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Abstract. The computational tasks of model-based diagnosis and plan-
ning in embedded systems can be framed as soft-constraint optimization
problems with planning costs or state transition probabilities as prefer-
ences. Running constraint optimization in embedded systems requires to
reduce complexity, which can be achieved by combining dynamic pro-
gramming message-passing algorithms with message approximation. We
found that current approximation approaches such as Mini-Cluster Tree
Elimination (MCTE) lack flexibility in adapting to resource limits such
as limited memory, e.g. imposed by embedded controllers.
We propose a new message approximation method based on the adap-
tive abstraction of domains and constraints, extending upon MCTE. We
argue that our approach can be more flexibly adapted to imposed size
limits when applied to constraint optimization problems with big con-
straints and big domains, which are typical for diagnosis and planning.
It is further shown that the adaptation step is itself an optimization
problem, which can be relaxed to and solved as a linear optimization
problem.
From preliminary empirical tests we conclude that the method has po-
tential for diagnosis problems, but is probably limited with regard to
binary constraint optimization problems.

1 Introduction

New generations of technical devices are being developed that use models of
themselves to implement self-awareness capabilities, for example in assistant au-
tomotive systems and cognitive manufacturing systems [1]. Many of the under-
lying computational tasks – such as automatically determining the most likely
current state of the system (monitoring and diagnosis), or finding least-cost se-
quences of actions that drive the system towards desired states to compensate for
contingencies (planning and reconfiguration) – can be framed as soft-constraint
optimization problems [2] with planning costs or transition probabilities as pref-
erences. Such a common representational basis enables tight integration of the
different tasks.

However, constraint optimization is exponential in the number of system
variables, which is especially a problem given the limited resources (memory



and CPU time) available in embedded controllers. The problem can be eased by
decomposing the constraint model off-line into clusters and inferring solutions
on-line by passing messages between the clusters [3]. Such message-passing ap-
proaches are especially promising as models of technical systems often present
some inherent modularity (for instance, a car’s controller area network). Actu-
ally, one of the first approaches to constraint-based diagnosis used a message-
passing scheme [4].

Unfortunately, this can still lead to an infeasible message size (exponential in
the separator width of the decomposition). In the literature, mini-clustering [5]
has been suggested as a scheme to limit the memory requirements of structure-
based constraint optimization algorithms, by approximating messages instead
of computing them exactly. The idea of mini-cluster tree elimination (MCTE)
is to restrict the size of messages in the tree by partitioning the constraints
in the clusters into subsets (called mini-clusters) involving at most i different
variables. By combining only the constraints in a mini-cluster, one gets a set
of messages that approximate the cost function of the original message with an
upper (optimistic) bound, and this can be used as a heuristic for subsequent
search. The complexity of mini-cluster tree elimination is therefore O(r · ki),
where k is the largest domain size, and r is the total number of occurring soft
constraints [3].

However, when we tried to use mini-clustering as a reasoning scheme in em-
bedded constraint optimization, we encountered two problems. First, it is dif-
ficult to control the number of messages that need to be transmitted. If i is
small, the messages themselves are computed faster but their total number will
increase. Limiting the number of messages by suppressing some of them is hardly
a solution, because constraints are unique to their respective mini-cluster and
thus information about these constraints will be completely lost in the heuristic
approximation. Second, the parameter i allows only limited control over the size
of the resulting messages, because MCTE can only either omit a constraint or use
it in a message, without any intermediate steps. While this works for models with
small (binary) constraints and small variable domains, typical constraint models
for diagnosis and planning tend to have large domains and big constraints. For
instance, in a model of NASA’s Earth Observing Satellite (EO-1) [6], variables
have up to ten domain values and many constraints involve more than four vari-
ables. For such larger problems, mini-clustering offers only limited possibilities
to form the mini-clusters and therefore it cannot control the size of the messages
effectively. In fact, restricting the number of constraints occurring in messages
(or even limiting the number of variables in a constraint by projecting them on
a subset of their variables) will affect only the exponent of the space complexity;
depending on k, this can lead to big jumps in the possible message size.

