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Abstract. Many combinatorial optimization problems require the as-
signment of a set of variables in such a way that an objective function
is optimized. Most often, the objective function itself involves different
criteria, and it may happen that the single requirements are in conflict:
assignments that are good with respect to one objective may behave
badly with respect to another. Thus, an optimal solution with respect
to all criteria may not exist, and either the efficient frontier (the set of
best incomparable solutions, all equally relevant in the absence of fur-
ther information) or an approximation has to be looked after. Indeed,
computing the efficient frontier should be preferred over computing an
approximation.

The paper shows how the soft constraints formalism based on semirings,
so far exploited for finding approximations, can embed also the compu-
tation of the efficient frontier in multi-objective optimization problems.
The main result is the proof that the efficient frontier of a multi-objective
problem can be obtained as the so called best level of consistency distilled
from a suitable soft constraint problem.

1 Introduction

Many real world problems involve multiple measures of performance, or objec-
tives, that should be optimized simultaneously: see e.g. the survey [4] and the
references therein. In such a situation an unique, perfect solution may not exist,
while a set of solutions can be found that should be considered equivalent in the
absence of information concerning the relevance of each objective wrt the others.
Hence, two solutions are equivalent if one of them is better than the other for
some criteria, but possibly worse for others; while one solution dominates (is
better than) the other if the former is better than the latter for all criteria.

The set of best solutions is the set of efficient (or pareto-optimal) solutions.
The set of costs associated to efficient solutions is called the efficient frontier.
The main task in a multi-objective problem is to compute the efficient frontier
(and, possibly, one efficient solution for any of its elements).



The main goal of the paper is to prove that the computation of the efficient
frontier of a multi-objective optimization problems can be modeled using soft
CSP. More precisely, our main contribution is to show, given a (possibly partially
ordered) semiring K, how to compute a new semiring I(K) such that its elements
corresponds to sets of (irreducible) elements of the original semirings; and such
that the set of optimal costs of the original problem corresponds to the optimal
solution computed in the derived semiring.

When applied to the multi-objective context, the result of our work can be
summarized as follows: consider a multi-objective problem where K1,K2 . . .Kp

are the semirings associated to each objective. If we use their cartesian product
KC = K1 × . . . × Kp to model the multi-objective problem, the solution cor-
responds to the lowest vector that dominates the efficient frontier. Further, if
we use I(KC) to model the problem, the solution coincides with the efficient
frontier.

2 Remarks on optimization

Many combinatorial optimization problems are defined in terms of a set of deci-
sion variables V , a (finite) domain of interpretation D, and an objective function
F : (V → D) → A. The objective function F associates an outcome in A to each
variable assignment η : V → D.

If A is ordered, we may consider suitable notions of optimality. If A is to-
tally ordered, the optimum of the objective function (assuming optimization as
maximization) is

max
η

{F (η)}

The optimum is the highest possible outcome given by the assignments. However,
often the set A is only partially ordered. Then, it is customary to characterize a
set of optima

E = {F (η) | ∀η′.F (η′) 6> F (η)}

Elements in E are optimal in the sense that no better values exist for objective
F , and they are pairwise uncomparable. Since computing E can be very resource
consuming, an alternative is simply to consider an approximation raising from
the objective function, namely, supη{F (η)}.

Arguably, the most frequent case of problems involving a partially ordered set
A concerns multi-objective optimization. The set of outcomes A = A1× . . .×Ap

is a p-dimensional space where each component Ai is a (totally) ordered set asso-
ciated to one criteria. Given two values a = 〈a1, a2 . . . ap〉, b = 〈b1, b2 . . . bp〉 ∈ A,
the usual partial order is called dominance, and it is defined as a ≤ b iff
∀i ∈ {1, 2 . . . p}. ai ≤ bi. In that context, it is usually important to compute
the set E , which is called the efficient frontier of the problem. Those assign-
ments η such that F (η) ∈ E are called pareto-optimal solutions.



