,+).

If functions fA are supermodular for all A ∈ E, then at the marginal consis-
tency closure the upper bound is tight, i.e., (12) holds with equality [17].

7.3 The sum-product semiring

Here (S,⊕,�) = (R++,+,×). We have a� b = a/b and a�1/n = a1/n.
Semiring (R++,+,×) is isomorphic (via logarithm) with semiring (R,~,+)

where a~b = log(ea+eb). Since the function ~ is convex and smooth, minimising
the first resp. second upper bound is a convex smooth minimisation task,

min
ϕ

∑
A∈E

~
xA

fϕ
A(xA) = |E|

[
− log |E|+ min

ϕ
~
A∈E

~
xA

fϕ
A(xA)

]
(14)

which is a geometric programming task [26, §4.5]. The marginal consistency
algorithm can be understood as a coordinate descent method to minimise the
upper bound and it converges in an infinite number of iterations to a unique
closure, which is the least the upper bound in the equivalence class [11, §6].

For semiring (R+,+,×), finding the least upper bound becomes intractable
because of the absorbing element 0. The behaviour is similar as for semiring
(R ∪ {−∞},max,+), discussed in §7.2.

In statistical mechanics, (1) is known as the partition function, very hard to
approximate. Thus one can expect that the upper bound will be not very useful.
Indeed, it is typically very loose, and it is tight only for uninterestingly simple
instances. Though this may suggest that the (+,×) marginal consistency algo-
rithm is useless, it has two interesting applications which we will now describe.

Finding the optimal (max,+) marginal consistency closure. Let the operation
~τ be defined by a ~τ b = [(τa) ~ (τb)]/τ , for any τ > 0. Then (R,~τ ,+) is a
semiring. Furthermore, ~τ for increasing τ approaches the ordinary maximum,
i.e., limτ→∞ a ~τ b = max{a, b}.

Recall from §7.2 that the (max,+) marginal consistency closure is not unique
and in general does not minimise the upper bound in the equivalence class.
However, the sequence of the (~τ ,×) marginal consistency closures of f for
increasing τ converges to the optimal (max,+) marginal consistency closure.

This can be understood as an interior point algorithm to solve the LP (13). We
remark that for various reasons, this algorithm to compute the optimal (max,+)
closure does not seem very practical. See [11, §7.4] for more details.

A necessary condition for satisfiability of a CSP. Suppose that f : T (E)→ {0, 1}.
Such f represents a crisp CSP and (1) equals the number of solutions of this CSP
(this is known as #CSP problem). If the (+,×) upper bound is strictly less than 1
then inevitably this CSP is not satisfiable. This gives us a necessary condition
for satisfiability of a CSP. Interestingly, this condition is strictly stronger than
the condition obtained from (max,×) marginal consistency closure.

To state this precisely, let us compare the (+,×) marginal consistency closure
and the (max,×) marginal consistency closure of a network f : T (E) → {0, 1}.
If we run the (max,×) marginal consistency algorithm on f , all the weights will
stay in {0, 1} during the algorithm. This corresponds to enforcing a crisp local
consistency. However, if we run the (+,×) marginal consistency algorithm, the
weights will not stay in {0, 1}, they will end up in R+. We claim that if the
(max,×) marginal consistency closure of f is zero then also the (+,×) consis-
tency closure of f is zero (here, by ‘zero’ we mean the zero network f ≡ 0).
This is obvious because the absorbing element 0 behaves the same way both
in (max,×) and (+,×) marginal consistency algorithms. However, there exist
networks (e.g. [4, Figures 5b,c,d]) for which the (max,×) closure is non-zero but
the (+,×) closure is zero. See [11, §7.5] for more details.

8 Adding neutral constraints

In this section, we assume that operation ⊕ is idempotent.
If fA(xA) = 1 for all xA ∈ XA (in short, fA ≡ 1) where 1 is the identity

element of the semiring, we call fA the neutral constraint because 1 is the neutral
element for the constraint combination operator �, i.e., a�1 = a. Suppose that
for some A /∈ E, we add the neutral constraint fA ≡ 1 to the network. This
changes neither the objective function of (1) nor the upper bounds (12). However,
this allows for new, previously impossible (local) equivalent transformations.
Therefore, the new upper bound may be possible to decrease even if the old
upper bound was not.

Recalling §4 and Example 8, one application is to add neutral constraint
fA∩B ≡ 1 for every A,B ∈ E, to close E by intersection. Then, marginal con-
sistency of all the pencils will imply marginal consistency of the network.

