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Survival analysis

Survival analysis : interest in distribution of time to an event T (depending
on covariates)

Censoring : T is not always/directly observed
ãÑ Most widely studies : right censoring pY “ minpC, T q,∆ “ 1ITďCq, with
C censoring time.

Current status data :
$

&

%

C observation time
∆ “ 1ITďC
Z covariate

ãÑ Require assumptions on PrC|T,Zs (most usual : T KK C|Z ).
ãÑ Vocabulary of survival analysis : T is the time of death and ∆ is the
current status (dead or alive) at the observation time.
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An example of current status data

Distribution of the time T of floral initiation in maize, as a function of
covariates Z (génotype, etc)

At time Ci, the plant i is dissected and we observe if the floral initiation has
already occured (∆i “ 1) or not (∆i “ 0)
ãÑ the observation process destroys the plant.

time
Ti CiPlant i

No flowering Flowering

Goal : infer PrTi|Zis from a sample i “ 1, . . . , n of plants with varying
observation times pCiqi“1,...,n.

∆i indicates if Ti lies in r0, Cis or rCi,`8r. Current status data framework
is also called interval censoring "case 1".
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Brief review on estimation from current status data

pTiqi“1,...,n unobserved, pCi,∆i “ 1ITiďCi , Ziqi,...,n observations

Non Parametric Maximum Likelihood Estimator of the c.d.f. The
likelihood only depends on the value of the c.d.f. at the observation points
pCiq, and admit a unique minimiser over th : R` ÞÑ r0, 1su with an explicit
expression.

Quantile regression is based on the invariance of quantiles by monotone
tranformations, and the observation that the following function is decreasing.

h : x ÞÑ 1IxďC
T ÞÑ ∆

Inverse Probability of censoring Weighted Estimator (IPWE) : the risk
ErLppT,Zq, hqs is estimated by an empirical contrast with observation ∆i

weighted by the inverse of the "probability to be observed" at Ci : fCpCiq.

Semi-parametric models : the distribution of T is linearly related to the
covariates Z

PrT |Zs “ φpT, xβ, Zyq

Dependent censoring : models on the joint distribution of T and C
6 / 41



Framework of this presentation

We consider an i.i.d. sample pTi, Ci, Ziqi“1,...,n and the observation sample

pCi, Zi,∆iqi“1,...,n with

˛ ∆i “ 1ITiďCi .
˛ Zi P R.
˛ Ti, Ci P R`
˛ Ti KK Ci|Zi

Goal : Estimate the conditional c.d.f. of Ti given Zi

F pt, zq “ PrTi ď t|Zi “ zs

on a compact A “ A1 ˆA2 Ă R` ˆ R.
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Least-square contrast

Let pCi, Zi,∆iqi“1,...,n the i.i.d. observation sample with ∆i “ 1ITiďCi .
By définition of ∆i,

Er∆i|Ci “ c, Zi “ zs “ Er1ITiďCi |Ci “ c, Zi “ zs

“ PrTi ď c|Zi “ zs

“ F pc, zq

Least-square contrat : for h : A ÞÑ R let

γnphq “
1

n

n
ÿ

i“1

p∆i ´ hpCi, Ziqq
2

Then
pF “ arg min

hPF
γnphq  Choice of F ?

Model selection :
˛ build a collection of estimators on finite dimensional linear subspaces of L2

pAq
called models

˛ select a model by a data-driven criterion.
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General context

Consider an i.i.d. observation sample of size n

Let F P L2pIq with I Ă R a function related to the distribution of the sample.

Consider a semi-norm } ¨ }0 on L2pIq so that we want to control Er}F̂ ´F }20s.

Consider an empirical contrast γn : L2pIq ÞÑ R such that

Erγnphqs “ }F ´ h}20 ` cte

with cte independent of h.
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Collection of estimators

Consider a collection Mn “ tSm,m P Inu of finite dimensional linear
subpaces L2pIq called models :

Sm “ vecttφm1 , . . . , φ
m
Dmu “

#

h “
Dm
ÿ

k“1

akφ
m
k , pa1, . . . , aDmq P RDm

+

ãÑ histogram, wavelets...

Once the collection Mn fixed, "model" refers to either m or Sm.

For each m P In, let

pFm “ arg min
hPSm

γnphq “
Dm
ÿ

k“1

pamk φ
m
k

ãÑ For a given model Sm,the estimation of F reduces to estimate a finite
number of parameters pâmk q.
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How to choose an estimator among the collection t pFm,m P Inu ?