3 On semiring-based frameworks

Semirings provide an algebraic framework for the specification of a general class
of combinatorial optimization problems. Outcomes associated to variable instan-
tiations are modeled as elements of a set A, equipped with a sum and a product
operator. These operators are used for combining constraints: the intuition is
that the sum operator induces a partial order a ≤ b, meaning that b is a better
outcome than a; whilst the product operator denotes the aggregation of out-
comes coming from different soft constraints.

3.1 The algebra of semirings

In this section we review the main algebraic concepts. Since there seems to be no
converging definition in the literature for semirings, this section chooses a min-
imal approach, and briefly presents the main notions concerning that algebraic
structure that is going to be used later on in the presentation of the soft con-
straints approach. We adopt a terminology inspired by [5] and, in lesser degree,
by [7], aiming at a smooth presentation of the main concepts.

Definition 1 (semirings). A (commutative) semiring is a five-tuple

K = 〈A, +,×,0,1〉

such that A is a set, 1,0 ∈ A, and +,× : A × A → A are binary operators
making the triples 〈A, +,0〉 and 〈A,×,1〉 commutative monoids (semigroups with
identity), satisfying

– ∀a, b, c ∈ A.a × (b + c) = (a × b) + (a × c);
– ∀a ∈ A.a × 0 = 0.

A semiring is absorptive if additionally ∀a ∈ A.a + 1 = 1.

Absorptive semirings are also known as simple, and the property is equivalent
to ∀a, b ∈ A.a+(a×b) = a, that is, each element a×b is “absorbed” by a. These
semirings represent the structure we put at the base of our proposal since the
three properties they satisfy (absorptiveness, zero and unit element) seem pivotal
for soft constraint frameworks.

We can now state a simple characterization result linking absorptiveness to
idempotency and to a top element.

Proposition 1. Let K be an absorptive semiring. Then, the sum operator + of
K is idempotent.

The former result is well-know in the literature, and semirings such that
the sum operator is idempotent are called dioids or tropical semirings. These
structures are well-studied in the literature(see e.g. the references in [7]), and we
take advantage of classical constructions in the following sections.

Proposition 2. Let K = 〈A, +,×,0,1〉 be a tropical semiring. Then, the rela-
tion 〈A,≤〉 such that ∀a, b ∈ A.a ≤ b iff a + b = b is a partial order.



Moreover, if K is absorptive, then 1 is the top element of the partial order. If
additionally K is absorptive and idempotent (that is, the product operator × is
idempotent), then the partial order is actually a lattice, since a× b corresponds
to the greatest lower bound of a and b.

3.2 Soft constraints based on semirings

This section briefly recalls the main concepts of the semiring-based approach to
the soft CSPs framework.

Definition 2 (constraints). Let K = 〈A, +,×,0,1〉 be an absorptive semiring;
let V be a set of variables; and let D be a finite domain of interpretation for V .
Then, a constraint (V → D) → A is a function associating a value in A to each
assignment η : V → D of the variables.5

Note that even if a constraint involves all the variables in V , it must depend
on the assignment of a finite subset of them. For instance, a binary constraint
cx,y over variables x, y is a function cx,y : (V → D) → A which depends only
on the assignment of variables {x, y} ⊆ V . We call this subset the support of
the constraint [3] and correspond to the classical notion of scope of a constraint.
Most often, whenever V is ordered, an assignment (over a support of cardinality
k) is concisely presented by a tuple in Dk.

Definition 3 (support). Let c ∈ C be a constraint. Its support supp(c) is the
set {v ∈ V | ∃η, d1, d2.cη[v := d1] 6= cη[v := d2]}, where

η[v := d]v′ =

{

d if v = v′

ηv′, otherwise

Note that cη[v := d1] means cη′ where η′ is η modified with the assignment
v := d1 (that is, the operator [ := ] has precedence over application). Note
also that cη is the application of a constraint function c : (V → D) → A to a
function η : V → D, obtaining a semiring value.

