
A decomposition strategy to reduce the search space of
solutions of WCSP

Hachémi Bennaceur, Christophe Lecoutre, Olivier Roussel

Université Lille-Nord de France, Artois, F-62307 Lens – CRIL, F-62307 Lens – CNRS UMR
8188, F-62307 Lens – IUT de Lens – {bennaceur,lecoutre,roussel}@cril.univ-artois.fr

Abstract. The objective of the Weighted Constraint Satisfaction Problem (WCSP)
is to find an instantiation that minimizes the degree of violation of constraints in
a constraint network. In this paper, inspired from the concept of inferred disjunc-
tive constraints introduced by Freuder and Hubbe, we show that it is possible to
avoid exploring portions of the search space by exploiting some local conditions.
The principle is to reason from the distance between the two best values in the
domain of a variable. From this reasoning, we can build a decomposition tech-
nique, which can be used throughout search in order to decompose the current
problem into easier sub-problems. Interestingly, this approach does not depend
on the structure of the constraint graph, as it is usually proposed. Alternatively,
we can dynamically post hard constraints that can be used locally to prune the
search space. This approach applies to both WCSP and Max-CSP.

1 Introduction

The Constraint Satisfaction Problem (CSP) is the task of determining if a given con-
straint network is satisfiable or not, i.e. if it is possible to assign a value to all vari-
ables in order to satisfy all constraints. When no solution can be found, it may be in-
teresting to identify a complete instantiation which minimizes the degree of violation
of constraints. This is the Weighted Constraint Satisfaction Problem (WCSP). Alter-
natively, one can seek a complete instantiation which satisfies the greatest number of
constraints (or equivalently, which minimizes the number of violated constraints). This
is the Maximal Constraint Satisfaction Problem (Max-CSP) which is in fact a special
case of WCSP.

During the last decade, many works have been carried out to solve these two prob-
lems. The basic (complete) approach is to employ a branch and bound mechanism,
traversing the search space in a depth-first manner while maintaining an upper bound,
the best solution cost found so far, and a lower bound on the best possible extension of
the current partial instantiation. When the lower bound is greater than or equal to the up-
per bound, backtracking (or filtering) occurs. Lower bound computations of constraint
violations have been improved repeatedly, over the years, by exploiting inconsistency
counts [1–4], disjoint conflicting sets of constraints [5], or cost transfers between con-
straints [6–9].

Alternative approaches (usually) combine branch and bound search with dynamic
programming or structure exploitation. On the one hand, Russian Doll Search [10, 11]
and variable elimination [12] can be considered as dynamic programming methods,

whose principle is to solve successive sub-problems, one per variable of the initial prob-
lem. On the other hand, structural decomposition methods [13–17] exploit the structure
of the problems in order to establish some conditions about possible decompositions.
Such methods are based on tree decomposition, provide interesting theoretical time
complexities which depend on the width of the decomposition (tree-width), and are
becoming increasingly successful.

In [18], Freuder and Hubbe have proposed to exploit, for constraint satisfaction,
the principle of inferred disjunctive constraints: given a satisfiable binary constraint
network P , for any pair (X, a) where X is a variable of P and a a value in the domain
of X , if there is no solution containing a for X , then there is a solution containing a
value (for another variable) which is not compatible with (X, a). Using this principle,
the authors show that it is possible to dynamically and iteratively decompose a problem.

In this paper, we generalize this approach to both WCSP and Max-CSP (including
the non-binary case) by exploiting the weights associated with each value of the prob-
lem. We show that it is possible to reason from the weights associated to the values of a
variable to obtain a condition under which we have the guarantee to obtain an optimal
solution, while avoiding to explore some portions of the search space.

From this reasoning, we can build a decomposition technique which can be used
throughout search to decompose the current problem into simpler sub-problems, gen-
eralizing for WCSP and Max-CSP the approach of [18]. It is important to remark that
unlike usual decomposition methods, this approach does not depend on the structure of
the constraint graph, since the decomposition can always be applied, whatever the struc-
ture of the constraint graph is. Alternatively, we can dynamically post hard constraints
that can be used locally to prune the search space. Depending on the implementation,
these hard constraints can participate to constraint propagation, or just impose back-
tracking.

The paper is organized as follows. After some technical background, we introduce
the central result of this paper which applies to both WCSP and Max-CSP. Then, mainly
in the Max-CSP context, we present two main exploitations of it: decomposition and
pruning. At last, some experimental results on Max-CSP instances show the interest of
the technique.

2 Background

In this article, we consider both the WCSP and Max-CSP problems. We briefly recall
the terminology related to both problems.

2.1 WCSP

A WCSP instance P is defined by a triplet (X , C, k) of respectively variables, con-
straints and top cost.

X is a finite set of n variables {X1, X2, . . . , Xn}. Each variable X must be assigned
a value from its associated discrete domain dom(X). An instantiation I is the assign-
ment of values to some variables of X and will be denoted (Xi = vi, Xj = vj , . . .)

to indicate that Xi is assigned value vi, Xj is assigned vj and so on. A complete in-
stantiation is the assignment of a value to each variable of X and can be identified by
the ordered list of values assigned to variables (v1, v2, . . . , vn). In an instantiation I ,
the substitution of an assignment Xi = vi by the assignment Xi = v′ will be denoted
IXi=v′ . var(I) denotes the set of variables which are assigned in I . The restriction of
an instantiation to some variables in a set S (projection on a set of variables) is denoted
I ↓ S.