The work presented in this paper extends upon the work previously presented
in [7]. Extending upon the mini-cluster scheme, we propose a more general ap-
proach to limit the size of messages exchanged between clusters. It allows for
finer control over the message size, and therefore enables better adaptation of
soft constraint message-passing algorithms to the tight resources in embedded



systems. Instead of omitting constraints from messages (as in mini-clusters), our
approach adaptively reduces the size of constraints by abstracting them, simi-
lar to the automated generation of search heuristics (pattern databases) in game
analysis and path search [8,9]. The key idea is to choose appropriate partitionings
of the domains, aggregating the variable values into abstract values, that limit
the worst-case complexity of messages by allowing only a limited number of total
distinctions. This partitioning affects both the base and the exponent of the mes-
sage complexity, and therefore allows for a more fine-grained control compared
to the mini-cluster parameter i. It is worth noting that using such abstractions,
one can reconstruct the behavior of the original mini-cluster algorithm as a spe-
cial case where the identical abstraction (preserving all distinctions) is applied
to the constraints inside a mini-cluster, and the trivial abstraction (eliminating
all distinctions) is applied to the constraints outside the mini-cluster.

We have implemented this approach as a variant of the existing message-
passing algorithm MCTE. The new algorithm, called Bucket Elimination with
Domain Abstraction (BEDA), was integrated into the open-source constraint
solver Toolbar [10] to allow comparison with MCTE and other constraint opti-
mization algorithms. Together with Toolbar the new algorithm is available to the
public from the Toolbar repository1. BEDA combines tree decomposition with
automated partitioning of variable domains, which reduces domain sizes and
yields smaller, abstract constraints that approximate the original constraints.
Additionally, in order to measure the quality of the approximation, we com-
bined the MCTE and BEDA inference methods with A* search, utilizing the
inferred messages as heuristic. This idea was introduced in [5].

2 Adaptive Domain Abstraction

2.1 Mini-Cluster Tree Elimination

We start by recalling the inference method MCTE for constraint optimization
problems. First we define the necessary constructs of a constraint optimiza-
tion problem (COP), tree decomposition and appropriate operators on soft con-
straints. We use the well known framework of weighted CSPs (WCSPs) [11].
It defines soft constraints as functions which map variable assignments to costs
{0, 1, . . . ,>}, with > as the maximum cost.

Definition 1. A constraint optimization problem (COP for short) R = 〈X,D,F 〉
is defined as follows:

1. X = {X1, . . . , Xn} is a set of n variables.
2. D = {D1, . . . , Dn} is the collection of the domains of the variables in X such

that Di is the domain of Xi. For a given variable Xi we may also denote
its domain by DXi

. The size of the domains are written as |Di| = di. We
write DY to denote the Cartesian product

∏
Xi∈Y

Di for some subset of the

1 http://mulcyber.toulouse.inra.fr/gf/project/toolbar/



variables Y ⊆ X. Accordingly, DX denotes the Cartesian product
∏

Xi∈X
Di of

all domains.
3. F = {f1, . . . , fr} is a finite set of r soft constraints. A soft constraint is a

function f on a sequence of variables V ⊆ X, called the scope of the con-
straint, such that f maps assignments (of variables in V to values in their
domains) to cost values: f :

∏
Xi∈V

Di 7→ {0, . . . ,>}. If an assignment is

mapped to >, it is considered inconsistent.
4. A solution to R is a consistent assignment to all variables. An optimal so-

lution minimizes the accumulated cost over all constraints.

Within the WCSP framework, soft constraint marginalization and combination
operators are given as

(⇓Y f) (t) = min
t′∈t↓Y

f(t′)

and
(
⊗
f∈C

f)(t) =
∑
f∈C

f(t↓scope(f)),

respectively, for some subsets Y ⊆ X and C ⊆ F . t↓Y is assignment t projected
onto Y . We write t′ ∈ t↓Y to refer to full assignments t′ in the set {t′ ∈ DX |t′↓Y =
t↓Y }, represented by t↓Y .

A tree decomposition for a given COP R = 〈X,D,F 〉 is a triple 〈T, χ, ψ〉,
where T = (V,E) is a tree, and χ, ψ are labeling functions which associate
with each node v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ F . The sets satisfy
three conditions, (1) for each function f ∈ F , there is exactly one node v ∈ V
such that f ∈ ψ(v), scope(f) ⊆ χ(v), (2) for each variable Xi ∈ X, the set
{v ∈ V |Xi ∈ χ(v)} induces a connected sub tree of T and (3) ∀i : Xi ∈ χ(v) for
some v ∈ V .