Combining and projecting soft constraints

Definition 4 (combination). The combination operator ⊗ : C × C → C is
defined as (c1 ⊗ c2)η = c1η × c2η.

Thus, combining two constraints means building a new constraint whose
support involves all the variables of the original ones (i.e., supp(c1 ⊗ c2) ⊆
supp(c1) ∪ supp(c2)), and which associates to each tuple for such variables a
semiring element, obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

5 Alternatively, a constraint is a pair 〈con, def〉: con is the scope of a constraint, and
def the function associating a value in A to each assignment of the variables in con.



Definition 5 (projection). Let c ∈ C be a constraint and v ∈ V a variable. The
projection of c over V −{v} is the constraint c′ such that c′η =

∑

d∈D cη[v := d].

We denote such projection as c ⇓(V −{v}). The projection operator can be in-
ductively extended to a set of variables I ⊆ V by c ⇓(V −I)= c ⇓(V −{v})⇓(V −{I−{v}}).
Informally, projecting means eliminating variables from the support.

Soft CSPs, Solutions and optimizations

Definition 6 (soft CSPs). A soft constraint satisfaction problem is a pair
〈C, con〉, for C is a set of constraints over variables con ⊆ V .

The set con is the set of variables of interest for the constraint set C, which
may concern also variables not in con.

Definition 7 (solutions). The solution of a soft CSP P = 〈C, con〉 is the
constraint Sol(P ) = (

⊗

C) ⇓con.

The solution of a soft CSP is obtained by combining all constraints, and
then projecting over the variables in con. In this way we get the constraint with
support (not greater than) con which is “induced” by the entire soft CSP.

What is called the solution of a soft CSP plays indeed the role of the (implicit)
objective function in optimization problems. We may now start referring to the
efficient frontier E(P ) of a soft CSP: pareto-optimal solutions are referred to
as abstract solutions in the soft CSP literature. We may also refer now to best
approximation, which may now be neatly characterized by so-called best level
of consistency.

Proposition 3. Let P = 〈C, con〉 be a soft CSP, and blevel(P ) = (
⊗

C) ⇓∅

be denoted as the best level of consistency of P . Then, supη{Sol(P )(η)} =
blevel(P ).

Some instantiations The interest of the soft CSP framework is that it can ac-
comodate several soft constraint frameworks by just instantiating the absortpive
semiring. For instance,

– Classical CSPs are soft CSPs where the semiring is

KCSP = 〈{false, true},∨,∧, false, true〉

The induced order is false < true. The consistency function is F (η) =
∧

c∈C cη (i.e, F (η) = true iff η satisfies all the constraints). The best level
of consistency is blevel(P ) =

∨

η F (η) (i.e. blevel(P ) = true iff at least one

assignment satisfies all the constraints)
– Weighted CSPs are soft CSPs where the semiring is

KWCSP = 〈R, min, +,∞, 0〉

The induced order is the usual order among reals. The objective function is
F (η) =

∑

c∈C cη (i.e, F (η) is the sum of values given by all the constraints
to η). The best level of consistency is blevel(P ) = minη{F (η)}.



The two semirings above are totally ordered, so blevel(P ) coincides with the
optimum of the problem. That does not hold for partially ordered semirings, as
next section shows.

Figure 1 graphically represents a weighted CSP. Variables and constraints are
nodes and undirected (unitary for c1 and c3 and binary for c2) arcs, respectively,
and semiring values are written to the right of the corresponding tuples. The
variables of interest (the set con) are represented with a double circle. Here we
assume that the domain D of the variables contains only elements a, b and c.

X Y

〈a〉 → 9
〈a〉 → 9

〈b〉 → 1
〈b〉 → 5

〈c〉 → 9
〈c〉 → 5

〈a, a〉 → 8

〈a, b〉 → 2

〈c, a〉 → 8

〈c, b〉 → 2

〈b, a〉 → ∞

〈b, b〉 → ∞

〈a, c〉 → 2

〈b, c〉 → 1

〈c, c〉 → 2

c1

c2

c3

Fig. 1. A weighted CSP.