C is a finite set of e constraints {C1, C2, . . . , Ce}. Each constraint C involves an
ordered subset scp(C) of variables of X , called its scope. |scp(C)| is called the arity
of C, and C is binary if its arity is 2. A WCSP instance is binary if it only contains
binary constraints. Two variables are neighbors iff they both belong to the scope of
a constraint. The set of constraints adjacent to a variable X is denoted adj(X) and
defined by {Ci|X ∈ scp(Ci)}. A constraint C is a function which maps all possible
instantiations of the variables in its scope to a non-negative integer which represents
the cost of this instantiation. This cost can be an integer in the range [0.. + ∞[or can
be equal to +∞. The cost of an instantiation I for a constraint C is defined by C(I ↓
scp(C)). For the sake of simplicity, the projection operation will be considered implicit
and C(I ↓ scp(C)) will be simply denoted C(I). The global cost of an instantiation is
the sum over all constraints of the constraint costs: cost(I) =

∑
i Ci(I). Costs can be

assigned to variable values through unary constraints. For example, assigning a cost w
to a value a of a variable X is represented by a constraint C of arity 1 with scp(C) =
{X} and such that C(X = a) = w.

The parameter k is either a positive integer or +∞. Instantiations with a cost greater
than or equal to k are not admissible and cannot be solution of the WCSP instance.
Therefore when a constraint maps a tuple to a cost greater than or equal to k, this tuple
is strictly forbidden and cannot appear in any solution.

A solution of a WCSP instance is a complete instantiation I with a minimal cost
(i.e. ∀I ′, cost(I ′) ≥ cost(I)) and such that cost(I) < k.

Usually, the WCSP problem is defined by a valuation structure which restricts the
cost of a constraint to the interval [0..k] and introduces a specific addition operator
which saturates at k (a ⊕ b = min(k, a + b)). The definition used in this paper is
semantically equivalent and avoids the introduction of specific arithmetic operators.

3

2

1

3

2

4

c

db

a

X2X1

Fig. 1. Example of a WCSP instance

Figure 1 presents an example of a tiny WCSP instance where dom(X1) = {a, b},
dom(X2) = {c, d} and the constraint C2 between X1 and X2 has the following costs:
C2(X1 = a,X2 = c) = 3, C2(X1 = a,X2 = d) = 2, C2(X1 = b, X2 = c) = 3,
C2(X1 = b, X2 = d) = 4. Assigning a to X1 has a cost of 1, and assigning b to
X2 has a cost of 2. This is represented by a constraint C1 of arity 1 on X1 such that
C1(X1 = a) = 1 and C1(X1 = b) = 2.

2.2 Max-CSP

The Max-CSP problem is a special case of the WCSP problem where k = +∞ and
all constraints Ci are functions mapping tuples to the set {0, 1}. When a constraint
maps a tuple to 1, the tuple violates the constraint. Otherwise, a tuple which maps to 0
satisfies the constraint. Under these conditions, identifying a solution with the minimal
cost amounts to finding a solution which minimizes the number of violated constraints
(or alternatively which maximizes the number of satisfied constraints).

Given a constraint C with scp(C) = {Xi1 , . . . , Xir
}, any tuple in dom(Xi1)×. . .×

dom(Xir) is called a valid tuple on C. A value a for the variable X is often denoted
(X, a). A constraint C supports the value (X, a) (equivalently, a value (X, a) has a
support on C) iff either X /∈ scp(C) or there exists a valid tuple on C which belongs
to rel(C) and which contains the value a for X . When any value is supported by a
constraint, this constraint is said (generalized) arc-consistent. For the binary normalized
case, we say that a variable Y supports the value (X, a) iff either no constraint involves
both X and Y , or such a constraint supports (X, a). For a binary constraint C such that
scp(C) = {X, Y }, a value (X, a) is compatible with a value (Y, b) iff (a, b) belongs
to rel(C). The arc-inconsistency count of a value (X, a), denoted aic(X, a), is the
number of constraints (variables for the binary normalized case) which do not support
(X, a).

3 Main Theorem

In this section, we present the main result of this paper, generalizing the approach [18]
developed in the context of binary CSP and the results of [19] obtained on Max-CSP.

Definition 31 Let P be a WCSP instance and X be a variable of P . The minimal cost
of a constraint Ci relative to (X, a) denoted mincost(Ci, X, a) is the minimum cost
for Ci of tuples involving (X, a).

mincost(Ci, X, a) = min
I : I ↓ X = a,

var(I) = scp(Ci)

Ci(I)

We define the locally normalized constraint with respect to (X, a) as C
(X,a)
i (I) =

Ci(I) − mincost(Ci, X, a). By definition, there exists at least one tuple I such that
C

(X,a)
i (I) = 0. C

(X,a)
i (I) corresponds to the residual cost of the tuple I of Ci after

enforcing soft arc consistency on the value (X, a).