Given a COP R = 〈X,D,F 〉 and a tree decomposition 〈T, χ, ψ〉, solutions
can be inferred by passing messages between the tree nodes. Each node sends
and receives messages over the tree edges. Associated with each edge e ∈ E of
the decomposition tree T is the separator sep(u, v) = χ(u) ∩ χ(v) of the two
nodes u, v ∈ V linked through e. A message

m(u,v) =⇓sep(u,v)
⊗

f∈ψ(u)∪{m(i,u)|(i,u)∈T,i 6=v}

f

for a node u ∈ V is computed and send to the adjacent node v as soon as u has
received all its messages. MCTE extends this approach by partitioning the set
ψ(u) for a tree node u into subsets Q = {Q1, . . . , Qq} of constraints such that
the subsets do not contain more than i variables. The subsets are called mini-
clusters. For each mini-cluster Ql a mini-message h(u,v) =⇓sep(u,v)

⊗
f∈Ql

f is
computed. These are sent to node v instead of the single message m(u,v). The
combination of the mini-messages approximates the original message, somewhat
informal expressed as

⊗
Ql∈Q ⇓sep(u,v)

⊗
f∈Ql

f ≤ m(u,v) [3]. As stated earlier,
MCTE complexity is bound by the total number of cost functions and i: O(r ·ki).



The parameter i provides only a rough means to control the message size and
it is hard to control the number of messages. We assume, given tight resource
limits, that we have a hard size limit Tmax ∈ N, bounding the number of tu-
ples of messages generated during the message-passing phase. In our approach,
we compute a defined number of abstract messages (currently one) per cluster
strictly limited in size by Tmax.

2.2 Reducing Message Size Through Domain Abstraction

Before we explain our approach in detail we illustrate in the following exam-
ple how adaptive domain abstraction works compared to MCTE and CTE. We
denote the abstraction of some structure (a constraint f , a message m(u,v), a
domain Di) by writing its symbol with superscript (α) (f (α), m(α)

(u,v), D
(α)
i ).

u

v

χ(u) = {A,B,C,D,E}
ψ(u) = {f1, f2, f3}

χ(v) = {A,B,C,D}
ψ(v) = . . .

m
(u
,v

)

f1:
A B C cost
0 0 0 0
0 0 1 1

...
...

2 2 2 6
2 2 3 7

...
...

f2:
A B C D E cost
0 0 0 0 0 0
0 0 0 0 1 1

...
...

2 2 2 1 1 8
2 2 2 1 2 9

...
...

f3:
A E cost
0 0 0
0 1 1
...

...
2 1 3
2 2 4
...

...

CTE (m(u,v)):
A B C D cost
0 0 0 0 0
0 0 0 1 1

...
...

2 1 2 3 15
2 1 2 4 16

...
...

MCTE (h(u,v)(f1, f3)):
A B C cost
0 0 0 0
0 0 1 1

...
...

2 0 0 4
2 0 1 5

...
...

BEDA (m(α)

(u,v)):
A B C D cost

0α(0,1) 0α(0,1) 0α(0,1) 0α(0,1) 0
0α(0,1) 0α(0,1) 0α(0,1) 1α(2,3) 2

...
...

2α(3) 1α(2,3) 2α(3) 1α(2,3) 21
2α(3) 1α(2,3) 2α(3) 2α(4) 23

...
...

Fig. 1. Domain abstraction for a single tree decomposition node: From the soft
constraints f1, f2, f3 of node u, CTE computes message m(u,v), MCTE the mini-
message h(u,v)(f1, f3) and BEDA message m(α)

(u,v). The constraints and messages are
shown as tables of their tuples. The domains of the variables are finite sets of inte-
gers: DA, DC = {0, 1, 2, 3} and DB , DD, DE = {0, 1, 2, 3, 4}. Their abstractions are
{0α(0,1), 1α(2), 2α(3)} and {0α(0,1), 1α(2,3), 2α(4)}, respectively.

Figure 1 shows two nodes u and v of a tree decomposition, where u has
associated variables {A,B,C,D,E} and associated constraints f1, f2, f3 with
scopes {A,B,C}, {A,B,C,D,E} and {A,E}, respectively. Node v has associ-
ated variables {A,B,C,D}, its associated constraints are not important here.