Note that Sol(P ) has support x and is Sol(P )(a) = 16, Sol(P )(b) = 7 and
Sol(P )(c) = 16, while the optimum of P is blevel(P ) = 7.

3.3 Partial order and cartesian product

Partially ordered semirings naturally arise whenever multi-objective optimiza-
tion problems are of interest. Indeed, it is easy to show how the cartesian prod-
uct KC of a family K1, . . . ,Kp of semirings (each one associated to an objective
function) is also equipped with a semiring structure, where the sum and product
operators are defined pointwise.

Proposition 4 (cartesian product semirings). Let {Ki = 〈Ai, +i,×i,0i,1i〉}1≤i≤p

be a family of semirings, and KC = 〈A, +,×,0,1〉 their cartesian product, de-
fined as

– A = A1 × A2 × · · · × Ap

– ∀v,w∈A, v + w = 〈v1 +1 w1, v2 +2 w2, . . . , vp +p wp〉
– ∀v,w∈A, v × w = 〈v1 ×1 w1, v2 ×2 w2, . . . , vp ×p wp〉
– 0 = 〈01,02, . . . ,0p〉
– 1 = 〈11,12, . . . ,1p〉

Then, KC is a semiring. Moreover, if each Ki is tropical (absorptive, idempo-
tent), then also KC is so.

The result is standard in soft CSP literature. Note that the order induced by
the semiring KC corresponds to the notion of dominance used in multi-objective
optimization.



Corollary 1. Let v, w ∈ KC . Then, v ≤KC
w iff for each i ∈ {1 . . . p} we have

vi ≤Ki
wi.

From Proposition 3, the best level of consistency of a problem P over semiring
KC is the lowest vector dominating the efficient frontier E(P ). However, we are
interested in computing E(P ) as the best level of consistency of some soft CSP
problem. The following section is devoted to this issue.

4 Semirings based on powersets

This section states the main theorem of the paper, namely, that for each soft
problem P over a semiring K, a new semiring I(K) and a semiring morphism
i : K → I(K) can be devised such that the best level of consistency for the
modified problem i(P ) coincides with the efficient frontier of P .

For the sake of readability, in the rest of the section we fix a (commutative)
semiring K = 〈A, +,×,0,1〉.

4.1 Partial correctness semiring

Let first introduce the notion of closure of a subset X ⊆ A:

Definition 8 (downward closure). Let K be a tropical semiring. Then, for a
set S ⊆ A we let ∆S denote its downward closure, i.e., the set {a ∈ A | ∃s ∈
S.a ≤K s}.

A set S is downward closed if S = ∆S (and any downward closure is so, since
∆(∆S) = ∆S), and we denote by L(A) the family of downward closed subsets
of A.

Proposition 5. Let K be an absorptive semiring. Then, the five-tuple L(K) =
〈L(A),∪,×H , {0}, A〉 is an absorptive semiring: its elements are the (not empty)
downward-closed subsets of A, S ∪ T is set (of subsets) union, and S ×H T =
∆(S × T ), for S × T = {s × t | s ∈ S, t ∈ T }.

The closure of {s × t | s ∈ S, t ∈ T } is necessary, since in general it is not
downward-closed. Note that the absorptiveness of K plays a pivotal role, since
it means that A = ∆{1}.

It is worthwhile to see the ordering associated to L(K).

Corollary 2. Let ∆S, ∆T ∈ L(K). Then, ∆S ≤L(K) ∆T iff for each s ∈ S

there exists t ∈ T such that s ≤K t.

This result tells us that our construction of L(K) is reminiscent of the so-
called partial correctness (or Hoare) powerdomain (a well-known tool in the field
of denotational semantics: see e.g. [6]), hence the name.