The cost cost(X, a) of a value a ∈ dom(X) is defined as the sum over the con-
straints Ci involving X of mincost(Ci, X, a).

cost(X, a) =
∑

Ci∈adj(X)

mincost(Ci, X, a)

A best value of X is a value a ∈ dom(X) such that cost(X, a) is minimal, i.e. ∀c ∈
dom(X), cost(X, a) ≤ cost(X, c). A second best value of X is a value b ∈ dom(X)
such that b 6= a and ∀c ∈ dom(X) \ {a, b}, cost(X, b) ≤ cost(X, c). The gap of X is
defined as δ = cost(X, b)− cost(X, a) + 1.

The locally normalized constraint defined above directly corresponds to the notion
of arc consistency in WCSP [20]. For a given constraint, when all tuples have a cost
greater than or equal to α, the cost α can be factorized and moved from the tuples to the
variable values. mincost(Ci, X, a) represents the cost that can be factorized from con-
straint Ci under the assumption X = a. cost(X, a) is the cost which is directly induced
by assigning a to X and is a lower bound on the cost of any instantiation with X = a.
Notice that cost(X, a) includes the cost of unary constraints on X (costs assigned to
values of X). The only slight difference between our definition of cost(X, a) and arc-
consistency in WCSP is that we do not try to generate an arc-consistent network (which
is not unique). The best value of a variable corresponds to the special value called the
fully supported value after enforcing Existential Directional Arc Consistency (EDAC).
Recall that EDAC requires that every variable must have at least one special value, that
is a value with a null cost and it has a full support in every constraint [?].

On the example of Figure 1, mincost(C1, X1, a) = 1, mincost(C1, X1, b) = 2,
mincost(C2, X1, a) = min(3, 2) = 2 and mincost(C2, X1, b) = min(3, 4) = 3.
cost(X1, a) = 3 and cost(X1, b) = 5, hence a is the best value of X1 and δ = 3.

Theorem 31 Let P be a WCSP instance, X be a variable of P , a be a best value of X ,
δ be the gap of X . There always exists an optimal solution s∗ of P such that:

• either X is assigned the value a in s∗,
• or X is assigned a value different from a in s∗ and∑

Ci∈adj(X)

C
(X,a)
i (s∗X=a) ≥ δ (1)

Proof. When P has an optimal solution where X is assigned a, the first condition is
obviously satisfied and the theorem is verified. Otherwise if there is no optimal solution
where X = a, let s∗ = (v1, ..., v, ..., vn) be an optimal solution of P , and let v be
the value of X in s∗ (necessarily, v 6= a). Let s = s∗X=a. Because there’s no optimal
solution with X = a, cost(s) > cost(s∗). Since s and s∗ differ by only one variable,
cost(s) is equal to cost(s∗) minus the contribution of X = v and plus the contribu-
tion of X = a. This is expressed by cost(s) = cost(s∗) −

∑
Ci∈adj(X) Ci(s∗) +∑

Ci∈adj(X) Ci(s) (keep in mind that the costs associated to variable values are in-
cluded in the sum since they are represented as unary constraints). Since cost(s) >
cost(s∗), this implies cost(s∗)−

∑
Ci∈adj(X) Ci(s∗) +

∑
Ci∈adj(X) Ci(s) > cost(s∗)

or equivalently
∑

Ci∈adj(X) Ci(s) >
∑

Ci∈adj(X) Ci(s∗). Since in s∗, X 6= a, and
a is the best value of X , necessarily

∑
Ci∈adj(X) Ci(s∗) is a cost greater than or

equal to the cost of the second best value b. Hence,
∑

Ci∈adj(X) Ci(s) > cost(X, b).
We can introduce locally normalized constraints with Ci(I) = mincost(Ci, X, a) +
C

(X,a)
i (I). Now,

∑
Ci∈adj(X)(mincost(Ci, X, a) + C

(X,a)
i (s)) > cost(X, b) which

can be rewritten as
∑

Ci∈adj(X) C
(X,a)
i (s) > cost(X, b) − cost(X, a) which is equiv-

alent to
∑

Ci∈adj(X) C
(X,a)
i (s) ≥ cost(X, b)− cost(X, a) + 1 = δ. 2

It should be noticed that the proof holds for any arity of constraint and that we do
not rely on enforcing arc-consistency on the global network (which cannot be done in a
unique way).
The second condition of the main theorem may be simplified when the WCSP satisfies
the EDAC property since mincost(Ci, X, a) is null for each Ci ∈ adj(X) then the
condition will be

∑
Ci∈adj(X) Ci(s∗X=a) ≥ δ.

This theorem decomposes the search in two parts. The first part explores X = a
(the best value for variable X) and the second part explores X 6= a and avoids the
exploration of useless parts of the search-space. There are two different ways to split the
search. A first way is to generate a decomposition of the instance into independent sub-
problems which uses the theorem to filter the variables domain in order to avoid useless
search (see Section 4). Another way is to use the theorem as a pruning rule which
enforces on the X 6= a branch of the search the condition

∑
Ci∈adj(X) C

(X,a)
i (s∗X=a) ≥

δ (see Section 5).
In both cases, the key point is to use efficiently condition (1) to prune the search

space. Because of the weights, enforcing this condition is slightly more difficult in the
WCSP case than in the Max-CSP case.

3.1 The WCSP case

The condition
∑

Ci∈adj(X) C
(X,a)
i (s∗X=a) ≥ δ which appears in the theorem indicates

that at any time in the search on the branch X 6= a, the sum of the (normalized) weights
of tuples which are still considered in the search must be greater than or equal to δ.
This is very close to pseudo-Boolean constraints1 and propagation techniques from the
pseudo-Boolean field can be used.