More interestingly, we can add neutral constraints of arity higher than the
arity of the network. This may seem impractical as we would have to store all
its values in memory. However, this is avoided by using the parameterised form
(9) of the update: adding a constraint fA ≡ 1 with A /∈ E, we newly need to
store only the variables ϕA,B(xB) for all B ∈ E∩2A. The only restriction is that
calculating the marginals fϕ

A|B(xB) in (9) has to be tractable. Since fA ≡ 1 and
there is no B ∈ E with B ⊃ A, equivalent transformation (3) reads simply

fϕ
A(xA) =

⊙
B|B∈E,B⊂A

ϕA,B(xB) (15)

Enforcing marginal consistency of pencil (A,B, xB) is tractable if problem (15)
is tractable. Note, (15) is an instance of problem (1) with structure E ∩ 2A.

Example 11. We showed in [17] that for many non-trivial binary problems with a
sparse structure on semiring (R,max,+), after adding certain neutral constraints
of arity 4 the upper bounds was tight much more often than before. ut

Adding different sets of neutral constraints provides a hierarchy of gradually
tighter upper bounds. The hierarchy can be made even finer because we need
not impose marginal consistency for all the pencils in the network – if only a
subset of pencils is visited in the marginal consistency algorithm, it will also
converge. The top element of the hierarchy is obtained by adding the constraint
fV ≡ 1 and imposing fV |A ≡ fA for all A ∈ E, which yields the exact solution
of problem (1). The hierarchy is partially ordered by inclusion on the sets of
marginal consistent pencils.

We can add a set of neutral constraints before running the marginal consis-
tency algorithm. This has a disadvantage that we may add many neutral con-
straints that did not help improve the bound. Alternatively, neutral constraints
can be added one by one during the algorithm, such that a constraint is added
only if it is sure to enable a strict improvement of the bound.

8.1 Relation to existing local consistencies for the crisp CSP

For semiring ({0, 1},max,min), problem (1) is the crisp CSP. Imposing marginal
consistency of different sets of pencils, possibly after adding necessary neutral
constraints, yields several existing crisp local consistencies [27] as follows:

– Marginal consistency of a network, as given by Definition 5, corresponds to
pairwise consistency [28], [27, §5.4]. Importantly, this shows that marginal
consistency can be seen as the semiring generalisation of pairwise consistency.

– If we enforce fA|v ≡ fv for all A ∈ E and v ∈ A, we obtain (generalised) arc
consistency. For that, we need that

(
V
1

)
⊆ E, which is achieved by adding

necessary unary neutral constraints.

– Marginal consistency of a pencil (A,B, xB) has the following meaning: joint
state xB satisfies constraint fB iff it can be extended to a joint state xA

satisfying constraint fA. It follows that if
(

V
k−1

)
∪

(
V
k

)
⊆ E and the network

is marginal consistent, then the network is k-consistent. If E is smaller than
required it is extended by adding neutral constraints. Similarly, we obtain
strong k-consistency and (i, j)-consistency.

8.2 Idempotent versus non-idempotent semiring multiplication

As adding neutral constraints is concerned, there is a qualitative difference be-
tween semirings ([0, 1],max,min) and (R,max,+). Suppose a constraint fA ≡ 1
with A /∈ E has been added to a network and then marginal consistency enforced.
This changes some weights of both the original network and the constraint fA,
which is now a part of the network. The difference is in the fact that:

– In semiring ([0, 1],max,min), we can now remove fA from the network be-
cause this leaves the network equivalent with the original network (we leave
this claim unproved, referring to well-known properties of the Fuzzy CSP).
Thus, fA can be in fact added only temporarily, which results in changing (in
fact, decreasing) some weights of the original network but does not increase
the number of constraints in the network.

– In semiring (R,max,+), we cannot remove fA because this would yield an
non-equivalent network. Thus, adding a neutral constraint and enforcing
marginal consistency does increase the number of constraints in the network.

The difference can be explained still in other words. Adding a neutral constraint
makes new equivalent networks reachable by local equivalent transformations.
Then:

– In semiring ([0, 1],max,min), some equivalent transformations cannot be
composed from local ones. Adding a neutral constraint makes some new
equivalent transformations possible to compose from local ones. Thus, adding
a neutral constraint, enforcing marginal consistency and removing the con-
straint can be seen as a non-local equivalent transformation on the original
network.