The domains of the variables are finite sets of integers: DA, DC = {0, 1, 2, 3} and
DB , DD, DE = {0, 1, 2, 3, 4}. u sends the message m(u,v) to node v, its scope is
{A,B,C,D}. The constraints fi are check sum constraints, i.e. the cost of a
tuple is simply its check sum. Figure 1 depicts message m(u,v) for the case of
Cluster-Tree Elimination (CTE), where m(u,v) = min

E
(f1 + f2 + f3).

Consider now a size limit Tmax = 200 for the abstract messages in BEDA.
A comparable MCTE parameter i must be i < 5, since choosing i = 5 would
allow for messages as big as |DA| · |DB | · |DC | · |DD| = 4 · 5 · 4 · 5 = 400 (which
is actually the size of CTE message m(u,v)).

This means f1 and f3 can be combined in a mini-message (h(u,v)(f1, f3) in
figure 1) because their combined arity is ≤ 3, but f2 is simply too big and must
be omitted by MCTE. The only possibility to keep f2 would be to set i = 5,
which would however result in the above mentioned violation of the size limit
Tmax.

Turning to BEDA, violation of Tmax through m(u,v) is avoided by first
adapting abstract domain sizes for all Xi ∈ scope(m(u,v)) to Tmax: d

(α)
i =⌊

|{A,B,C,D}|
√
Tmax

⌋
=

⌊
4
√

200
⌋

= 3. Then we choose an according domain ab-
straction function τd

(α)
i (y) = τ3(y) to create abstract domains with d

(α)
i parti-

tion elements. The partitionings could for example group values of similar cost:
{0α(0,1), 1α(2), 2α(3)} for variables A,C and {0α(0,1), 1α(2,3), 2α(4)} for variables
B,D,E. The superscript notation 0α(0,1) indicates that concrete variable values
0, 1 are abstracted to value 0. These operations are part of the (possibly off-line)
adaptation step, which is concluded (after processing all other separators) by
forming a constraint abstraction function Γ .

During message passing, Γ is applied to the COP constraints. From these
abstract constraints, abstract messages are then computed. The abstract message
is shown in figure 1. The cost of an abstract tuple is a lower bound for the costs
of all its concretions. Consequently, the abstraction is an admissible heuristic for
the concrete constraint/message.

The abstract message now respects Tmax: |m(α)
(u,v)| = d

(α)
A · d(α)

B · d(α)
C · d(α)

D =
34 = 81. The information of the big constraint f2 is at least partly preserved, but
one can also see that the greedy approach abstracts still too coarse, especially
because it treats all domains equally. Note that in general, during the adaptation,
other separators elsewhere in the tree decomposition might require even smaller
domain sizes. For this example we assumed that this is not the case.

We argue that this approach allows a finer control over message sizes than
MCTE, which is illustrated in the example: In MCTE, a constraint might have
to be omitted due to the size limit, while using domain abstraction allows to
keep all constraints as abstractions while respecting the size limit.

Now we formally define the notions of domain and constraint abstraction and
show how to reduce the size of constraints and messages by reducing domain
sizes.

Definition 2. Given a COP R = 〈X,D,F 〉, we define the following:



1. A domain abstraction function τi : Di 7→ D
(α)
i is a surjective function which

maps the values in domain Di to a set D(α)
i , called the abstraction of Di, or

simply abstract domain. Values in D(α)
i are abstract values and are assigned

to the abstract counter parts of variables Xi: X
(α)
i . We write aα(v1,...,vk) to

indicate that values v1, . . . , vk ∈ Di are mapped to an abstract value a by
some domain abstraction function τi.

2. An abstract assignment t(α) is an assignment to a subset of abstract variables
Y (α) ⊆ X(α). An abstract assignment is created by applying the appropriate
domain abstraction functions τi to each value v ∈ Di in the concrete as-
signment. We denote this relationship by t(α) = τ(t), where τ represents the
combined application of the domain abstraction functions τi.

A domain abstraction function creates a partitioning of the domain. This means
abstract values can be seen as sets which aggregate the original concrete val-
ues and, accordingly, abstract assignments as sets of concrete assignments. We
express this fact by writing t ∈ t(α) when referring to a concrete assignment t
which is abstracted through the abstract assignment t(α).