The first technique is based on “counters”. For each constraint Ci, we maintain
the maximum (normalized) cost mi of tuples still considered in the search. As long as∑

i mi ≥ δ, the condition can be satisfied. As soon as
∑

i mi < δ, the condition is not
satisfied any more which means that we’re exploring a useless branch. Backtrack must
occur. When

∑
i mi ≥ δ and ∃k, (

∑
i mi) −mk < δ, we have to select for constraint

Ck the tuple with the maximal cost in order to satisfy the condition and avoid useless
search.

The second technique uses some kind of watched literals to ensure that the condi-
tion

∑
Ci∈adj(X) C

(X,a)
i (s∗X=a) ≥ δ still applies. Instead of maintaining the maximum

1 A pseudo-Boolean constraint is a constraint
P

i wi.xi ≥ b where wi and b are integers and xi

are Booleans

(normalized) cost mi of tuples for all constraints Ci, mi is only maintained for a mini-
mal number of constraints which is sufficient to ensure that

∑
i mi ≥ δ. Unfortunately,

the number of constraints to watch is not constant throughout the search and it’s not
clear if this technique is really more efficient than the counter based technique.

An alternative is to weaken the “pseudo-Boolean” condition into a cardinality con-
straint. This means that condition

∑
Ci∈adj(X) C

(X,a)
i (s∗X=a) ≥ δ is approximated by

the condition “at least n constraints among adj(X) must have a cost greater than or
equal to m” where m,n are computed from the initial condition. Clearly, this approxi-
mation will not cut each useless branch but can be more efficient in some circumstances.

3.2 The Max-CSP case

In the Max-CSP context, each cost is either 0 or 1. Therefore, condition (1) is directly
a cardinality constraint which is easier to enforce than general pseudo-Boolean con-
straints.

In this context, cost(X, a) = aic(X, a) and condition (1) translates as “the number
of constraints adjacent to X which support (X, a) and which are violated by s∗X=a is
greater than or equal to δ”.

In the rest of the paper, we will present the approach on the easier Max-CSP case.
Translation to the WCSP case is in general obvious by substituting the corresponding
condition of the theorem.

4 The Decomposition Approach

The decomposition of a Max-CSP instance P around a variable X is defined as follows.

Definition 41 Let P be a Max-CSP instance, X be a variable of P , a be a best value of
X , δ be the gap of X and C1, . . . , Cm be the m constraints involving X which support
(X, a). The decomposition of a Max-CSP instance P around the value a of variable X
generates the sub-problems P0, P1, . . . Pk (with k =

(
m
δ

)
) defined by:

• P0 is derived from P by assigning a to variable X
• Pi (with i ∈ 1..k) is derived from P by removing a from the domain of X and

restricting the assignments of neighbors of X so that at least δ of the constraints
supporting (X, a) in P do not support (X, a) in Pi any more.

These sub-problems may be solved independently and Theorem 31 guarantees that
at least one of them contains an optimal solution of P . It should be noticed that this
decomposition may prune some (equivalent) optimal solutions of P .

As described in the definition, the sub-problems are not disjoint which means that
an assignment may be a solution of several sub-problems simultaneously. It is however
easy to generate disjoint sub-problems as will be shown in section 4.2. With m denoting
the number of constraints that support (X, a), this decomposition generates 1+

(
m
δ

)
sub-

problems (when δ = 1, this number is equal to 1 + m and is bounded by n− aic(X, a)
with n the number of variables). Although the number of sub-problems is exponential

in δ, Section 4.3 proves that the search space of the different sub-problems P0, . . . Pk is
exponentially smaller than the search space of the initial problem P provided that we
generate disjoint sub-problems. This means that the decomposition is always beneficial
because, even if it may generate many sub-problems, they are always easier to solve
globally than the initial problem.

4.1 A Max-CSP Example

To illustrate the decomposition technique in the Max-CSP case, let us consider the
binary constraint network P built on {X1, X2, X3} and containing the constraints {C12,
C13, C23}. We have dom(Xi) = {1, 2, 3} for i ∈ 1..3, and the constraints are defined
by the following tables (allowed tuples):

rel(C12)

X1 X2

1 1

1 2

3 1

rel(C13)

X1 X3

1 1

1 2

2 1

2 3

3 2

rel(C23)

X2 X3

1 3

3 1

An optimal solution of this Max-CSP instance violates one constraint. For exam-
ple, X1 = 1, X2 = 1, X3 = 2 is an optimal solution which violates the constraint
C23. To perform the decomposition strategy, we have to select one variable and one of
its best values. For example, (X1, 1) is one best value of X1 since aic(X1, 1) = 0,
aic(X1, 2) = 1 and aic(X1, 3) = 0. Here, we have δ = 1. The decomposition around
(X1, 1) leads to the following independent sub-problems: P0 is derived from P by as-
signing X1 = 1. In P0, dom(X0

1) = {1}, dom(X0
2) = dom(X0

3) = {1, 2, 3}.
P1 is derived from P by asserting X1 6= 1 and restricting the domain of X2

to the values incompatible with (X1, 1). In P1, dom(X1
1) = {2, 3}, dom(X1

2) =
{3}, dom(X1

3) = {1, 2, 3}.
P2 is derived from P by asserting X1 6= 1 and restricting the domain2 of X2 to

the values incompatible with (X1, 1) and restricting the domain of X3 to the values
compatible with (X1, 1). In P2, dom(X2

1) = {2, 3}, dom(X2
2) = {1, 2}, dom(X2

3) =
{3}.