We now state the first main theorem of our paper.



Theorem 1. Let P = 〈C, con〉 be a soft CSP over the semiring K; and let
L(P ) = 〈C′, con〉 be the soft CSP over the semiring L(K) such that C′ = {i(c) |
c ∈ C}, for i(c)(η) = {c(η)}. Then, ∆(E(P )) = blevel(L(P )).

The closure ∆(E(P )) is necessary, since the sets in L(K) are downward-closed.
However, note that each constraint of a soft CSP problem P is defined only over
a finite set of functions V → D, since it is finitely supported and D is finite.
Thus, the efficient frontier (E(P )) is always a finite set, and thus we can improve
on the previous representation.

4.2 On finite representations of closures

Let us define a set S ∈ L(A) to be finitely downward-closed if there exists a
finite, not-empty set T ∈ A such that S = ∆(T ). It is easy to see that the family
Lf (A) of such sets can be equipped with a semiring structure.

Proposition 6. Let K be an absorptive semiring. Then, the five-tuple Lf (K) =
〈Lf (A),∪,×F , {0}, A〉 is an absorptive semiring: its elements are the finitely
downward-closed subsets of A, ∆S∪∆T is set union, and ∆S×F ∆T = ∆(S×T ),
for S × T = {s× t | s ∈ S, t ∈ T }.

The semiring Lf (K) is well-defined, since ∆S∪∆T = ∆(S ∪T ) and ∆(∆S×
∆T ) = ∆(S × T ) for any sets S, T . In fact, Lf (K) is a subsemiring of L(K): a
proper one, since there exist subsets that are not finitely downward-closed.

Of course, there may exist finite sets S, T such that S 6= T and ∆S = ∆T .
More precisely, this is due to the fact that a set S may be redundant, i.e., it
may contain elements s such that ∆(S − {s}) = ∆S. In general, it is impossible
to distill from a set S with infinite elements an irredundant set X such that
S = ∆X , while it is always possible if S is finite.

Proposition 7. Let S ∈ Lf (K), and let lubs S = {s ∈ S |6 ∃t : t ∈ S ∧ s ≤K t}.
Then, lubs S is an irredundant set, and moreover S = ∆(lubs S).

In fact, note that lubs S is the unique irredundant set generating S. Thus,
using Proposition 7, we may distill a semiring I(K), which is isomorphic (i.e.,
the inclusion is the semiring identity) to Lf (K), and whose elements belong to
the family I(A) of finite, irreducible subsets of A.

Proposition 8. Let K be an absorptive semiring. Then, the five-tuple I(K) =
〈I(A), +I ,×I , {0}, {1}〉 is an absorptive semiring: its elements are the finite
irreducible subsets of A, S +I T = lubs (S ∪ T ), and S ×I T = lubs (S × T ), for
S × T = {s × t | s ∈ S, t ∈ T }.

Proposition 9. Let K be an absorptive semiring. Then, the function ∆ : I(K) →
Lf (K), mapping S to ∆S, is a semiring isomorphism, with inverse given as
lubs : Lf (K) → I(K), mapping S to lubs S.



To prove that ∆ is a semiring isomorphim boils down to show that ∆(S +I

T ) = ∆S ∪ ∆T , and ∆(S ×I T ) = ∆S ×F ∆T . These are easily accomplished,
after noting that by definition ∆T = ∆(lubs T ) and lubs (∆(lubs T )) = lubs T .

We may now state the main theorem of our paper.

Theorem 2. Let P = 〈C, con〉 be a soft CSP over the semiring K; and let
I(P ) = 〈C′, con〉 be the soft CSP over the semiring I(K) such that C′ = {i(c) |
c ∈ C}, for i(c)(η) = {c(η)}. Then, E(P ) = blevel(I(P )).

The proof exploits the finiteness of the efficient frontier E(P ), in order to
prove that ∆(E(P )) = blevel(Lf(P )), and finally Proposition 9, noting that
E(P ) is irredundant.