Definition 3. Let R = 〈X,D,F 〉 be a COP and τi the domain abstraction
functions for each domain Di. Then a constraint abstraction function Γ : F 7→
F (α) is a function which maps soft constraints f ∈ F to abstract soft constraints
f (α) ∈ F (α). The scope of f (α) are the abstractions of the variables in the scope
of f : {X(α)

i |Xi ∈ scope(f)}. f (α) is defined through f and τ by

∀t ∈ Dscope(f) : f (α)(τ(t)) = min
t′∈τ(t)

f(t′)

Applying given domain abstraction functions τi to all domains in COP R =
〈X,D,F 〉 and the constraint abstraction function Γ to all constraints we receive
a new COP R(α) = 〈X(α), D(α), F (α)〉. The new COP is hopefully easier to solve
as its domains and therefore constraints can be smaller. The abstraction func-
tions only modify the number of possible assignments of R, but leave constraint
network and the cost structure, i.e. the set {0, . . . ,>} unchanged. Therefore,
R(α) is just another WCSP and can be solved applying the same operations.

Proposition 1. Let R = 〈X,D,F 〉 be a COP and R(α) = 〈X(α), D(α), F (α)〉 its
abstraction, induced by appropriate functions τ and Γ . Then for all constraints
f ∈ F and their abstractions f (α) ∈ F (α), f (α) is a lower bound for f :

∀t ∈ Dscope(f) : f (α)(τ(t)) ≤ f(t)

Furthermore, for all assignments t to variables X, the cost of its corresponding
abstract assignment t(α) = τ(t) to X(α) is a lower bound on the cost of t.

This means that in message-passing, we can approximate the concrete messages
with abstract messages and, just as mini-cluster messages, use them as admissible
heuristic in a subsequent search for an optimal solution.



2.3 BEDA Algorithm

The algorithms 1 and 2 show the greedy domain size adaptation and BEDA,
respectively. The pseudo code in algorithm 2 is partly taken from the CTE code
in [12]. The BEDA algorithm essentially consists of these three steps: (1) Find
domain partitionings and generate the constraint abstraction function Γ , (2)
perform message-passing with abstract messages computed from Γ -abstracted
constraints, and (3) find the optimal solution(s) using the abstract messages as
heuristic in an A* search.

The current implementation of the domain size adaptation finds partitionings
through a rather simple greedy approach, which adapts message sizes locally for
each cluster. An improvement could be to use linear optimization for this step
instead, which will be explained in the next sub section. Also, only a single
message is computed per cluster and only a single abstraction function Γ is
formed for all constraints.

Algorithm 1 greedy algorithm GreedyAF to compute abstraction function Γ
1: function GreedyAF(tree decomposition 〈T, χ, ψ〉, COP 〈X,D,F 〉, size limit

Tmax)
2: maxDoms← a mapping from variables X to their respective domain sizes |D|
3: for sep(u, v) ∈ T do
4: t←

Q
x∈sep(u,v)maxDoms(x) // The size of this cluster’s message

5: if t > Tmax then
6: for x ∈ sep(u, v) do
7: maxDoms(x) := min(maxDoms(x),

¨
|sep(u,v)|√Tmax

˝
)

8: end for
9: end if

10: end for
11: τ ← ∅
12: for x ∈ X do

13: τx ←

(
τmaxDoms(x) |Dx| > maxDoms(x)

τ ID |Dx| ≤ maxDoms(x)
14: τ ← add τx to τ
15: create Γ according to the set of domain abstraction functions τ
16: end for
17: return Γ
18: end function

2.4 Domain size adaptation as linear optimization problem

Our aim is not only to reduce domain sizes, but to reduce them to match a
given size limit Tmax as exact as possible, while staying strictly below it. The
adaptation of domains to the limit can be formulated as an optimization prob-
lem with the objective to maximize the number of partition elements for each



Algorithm 2 Pseudo code for the BEDA algorithm.
1: function BEDA(tree decomposition 〈T, χ, ψ〉, COP 〈X,D,F 〉, size limit Tmax)
2: Γ := GreedyAF(< T, χ, ψ >, < X,D,F >, Tmax) // Compute the

constraint abstraction function Γ
3: for node u ∈ T do
4: if u has received messages from all adjacent nodes other than v then
5: compute the abstraction of all constraints in ψ(u) by applying Γ :

Γ (ψ(u))