Notice that the sub-problem where dom(X1) = {2, 3}, dom(X2) = {1, 2} and
dom(X3) = {1, 2} is pruned and this sub-problem contains an optimal solution of the
whole problem which is X1 = 3, X2 = 1 and X3 = 2.

Now, let us modify slightly the initial problem. Assume that the value 3 of X1 is
incompatible with all values of X3, then we have:

rel(C13)

X1 X3

1 1

1 2

2 1

2 3

2 This restriction is enforced to obtain disjoint sub-problems, see 4.2

In this case, for X1 there is only one best value (since aic(X1, 1) = 0, aic(X1, 2) =
1 and aic(X1, 3) = 1) and so δ = 2. Thus, the decomposition leads only to two sub-
problems P0 and P1. P0 is unchanged and P1 is obtained from P by asserting X1 6=
1 and restricting the domain of X2, X3 to the values incompatible with (X1, 1). In
P1, dom(X1

1) = {2, 3}, dom(X1
2) = {3}, dom(X1

3) = {3}. In this case we have
discarded the following two sub-problems: P2 where dom(X2

1) = {2, 3}, dom(X2
2) =

{3} and dom(X2
3) = {1, 2}, and P3 where dom(X3

1) = {2, 3}, dom(X3
2) = {1, 2}

and dom(X3
3) = {1, 2, 3}. The sub-problem P3 contains one optimal solution of P :

X1 = 3, X2 = 1 and X3 = 3.
For the initial problem, the decomposition prunes 23 out of 33 possible complete

instantiations while in the modified problem it prunes 16 (more than a half) of them.

4.2 Enumeration of Sub-problems in the Max-CSP case

For the sake of simplicity, we now assume that constraints are binary and normalized
(i.e. they all have different scopes) but the method is easy to generalize3. When con-
straints are binary, ensuring that a constraint C with scp(C) = {X, Y } does not sup-
port (X, a) simply amounts to reducing the domain of Y to the values incompatible
with (X, a).

Enumerating all the sub-problems in the decomposition and ensuring that these
problems are disjoint is as simple as enumerating the values of a binary counter un-
der the constraint that at least δ of its bits must be 0.

Let I
(X,a)
Y be the values of domain dom(Y) which are incompatible with (X, a)

and C
(X,a)
Y be the values of dom(Y) which are compatible with (X, a). By definition,

dom(Y) = I
(X,a)
Y ∪ C

(X,a)
Y and I

(X,a)
Y ∩ C

(X,a)
Y = ∅. Clearly, sub-domains I and

C form a partition of each domain and this can be used to decompose the search in a
systematic way. Exhaustive search on all values of a variable Y can be performed by
first restricting the domain to I

(X,a)
Y and then to C

(X,a)
Y . This is a binary branching.

Since this can be done recursively, each branch can be represented by a binary word
bY1 , . . . , bYm

where bYi
= 0 indicates that the domain of Yi is restricted to I

(X,a)
Yi

and

bYi = 1 indicates that the domain of Yi is restricted to C
(X,a)
Yi

. Exhaustive search on all
values of all variables Y will enumerate the 2m binary words (from all 0 to all 1).

When X = a is chosen for the decomposition of a problem P , the first sub-problem
is P0 where X = a and the other sub-problems are the ones where X 6= a and where
δ variables among the m variables Yi which support (X, a) have their domain reduced
to I

(X,a)
Yi

. A simple solution to avoid any redundant or useless search is to use the
binary branching scheme presented above. The restriction where δ variables among the
m variables Yi have their domain reduced to IX,a

Yi
translates to the condition ’at least δ

bits in the binary word representing the branch must be 0’. This condition is trivial to
enforce in a binary branching.

3 This restriction just ensures that reducing the domain of a neighbor of X will affect only one
constraint on X . Otherwise we have to take into account some variables more than once.

Y1 Y2 Y3 Y4

0 ∗ ∗ ∗
1 0 ∗ ∗
1 1 0 ∗
1 1 1 0

(a) search with δ = 1

Y1 Y2 Y3 Y4

0 0 0 ∗
0 0 1 0
0 1 0 0
1 0 0 0

(b) search with δ = 3

Fig. 2. List of branches to explore for n = 4 and different values of δ

As an example, Figure 2 represents the branches that must be explored for two
different values of δ and for n = 4 variables. For clarity, ∗ is used as a joker to represent
any 0/1 value.

4.3 Some Complexity Results

Interestingly, this binary branching scheme allows to draw immediate complexity re-
sults. Assume that Y1, . . . , Ym are the variables which support (X, a) and that Z1, . . . , Zr

are the other unassigned variables. Without applying the decomposition, an exhaustive
search of the sub-problem where X 6= a will have to explore the Cartesian product of
the domains which amounts to

∏m
i=1 |dom(Yi)|.