4.3 Remarks on local consistency

One of the appealing aspects of the soft CSP framework is the development of
generic local consistency algorithms, which are employed to distill the best level
of consistency of a problem P , irregardless of the semiring at hand.

The following proposition is pivotal for extending the algorithms of local
consistency.

Proposition 10. Let K be an absortpive semiring. If K is idempotent, then also
both L(K) and I(K) are so.

Hence, the local consistency techniques applied for the soft problems over an
idempotent semiring K can still be applied for problems over I(K).

4.4 Summing up Section 4

This section contains the theoretical novelties of the paper. The first result is the
proof that for any absorptive semiring K, the semiring L(K) of its downward-
closed subsets is also absorptive (Proposition 5), and the associated order co-
incides with what is known in the literature as the partial correctness order
(Corollary 2). It is noteworthy that L(K) can be used to calculate, up-to clo-
sure, the efficient frontier of a soft CSP problem in K (Theorem 1).

We further improved on that by showing that each finitely downward-closed
set is uniquely represented by the set of its irredundant elements (Proposition 7).
Building on that we stated Theorem 2: our main result establishes a precise
correspondence between the efficient frontier of the original soft problem on K
and the best level of consistency of I(K).

Related with that, note that the sum and product operator of I(K) are
optimized with respect to Lf (K) because for any pair of irredundant sets S, T

we have lubs (S ∪ T ) ⊆ lubs S ∪ lubs T and lubs (S ×F T ) ⊆ lubs S × lubs T .



5 Examples of Application

In this section we illustrate the expressiveness of the powerset semirings for mod-
elling multi-objective problems. It is worth noting that the partial correctness
transformation on finite representations can be used to model any multi-objective
problem. The only requirement is that each criteria must be expressed over a
suitable semiring K.

5.1 Multi-Objective CSP

A multi-objective CSP (MC-CSP) is a soft CSP problem composed by a family of
p CSPs. Each criteria can be defined over the semiring KCSP . Then, a MC-CSP
problem is defined over semiring I(KCSP 1

× . . . ×KCSP p
).

Consider a problem with two variables {x, y}, two values in each domain
{a, b}, and two criteria to be satisfied. For the first criteria, the assignments
(x = a, y = a), (x = b, y = a), and (x = a, y = b) are forbidden. For the second
criteria, the assignments (x = b, y = a), (x = a, y = b), and (x = b, y = b) are
forbidden. Let

K2−CSP = 〈{f, t} × {f, t}, ∨̄, ∧̄, 〈f, f〉, 〈t, t〉〉

be the cartesian product of two semirings KCSP (one for each criteria), where f

and t are short-hands for false and true, respectively. ∨̄ is the pairwise ∨ and
∧̄ is the pairwise ∧. Then, the problem is represented as a soft CSP P = 〈C,X〉
over K2−CSP , where C = {Cx, Cy, Cxy} is defined as

Cx(a) = Cx(b) = Cy(a) = Cy(b) = 〈t, t〉
Cxy(a, a) = 〈f, t〉 Cxy(b, a) = 〈f, f〉
Cxy(a, b) = 〈f, f〉 Cxy(b, b) = 〈t, f〉

The solution of P is the constraint Sol(P ) with support {x, y} obtained as
Cx∧̄Cy∧̄Cxy. Since the variables of the problem are the same as the ones in
the support of the constraints, there is no need to project any variable out.
Moreover, since for all η, Cx(η) = Cy(η) = 〈t, t〉 and 〈t, t〉 is the unit element
with respect ∧̄, Sol(P ) = Cxy. The best level of consistency of P is blevel(P ) =
⊻η{Sol(P )(η)} = 〈t, t〉.