6: m
(α)

(u,v) =⇓sep(u,v) (
N

f(α)∈Γ (ψ(u))∪{m(α)
(i,u)|(i,u)∈T,i6=v}

f (α))

7: send m(α)

(u,v)

8: end if
9: end for

10: generate optimal solution sol through A* search using the messages m(α)

(u,v) ∈ T
as heuristic

11: return sol, T
12: end function

domain while not harming Tmax for any of the messages. An according domain
abstraction function τd

(α)
i is then formed for each domain Di. d

(α)
i is the desired

size of the abstract domain, and τd
(α)
i is a function which creates exactly d

(α)
i

partition elements. An example for such a function is τ4(x) := xmod 4. The ob-
jective of the optimization is then accordingly to maximize d(α)

i for all domains
Di. Together, the functions τd

(α)
i then induce the function Γ which is applied to

all constraints during message-passing.
The potential for improvement over the current implementation of domain

size adaptation, GreedyAF, is illustrated in the following example:

Example 1. Consider a COP R with three variables A,B,C and a tree decom-
position of R with three nodes {v1, v2, v3}, where nodes v1, v2 and v2, v3 are
connected. The according χ-labels are χ(v1) = {A,B,C}, χ(v2) = {A,B},
χ(v3) = {A}. For this example, we can ignore the constraints of R. Let the
domain sizes be dA = 12, dB = 2, dC = 8. Then two message sizes are
given through the two separators sep(v1, v2) = {A,B} and sep(v2, v3) = {A}:
|m(v1,v2)| = dA · dB = 24, |m(v2,v3)| = dA = 12. Let further Tmax = 15. The first
message violates the size limit, and the greedy adaptation yields d(α)

A = d
(α)
B =⌊

|sep(v1,v2)|
√

15
⌋

=
⌊

2
√

15
⌋

= 3 as sizes for D(α)
A and D(α)

B .

Two disadvantages of the greedy approach become obvious: (1) the size of mes-
sage m(α)

(v1,v2)
is d(α)

A · dB = 3 ∗ 2 = 6 2, where it would have sufficed to, e.g., have
dA = 7 in order to keep the size limit and have a bigger (and thus more infor-
mative) message m(α)

(v1,v2), and (2) the greedy approach may compute abstract

2 If the computed abstract domain size is actually bigger than the original size, the
original size is retained because τk(x) = xmod k preserves all domains with size ≤ k.



domain sizes which are bigger than the concrete ones. The latter case may occur
if domains vary largely in size.

Due to these weaknesses it is worth looking at methods for adaptation which
find a globally optimal or near optimal adaptation. We hope to achieve this
by formulating the problem of domain size adaptation as a linear optimization
problem (LOP) with relaxed variables, and solve it using standard solvers like
lp_solve3 or GLPK4. The relaxation occurs because the abstract domain sizes
d
(α)
i , which are the variables of the LOP, are represented as real values.

Let sep(e) be the separator sep(u, v) associated with edge e ∈ E connecting
nodes u, v ∈ V . Then the objective of having as big abstract domains as possible
while not harming Tmax is captured by the following optimization problem:
Maximize, for each edge ej , the product of all abstract domain sizes for all
variables in sep(ej) while staying below the global message size limit Tmax:

∀ ej : max
∏

Xi∈sep(ej)

d
(α)
i

∀ ej : Tmax ≥
∏

Xi∈sep(ej)

d
(α)
i

∀i = 1..n : di ≥ d
(α)
i

We assume that there are p edges and thus separators. The inequalities di ≥
d
(α)
i represent the desire to have abstract sizes which are actually smaller or

equal than their concrete counterpart. The problem can be reformulated into a
linear optimization problem by applying log to the equations, i.e.