∏r
i=1 |dom(Zi)| complete instantia-

tions. When the decomposition is used, at least δ variables Y must have their domain
reduced to IX,a

Y . This means that the number of complete instantiations which are not
explored amounts to:

X
S∈2{Yi} with card(S)<δ

Y
Yi∈S

|IX,a
Yi

|.
Y

Yi 6∈S

|CX,a
Yi

|.
rY

i=1

|dom(Zi)|

As an illustration, if all CX,a
Yi

have the same size c and all IX,a
Yi

have the same size
i, the number of pruned complete instantiations simplifies as:

X
j≤δ

n

j

!
ijcm−j

rY
i=1

|dom(Zi)|

When δ = 1, the number of pruned instantiations is just i.cm−1
∏m

i=1 |dom(Zi)|.
It roughly corresponds to the size of the so-called consistent sub-problem identified in
[18] for the CSP case. In any case, the number of complete instantiations that are ex-
plored when the decomposition is applied is smaller than the initial number of complete
instantiations to explore (by an exponential factor in the general case).

4.4 Related Work

Classical structural decomposition methods combine tree decomposition of graphs with
branch and bound search [13–17]. A tree decomposition involves computing a pseudo-
tree [21, 22] which covers the set of variables by clusters. Two clusters are adjacent
in this tree if they share some variables. An important property of tree decomposition
is that the sub-problems associated with clusters may be solved independently after

assigning values to the shared variables. In practice, the efficiency of decomposition
methods highly depends on the structure of the constraint graph.

The decomposition approach presented here, inspired from [18], proceeds differ-
ently from classical ones since the principle is to directly decompose the whole problem
into independent sub-problems without computing any pseudo-tree or assigning any
variable of the problem. Each sub-problem can be solved independently while in the
same time, a portion of the search space of the whole problem is pruned. The downside
of this method is that the number of generated sub-problems may be large. However,
the decomposition does not rely on the structure of the constraint graph.

5 The Pruning Approach in the Max-CSP case

Another way to exploit Theorem 31 is to interpret it as a pruning rule which can be
integrated into any method based on tree search to solve the Max-CSP problem. As-
suming here a tree search algorithm employing a binary branching scheme [23], at
each node ν, a value (X, a) is selected, and two branches are built from ν: a left one
labeled with the variable assignment X = a, and a right one labeled with the value
refutation X 6= a. Considering the current instance at node ν, let a, δ and {Ci} be
the best value of X , the gap of X and the set of constraints supporting (X, a), re-
spectively. As soon as the left branch has been explored, one can post a hard con-
straint atLeastUnsatisfied(δ, {Ci}, (X, a)) before exploring the right branch of ν.
This constraint is violated as soon as it is no more possible to find in {Ci}, at least δ
constraints which do not support anymore (X, a). Of course, a constraint posted with
respect to the right branch of node ν must be removed when the algorithm backtracks
from ν.

These hard constraints, dynamically added to the instance, can be used to impose
backtracking, and consequently, to avoid exploring useless portions of the search space.
After each propagation phase, one can simply check that all currently posted hard con-
straints are still satisfied. If this is not the case, backtracking occurs. We will denote
any tree search algorithm A, exploiting this approach, by A-PC (Pruning Constraints).
Interestingly, except for some particular search heuristics (such as the ones based on
constraint weighting [24]), we have the guarantee that A-PC will always visit a tree
which is included in the one built by A.

On the other hand, the additional hard constraints can also participate to constraint
propagation. When for a constraint atLeastUnsatisfied(δ, {Ci}, (X, a)), we can de-
termine that at most δ constraints of {Ci} can still be in a position of not supporting
(X, a), we can impose that these δ constraints do not support (X, a), making then new
inferences. For example, for a binary constraint of {Ci}, among the δ ones, involving X
and another variable Y , any value of Y compatible with (X, a) can be removed. Here,
we can imagine sophisticated mechanisms to manage propagation such as the use of
lazy structures (e.g. watched literals).

Importantly, notice that this pruning approach can be integrated into many search
algorithm solving the Max-CSP problem, including hybrid ones that combine tree de-
composition with enumeration.

6 Max-CSP Experimental Results

In order to show the practical interest of the approach described in this paper, we have
conducted an experimentation on a cluster of Xeon 3,0GHz with 1GiB under Linux
using the benchmark suite used for the 2006 competition of Max-CSP solvers (see
http://www.cril.univ-artois.fr/CPAI06/). We have used the classical
branch and bound PFC-MRDAC algorithm [2] which maintains reversible directed arc-
inconsistency counts in order to compute lower bounds at each node of the search tree,
and have been interested in the impact of using the PC (Pruning Constraints) approach
(see Section 5). We have used here the variant that just imposes backtracking, and have
not still implemented the one that allows to make inferences. We have not still imple-
mented the decomposition approach either.

Two variable ordering heuristics have been considered. The first one is dom/ddeg
[25], usually considered for Max-CSP, which selects at each node the variable with the
lowest ratio domain size on dynamic degree. The second one, denoted dom∗gap/ddeg,
involves the gap of the variables. More precisely, the ratio dom/ddeg is multiplied by
the gap in order to favor variables for which there is a large gap between the best value
and the following one. We believe that it may help quickly finding good solutions and,
more specifically, increasing the efficiency of our approach. Finally, the value with the
lowest aic is always selected. Notice that it can be seen as a refinement of the ic + dac
counters usually used to select values.