However, we want to obtain as the best level of consistency the set of semiring
values representing the efficient frontier E(P ) = {〈f, t〉, 〈t, f〉}. To that end, we
map the problem P to a new one, by changing the semiring K2−CSP using
the partial correctness transformation on finite representations. By applying the
mapping, we obtain a problem I(P ) = 〈C′,X〉 over semiring I(K2−CSP ), with
the following constraint definition

Cx(a) = Cx(b) = Cy(a) = Cy(b) = {〈t, t〉}
Cxy(a, a) = {〈f, t〉} Cxy(b, a) = {〈f, f〉}
Cxy(a, b) = {〈f, f〉} Cxy(b, b) = {〈t, f〉}

The solution of I(P ) is the same as for P . However, its best level of consis-
tency is blevel(I(P )) = {〈0, 1〉, 〈1, 0〉}, which is the efficient frontier of P . The
corresponding pareto-optimal solutions are (x = a, y = a) and (x = b, y = b).



5.2 Multi-Objective WCSP

A multi-objective WCSP problem (MO-WCSP) is a soft CSP problem composed
by p WCSPs. Each objective function is modelled with the semiring KWCSP .
Again, a MO-WCSPs is modelled over semiring I(KWCSP 1

× . . . ×KWCSP p
).

Consider a knapsack problem with two objects that must be either taken or
left behind. It is represented by variables {x, y} and a two-value domain {t, d}
(t and d mean take or discard, respectively). Each object has a weight if taken
(wx = 4 and wy = 2), and a profit loss if discarded (px = 1 and py = 6). We want
to minimize the global profit loss and the global weight. The task is expressed as
the simultaneous minimization of two functions: the total profit loss of discarded
objects, and the total weight of selected ones.

Objectives Fi are defined over a semiring KWCSP i
. Let

K2−WCSP = 〈R ×R, m̄in, +̄, 〈∞,∞〉, 〈0, 0〉〉

be the semiring resulting from KWCSP 1
× KWCSP 2

, while m̄in and +̄ are the
pairwise min and +, respectively.

The problem is represented as a soft CSP P = 〈C,X〉 over K2−WCSP , where
C = {Cx, Cy} defined as,

Cx(d) = 〈0, 1〉 Cy(d) = 〈0, 6〉
Cx(t) = 〈4, 0〉 Cy(t) = 〈2, 0〉

The solution of P is the constraint Sol(P ) where,

Sol(P )(dd) = 〈0, 7〉 Sol(P )(dt) = 〈2, 1〉
Sol(P )(tt) = 〈6, 0〉 Sol(P )(td) = 〈4, 6〉

The blevel(P ) = 〈0, 0〉, while E(P ) = {〈0, 7〉, 〈2, 1〉, 〈6, 0〉}. Again, if we apply
the partial correctness transformation, then blevel(I(P )) = E(P ) with pareto-
optimal solutions (x = d, y = d), (x = d, y = t), and (x = t, y = t), respectively.
Observe that 〈4, 6〉 does not belong to blevel(I(P )) since it is redundant with
respect to 〈2, 1〉.

6 Conclusions and further work

Problems involving the optimization of more than one objective are ubiquitous in
real world domains. They are probably the most relevant optimization problems
with a partially ordered objective function. So far, nobody has yet studied in
depth how to use the soft CSP framework to model multi-objective problems.
The only attempt is [2], where they use the least upper bound as notion of
solution, which is a relaxed notion regarding pareto-optimality.

Our paper addresses exactly this issue. For the first time, we distill a semiring
able to define problems such that their best level of consistency is the efficient
frontier of a multi-objective problem. This formalization is important for two



main reasons: we gain some understanding of the nature of multi-objective op-
timization problems; and we inherit some theoretical result from the soft CSP
framework.

We are currently investigating the semiring S(K) resulting from saturated
closure, i.e., whose elements are sets S that are both downward- and upward-
closed. More generally, we look for suitable constructions such that the resulting
absorptive semiring turns out to be a division semiring, if K is so. This would
allow for the application of local consistency algorithm to a larger family of case
studies, as shown in [1].
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