Tmax ≥
∏

Xi∈sep(ej)

d
(α)
i ⇔ log Tmax ≥

∑
Xi∈sep(ej)

log d
(α)
i

for all edges ej . This requires the above mentioned relaxation of integer vari-
ables to real variables. For brevity we set ldi := log d

(α)
i . Now, since max(

∑
) =∑

(max) the p maximization criteria can be rewritten as a single one:

max
∑

Xi∈sep(e1)

ldi +
∑

Xi∈sep(e2)

ldi + · · ·+
∑

Xi∈sep(ep)

ldi

A single domain size d(α)
i may influence more than one message, since variable

Xi can occur multiple times in various separators. This means, if variable Xi

appears in the separators for edges e1, e2, e3, then its according domain size
d
(α)
i occurs three times in the above maximization criterion. With the factors
λi denoting how often a variable Xi appears in all separators, we have the final

3 http://lpsolve.sourceforge.net/
4 http://www.gnu.org/software/glpk/



LOP:

max λ1ld1 + λ2ld2 + · · ·+ λnldn

e1 : log Tmax ≥
∑

Xi∈sep(e1)

ldi

...
ep : log Tmax ≥

∑
Xi∈sep(ep)

ldi

∀i = 1..n : log di ≥ log d
(α)
i

After solving this LOP one can retrieve the abstract domain sizes via d(α)
i =⌊

bldi
⌋
, where b is the basis of the chosen logarithm. Note that due to the relax-

ation from integer values (domain sizes) to real values for the LOP the found
solution is only near optimal, i.e. the found domains sizes may be smaller than
the optimal solution. It’s not clear yet how much overhead formulating and solv-
ing this LOP imposes. However, this computation step can also be taken off-line.

3 Experimental Results and Discussion

Preliminary results were obtained by empirically testing BEDA against MCTE
on a diagnosis problem, two simple block-world planning problems and a ra-
dio link frequency assignment problem (RLFAP) generated with GRAPH [13].
The tests were run on a BEDA-Implementation employing greedy adaptation of
abstract domains and using domain abstraction functions of the form τd(x) :=
xmod d. The diagnosis problem is one derived from a diagnostic scenario of the
EO-1 satellite [6], the other problems were taken from the benchmark library
which comes with Toolbar.

The diagrams in figure 2 either show the approximation quality or the time
consumption (Y-axis) versus the imposed message size limit (X-axis). The ap-
proximated messages where used as heuristic in a subsequent A* search for the
optimal solution, except for RLFAP. The A* space consumption indicates the
quality of the heuristic and therefore also the approximation quality. In case of
RLFAP the lower bound found by BEDA/MCTE is used as quality indicator.
Note that in the former case lower values mean better quality, while it’s the op-
posite in the latter case. Finally, the solid and dotted lines show the performance
of MCTE and BEDA, respectively.

Results from the test on the EO-1 diagnosis problem, depicted in figure 2
(1a), appear promising. Clearly, the larger the size limit, the better the heuristic
approximation achieved during the message-passing phase, and thus the lower
the searches space consumption. This tendency can be observed both for MCTE
and BEDA. However, for MCTE, the message size proceeds only in relatively
coarse steps, as it can only indirectly be controlled through the parameter i
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Fig. 2. (1a,b) Result of running MCTE and BEDA on a diagnosis problem from NASA
satellite EO1. Size: 73 variables, domain sizes 2-9, 45 constraints with arity 2-6. The
image to the right shows the time consumed by MCTE and BEDA and the subsequent
A* search. (2a,b) Result of running MCTE and BEDA on bwt3c.wcsp, left hand side,
and bwt4cc.wcsp, right hand side. The bwt3c problem has 45 Variables with domain
sizes 2-11 and 685 binary constraints, the bwt4cc problem 179 variables with domain
sizes 2-18 and 7109 binary constraints. (3a,b) Result of running MCTE and BEDA on
graph07.wcsp from the CELAR benchmark suite. Size: 141 variables with domain sizes
6-44 and 2213 binary constraints.



(maximum number of variables in a mini-cluster). In comparison, BEDA en-
ables finer control of the message size, potentially better adapting to the size
limit imposed by, e.g., an embedded system. Note also that for this example, at
a certain minimum size of the messages, BEDA yields a better heuristic than the
mini-cluster approximation, given the same message size limit. This is intrigu-
ing considering that BEDA sends fewer messages per cluster than MCTE. We
attribute this to the fact that at least in this real-world example, the approxima-
tion of a cluster message through local combinations of its soft-constraints as in
MCTE is less informative than a global (though coarse) approximation as used
in BEDA. Moreover, the positive results are even more interesting considering
the relative weak greedy adaptation method.

The diagram in (1b) shows the time consumed by both approaches and the
subsequent A* search. As can be seen here the time for computing and passing
along the BEDA messages was comparable to or even smaller than for MCTE,
that is, computing the domain abstractions did not incur significant overhead
over forming the mini-clusters.