The protocol used for our experimentation is the following: for each instance, we
start with an initial upper bound4 set to infinity, and record the (cost of the) best solution
found (and time-stamp it) within a given time limit (here, 1, 500 seconds). Even if this
protocol prevents us from getting some useful results for some instances (for example,
if the same best solution is found by the different algorithms after a few seconds), it
benefits from being easily reproducible and exploitable, whether the optimum value is
known or not.

First of all, recall that we have the guarantee that PFC-MRDAC-PC always visits
a tree which is smaller than the one built by PFC-MRDAC. It makes our experimental
comparisons easier. We can then make a first general observation about the results of
our experimentation. The overhead of managing PC hard constraints is usually between
5% and 10% of the overall cpu time. Since on random instances, our approach permits
to only save a limited number of nodes (as expected), we obtain a similar behavior with
PFC-MRDAC and PFC-MRDAC-PC. This is not shown here, due to lack of space. On
the other hand, on structured instances, Table 1 presents the results on representative
instances and clearly demonstrates the interest of our approach. These instances belong
to academic and patterned series maxclique (brock, p− hat,san), kbtree (introduced
in [17]), dimacs (ssa) and composed, and also to real-world series celar (scen, graph)
and spot. The ratio introduced in the table corresponds to the cpu of PFC-MRDAC
divided by the cpu of PFC-MRDAC-PC. It is either an exact value (when both methods
have found the same upper bound) or an approximate one (in this case, we use the time
limit 1, 500 as a lower bound). For example, on instance spot5 − 404, we obtain 74

4 In the experimentation, Max-CSP was considered as the problem of minimizing the number
of violated constraints.

as upper bound with PFC-MRDAC and 73 with PFC-MRDAC-PC. Since, any node
visited by PFC-MRDAC-PC is necessarily visited by PFC-MRDAC, we know that at
least 1, 500 seconds are required by PFC-MRDAC to find the upper bound 73. We
then obtain a speedup ratio which is greater than 1, 500/99 = 15.1. Remark that, as
expected, the results are more impressive when using the heuristic dom ∗ gap/ddeg
(more than two orders of magnitude on some instances) which besides, often allows us
to find better upper bounds.

Finally, for a very limited number of these instances, we succeeded in finding an
optimal value and proving optimality, given 20 hours of cpu time per instance. For ex-
ample, for brock-200-2, optimality is proved when using PC in 13, 394 and 29, 217 sec-
onds with dom/ddeg and dom ∗ gap/ddeg respectively, while optimality is not proved
within 72, 000 seconds when PC is not employed. As another example, the instance
scenw-06-24 is solved in 18, 858 seconds with PFC-MRDAC-PC-dom ∗ gap/ddeg
and in 37, 405 seconds when PC is not used.

7 Conclusion

In this paper, we have generalized to both WCSP and Max-CSP the principle of inferred
disjunctive constraints introduced in [18] for CSP. Using weights, we have shown that
it was possible to obtain a guarantee about the obtention of an optimal solution, while
pruning some portions of the search space. Interestingly, this result can be exploited
both in terms of decomposition (already addressed for CSP in [18]) and backtrack-
ing/filtering (by posting hard constraints). We have shown that our approach, grafted to
a classical branch and bound algorithm, was really boosting search when solving struc-
tured instances. Indeed, using PFC-MRDAC on Max-CSP instances, we have noticed a
speedup that sometimes exceeds one order of magnitude with the heuristic dom/ddeg
and two orders of magnitude with the original dom ∗ gap/ddeg.

We want to recall that dynamic programming and decomposition methods, which
have recently received a lot of attention, still rely on branch and bound search. It means
that all these methods may benefit from the approach developed in this paper.

Acknowledgments

This paper has been supported by the IUT de lens, the CNRS and the ANR “Planevo”
project noJC05 41940.

References

1. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence 58(1-3) (1992)
21–70

2. Larrosa, J., Meseguer, P., Schiex, T.: Maintaining reversible DAC for Max-CSP. Artificial
Intelligence 107(1) (1999) 149–163

3. Affane, M., Bennaceur, H.: A weighted arc-consistency technique for Max-CSP. In: Pro-
ceedings of ECAI’98. (1998) 209–213