– In semiring (R,max,+), the whole equivalence class is reachable by local
equivalent transformations and thus the only way how to make new equiva-
lent transformations possible is to add a new constraint.

References

1. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Handbook of Constraint
Programming. Elsevier (2006)

2. Shlezinger, M.I.: Syntactic analysis of two-dimensional visual signals in noisy con-
ditions. Cybernetics and Systems Analysis 12(4) (1976) 612–628 Translated from
Russian original: M.I.Schlesinger, Sintaksicheskiy analiz dvumernykh zritelnikh sig-
nalov v usloviyakh pomekh, Kibernetika, No. 4, pp. 113-130, 1976.

3. Kovalevsky, V.A., Koval, V.K.: A diffusion algorithm for decreasing energy of
max-sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR. Un-
published (approx. 1975)

4. Werner, T.: A linear programming approach to max-sum problem: A review. IEEE
Trans. Pattern Analysis and Machine Intelligence 29(7) (2007) 1165–1179

5. Koster, A., van Hoesel, C.P.M., Kolen, A.W.J.: The partial constraint satisfaction
problem: Facets and lifting theorems. Operations Research Letters 23(3–5) (1998)
89–97

6. Chekuri, C., Khanna, S., Naor, J., Zosin, L.: Approximation algorithms for the
metric labeling problem via a new linear programming formulation. In: Symposium
on Discrete Algorithms. (2001) 109–118

7. Wainwright, M., Jaakkola, T., Willsky, A.: MAP estimation via agreement on
(hyper)trees: message passing and linear programming approaches. IEEE Trans.
Information Theory 51(11) (2005) 3697–3717

8. Kolmogorov, V.: Convergent tree-reweighted message passing for energy mini-
mization. IEEE Trans. Pattern Analysis and Machine Intelligence 28(10) (2006)
1568–1583

9. Cooper, M., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proc. IJCAI,
Hyderabad, India. (2007)

10. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwal, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
Markov random fields. In: Eur. Conf. Computer Vision (ECCV). (2006) II: 16–29

11. Werner, T., Shekhovtsov, A.: Unified framework for semiring-based arc consis-
tency and relaxation labeling. In: 12th Computer Vision Winter Workshop, St.
Lambrecht, Austria, Graz University of Technology (2007) 27–34 ISSN 3902465603.

12. Werner, T.: What is decreased by the max-sum arc consistency algorithm? In:
Intl. Conf. on Machine Learning, Oregon, USA. (2007)

13. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:
Semiring-based CSPs and valued CSPs: Frameworks, properties,and comparison.
Constraints 4(3) (1999) 199–240

14. Schiex, T.: Arc consistency for soft constraints. In: Principles and Practice of
Constraint Programming. (2000) 411–424

15. Koval, V.K., Schlesinger, M.I.: Two-dimensional programming in image analysis
problems. USSR Academy of Science, Automatics and Telemechanics 8 (1976)
149–168 In Russian.

16. Werner, T.: A linear programming approach to max-sum problem: A review. Tech-
nical Report CTU–CMP–2005–25, Center for Machine Perception, Czech Technical
University (2005)

17. Werner, T.: High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF). In: Computer Vision and
Pattern Recognition (CVPR) Conference, Anchorage, USA. (2008)

18. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Trans. Information Theory
51(7) (2005) 2282–2312

19. Schlesinger, M.I.: Lectures on labeling problems, Kiev, Prague, Dresden (1996-
2006) Unpublished.

20. Grillet, P.: Semigroups: an Introduction to the Structure Theory. Marcel Dekker,
New York (1995)

21. Kohlas, J., Wilson, N.: Exact and approximate local computation in semiring
induced valuation algebras. Technical Report 06-06, Department of Informatics,
University of Fribourg (2006)

22. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Intl. Joint Conf. on Artificial Intelligence (IJCAI), Montreal
(1995)

23. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Lecture
Notes in Computer Science. Springer Verlag (2004)

24. Schlesinger, M.I.: False minima of the algorithm for minimizing energy of max-sum
labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR. Unpublished
(1976)

25. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)
26. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press

(2004)
27. Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming.

Elsevier (2006) Also technical report LIRMM 06020.
28. Janssen, P., Jegou, P., Nouguier, B., Vilarem, M.: A filtering process for general

constraint satisfaction problems: Achieving pairwise consistency using an asso-
ciated binary representation. In: Proc. IEEE Workshop on Tools for Artificial
Intelligence. (1989) 420–427