BEDA shows worse performance than MCTE in the results for planning
problems bwt3c and bwt4cc (diagrams (2a,b) in figure 2, respectively) and for
the RLFAP problem (diagrams (3a,b) for approximation quality and time con-
sumption). Two points, however, might indicate additional potential: First, in
bwt3c, with size limit roughly 200 BEDA seems to perform slightly better than
MCTE. And second, for very strict size limits (even as low as one tuple) BEDA
finds a better lower bound for the RLFAP problem than MCTE. An explana-
tion for the latter point might be that when imposing very strict limits as in this
case, MCTE must omit nearly all constraints, while BEDA at least keeps a very
coarse one-tuple abstraction. This seems to save more information in this case.

Limits of the method are indicated through the overall poor performance
compared to MCTE on the block-world and RLFAP problems. Three points
may explain the poor performance: First, the implementation uses the greedy ap-
proach for domain size adaptation (which was shown to be weak) and it employs
domain abstraction functions (τd(x) := xmod d) which do not take into account
the cost structure. This may greatly harm performance since, e.g., tuples with
very low and very high costs might be combined. Second, the block-world and
RLFAP consist exclusively of binary constraints. As mentioned we see BEDA’s
potential in problems with big constraints (> 4 variables), and these results
indicate that MCTE is the better choice for problems with binary constraints.
And third, in case of BEDA only a single (size limited) message was computed
per cluster, while with MCTE the number of (size limited) messages was not
restricted.

4 Related Work and Conclusion

In this paper we presented an approach to constraint optimization in the do-
main of embedded diagnosis and planning, based on the message-passing soft
constraint algorithm MCTE. The novel method, called Bucket Elimination with



Domain Abstraction, addresses the problem of adapting approximation tech-
niques used in constraint optimization to reduce complexity. Current approaches
like MCTE provide such an approximation, but are however not flexible enough.
This can lead to big jumps in the adaptation of the approximation to given
resource limits. The new method extends MCTE by combining the message-
passing scheme with adaptive domain abstraction. Test results show the methods
potential especially for diagnosis problems, but indicate limitations on problems
with binary constraints.

The idea of constraint abstraction is not new. Two frameworks for abstracting
COPs have been introduced by [14] and [15]. The authors of [14] aim to find
optimal solutions more quickly via the abstraction of a semi-ring constraint
network [11], while the objective of [15] is to find upper and lower bounds for
the optimal solution of a valued CSP by simplifying its valuation structure [11].
Essentially, both frameworks abstract COPs by changing/simplifying the set of
preference values, e.g. from [0, 1] to {false, true}. Our work differs from [14]
and [15] in that our abstraction changes the domains rather than the set of
preference values. Specifically this means that the same operations can be applied
to the concrete problem and its abstraction. The works [16] and [17] formulate
abstraction schemes for aggregating variable values. However, the authors of
[16] formulate a framework for classical CSPs5, while we focus on constraint
optimization. [17] is very close to our approach, the main difference is that we
focus on adapting the abstraction to given resource limits within the context of
embedded systems.

For future work it remains to conduct further tests on other problems and do
a rigorous complexity analysis to reveal the potential of the approach. Further-
more, we hope to improve BEDA performance by employing linear optimization
for the domain size adaptation step. This direction seems promising since LP
solving is a big improvement over the current very simple greedy approach. Also,
we are working on more refined strategies for the automatic adaptation of the
abstraction. A particular promising direction is iterative refinement of the ab-
stractions, based on ideas presented in [17,8,9]. Our main goal here is to achieve
better utilization of embedded resources, by enabling more fine-grained control
over the message size in message-passing algorithms. Another goal in embedded
diagnosis and planning is to focus the computation on the best solutions only,
as in this application context the controller typically needs to know only a few
best solutions [18]. Our abstraction-based approach can be helpful in this respect
also, as we can easily bias the computation of the abstraction: the idea is to use
a more fine-grained resolution for values with high utility, and a more coarse-
grained resolution for values with lower utility. We are currently experimenting
with such biased abstraction strategies for embedded diagnosis and planning
applications.

5 The authors claim, however, that their framework is quite easily extendable to con-
straint optimization. It could be that such a hypothetical extension would than also
account for our special case of domain abstraction.
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