PFC-MRDAC
dom/ddeg dom*gap/ddeg

¬PC PC ratio ¬PC PC ratio
Academic and Patterned instances

brock-200-1 ub 184 183 184 183
cpu 1, 490 706 > 2.1 3 57 > 26.3

brock-200-2 ub 191 191 191 190
cpu 638 92 > 6.9 85 201 > 7.4

composed-25-1-2-1 ub 3 3 6 3
cpu 613 332 = 1.8 19 846 > 1.7

composed-25-1-25-1 ub 4 4 6 3
cpu 92 72 = 1.2 14 1, 407 > 1

kbtree-9-2-3-5-20-01 ub 6 0 3 0
cpu 996 1, 333 > 1.1 0 15 > 100

kbtree-9-2-3-5-30-01 ub 13 13 14 4
cpu 1, 037 1, 009 = 1.0 1, 177 392 > 3

keller-4 ub 162 160 162 160
cpu 36 303 > 4.9 1 149 > 10.0

p-hat300-1 ub 293 293 293 293
cpu 396 76 = 5.2 1, 481 224 = 6.6

p-hat500-1 ub 493 493 493 492
cpu 1, 357 652 = 2.0 33 717 > 2.0

san-200-0.9-1 ub 174 173 157 155
cpu 1, 425 1, 287 > 1.1 0 888 > 1.6

sanr-200-0.7 ub 185 185 185 184
cpu 426 94 = 4.5 808 324 > 4.6

ssa-0432-003 ub 82 73 11 2
cpu 0 175 > 8.5 46 19 > 78.9

ssa-2670-130 ub 392 390 52 49
cpu 1 56 > 26.7 55 1, 126 > 1.3

Real-world instances

graph6 ub 342 341 366 365
cpu 216 935 > 1.6 7 406 > 1.0

graph8-f11 ub 161 159 160 160
cpu 5 1, 299 > 1.1 644 56 = 11.5

graph11 ub 576 576 620 620
cpu 5 5 = 1 677 70 = 9.6

scen6 ub 269 269 211 211
cpu 69 27 = 2.5 20 14 = 1.4

scen10 ub 744 744 741 741
cpu 34 34 = 1 623 56 = 11.1

scen11-f12 ub 81 81 66 66
cpu 729 395 = 1.8 146 35 = 4.1

scenw-06-18 ub 215 214 133 131
cpu 8 934 > 1.6 231 442 > 3.3

scenw-06-24 ub 98 98 121 117
cpu 686 244 = 2.8 741 400 > 3.7

scenw-07 ub 353 353 525 524
cpu 1, 239 471 = 2.6 25 8 > 187.5

spot5-28 ub 207 206 196 196
cpu 0 31 > 48.3 1 1 = 1

spot5-29 ub 52 51 49 48
cpu 25 305 > 4.9 807 29 > 51.7

spot5-42 ub 124 124 122 122
cpu 900 64 = 14.0 1, 157 6 = 192.8

spot5-404 ub 74 73 76 73
cpu 85 99 > 15.1 0 331 > 4.5

Table 1. Best upper bound (ub, number of violated constraints) and cpu time (to reach it) ob-
tained with PFC-MRDAC on structured instances, with (PC) and without (¬PC) the Pruning
Constraints method. The timeout was set to 1, 500 seconds per instance.

4. Larrosa, J., Meseguer, P.: Partition-Based lower bound for Max-CSP. Constraints 7 (2002)
407–419

5. Regin, J., Petit, T., Bessiere, C., Puget, J.: New lower bounds of constraint violations for
over-constrained problems. In: Proceedings of CP’01. (2001) 332–345

6. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for Weighted CSP.
In: Proceedings of IJCAI’03. (2003) 363–376

7. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2)
(2004) 199–227

8. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer
to full arc consistency in weighted CSPs. In: Proceedings of IJCAI’05. (2005) 84–89

9. Cooper, M., de Givry, S., Schiex, T.: Optimal Soft Arc Consistency. In: Proceedings of
IJCAI’07. (2007) 68–73

10. Verfaillie, G., Lemaitre, M., Schiex, T.: Russian doll search for solving constraint optimiza-
tion problems. In: Proceedings of AAAI’96. (1996) 181–187

11. Meseguer, P., Sanchez, M.: Specializing russian doll search. In: Proceedings of CP’01.
(2001) 464–478

12. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint optimization
and constraint satisfaction problems. Constraints 8(3) (2003) 303–326

13. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence 146(1) (2003) 43–75

14. Jégou, P., Terrioux, C.: Decomposition and Good Recording for Solving Max-CSPs. In:
Proceedings of ECAI’04. (2004) 196–200

15. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound for Graphical Models. In: Pro-
ceedings of IJCAI’05. (2005) 224–229

16. Marinescu, R., Dechter, R.: Advances in AND/OR Branch-and-Bound Search for Constraint
Optimization. In: Proceedings of the CP’05 Workshop on Preferences and Soft Constraints.
(2005)

17. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft Local Con-
sistency In Weighted CSP. In: Proceedings of AAAI’06. (2006)

18. Freuder, E., Hubbe, P.: Using inferred disjunctive constraints to decompose constraint satis-
faction problems. In: Proceedings of IJCAI’93. (1993) 254–261

19. Bennaceur, H., Lecoutre, C., Roussel, O.: A Decomposition Technique for Solving Max-
CSP. In: 18th European Conference on Artificial Intelligence(ECAI’08), Patras, Greece (jul
2008) full paper to appear.

20. Larrosa, J.: Node and arc consistency in weighted csp. In: Eighteenth national conference
on Artificial intelligence, Menlo Park, CA, USA, American Association for Artificial Intel-
ligence (2002) 48–53

21. Freuder, E., Quinn, M.: Taking advantage of stable sets of variables in constraint satisfaction
problems. In: Proceedings of IJCAI’85. (1985) 1076–1078

22. Bayardo, R., Miranker, D.: On the space-time trade-off in solving constraint satisfaction
problems. In: Proceedings of IJCAI’95. (1995) 558–562

23. Hwang, J., Mitchell, D.: 2-way vs d-way branching for CSP. In: Proceedings of CP’05.
(2005) 343–357

24. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: Proceedings of ECAI’04. (2004) 146–150

25. Bessiere, C., Régin, J.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?)
on hard problems. In: Proceedings of CP’96. (1996) 61–75