Oracle : best model in the collection

moracle “ arg min
mPIn

E
”

} pFm ´ F }
2
0

ı

Oracle unknown (depends on the true function F )

Idea : estimate E
”

} pFm ´ F }
2
0

ı

up to a constant independent of m.
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Bias-variance decomposition. Let Fm“arg min
hPSm

}h´ F }20 “ arg min
hPSm

Erγnphqs

the } ¨ }0-projection of F on Sm.

Thus x pFm ´ Fm
loooomoooon

, Fm ´ F
looomooon

y0 “ 0 therefore

P Sm P SKm

E
”

} pFm ´ F }
2
0

ı

“ }Fm ´ F }
2
0 ` E

”

} pFm ´ Fm}
2
0

ı

Bias }Fm ´ F }20 “ min
hPSm

Erγnphqs ` C estimated by γnp pFmq “ min
hPSm

γnphq.

Variance E
”

} pFm ´ Fm}
2
0

ı

ď ADm{n

Model selection :

pm “ arg min
mPIn

!

γnp pFmq ` penpmq
)

with penpmq “ θA
Dm

n
ãÑ θ ą 1 necessary to control the risk

Model selection estimator : pF
pm
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Bias and variance

Ex : density estimation from an i.i.d. sample by histogram with 6 bins (Dm “ 6)

F

F̂m
Fm
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Bias-variance compromise. As the dimension Dm increases

˛ Bias }Fm ´ Fm}20 decreases

˛ Variance E
”

} pFm ´ Fm}
2
0

ı

ď ADm{n increases

F
Fm

Bias

F
Fm

Bias

F
Fm

Bias

F

F̂m
Fm

variance

F

F̂m
Fm

variance

F

F̂m
Fm

variance

Dm “ 5 Dm “ 10 Dm “ 30
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The dimension of the optimal model increases as the regularity of F decreases.

 F

F̂m

 F

F̂m

Ð More smooth F

 f

f̂m

 f

f̂m

Ð Less smooth F

Dm “ 6 Dm “ 20
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Result : oracle inequality

The risk of the model selection estimator pF
xm satisfies :

E
”

} pF
xm ´ F }

2
0

ı

ď C0 inf
mPIn

"

}F ´ Fm}
2
0 `A

Dm

n

*

p1q

Proof based on concentration inequalities [Talagrand]

Optimality among the collection of estimators

ADm{n is only an upper-bound of the variance

More general optimality : minimax rate.
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Rate of convergence over regularity classes

Consider classes of regularity Hβ s.t. for suitable approximation spaces Sm :

inf
hPSm

}h´ F }0 ď C0D
´β
m @F P Hβ

If F P Hβ , the bias/variance sum for a model Sm is upper-bounded by

D´2β
m

loomoon

` θA
Dm

n
loomoon

Œ as Dm Õ Õ as Dm Õ

The bias-variance compromise is achieved with Dm9n
1{p2β`1q and the

rate of convergence = is n´2β{p2β`1q
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Minimax rate of convergence

Minimax lower bounds. We prove that n´2β{p2β`1q is the minimax rate of
convergence over Hβ that is the rate of convergence of the best possible
estimator in a given context (regression, current status) based on a
n´sample for functions in Hβ :

inf
pFn

sup
FPHβ

E
”

} pFn ´ F }
2
0

ı

n2β{p2β`1q ě κ1

ãÑ Computing based on maximum coverage of Rn-balls.

Therefore, the model selection estimator is minimax

κ1 ď inf
pFn

sup
FPCβ

E
”

} pFn ´ F }
2
0

ı

n2β{p2β`1q ď E
”

} pF
xm ´ F }

2
0

ı

n2β{p2β`1q ď κ0

pF
xm is called adaptive as it adapts to the unknown regularity of F .
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Summary

Define a collection of finite dimensional linear subspaces of L2 called models
Compute a collection of estimators by minimsation of a contrast over the
collection of models
Estimate the bias-variance sum of each estimator and select the model
Oracle inequality : the risk of the selected model is smaller than the risk of
the best model up to a multiplicative constante
More general optimality : minimax rate of convergence over classes of
regularity
Comment : choice of the approximation basis used to build the collection of
models Mm

˛ The nature of the basis affect the bias

˛ Bases are associated to regularity classes which allow control of the bias
(global/local regularity)

˛ Choice may be guided by desired property of the estimator (differentiability,
localisation on an interval...)
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Reminder of the framework

Consider pTi, Ziqi“1,...,n i.i.d with Ti P R`, Zi P R and Ti unobserved.

Observations
pCi,∆i “ 1ITiďCi , Ziqi“1,...,n

with pCiqi“1,...,n i.i.d. positive and Ci KK Ti|Zi.

We want to estimate the conditional c.d.f. of Ti

F pt, zq “ PrTi ď t|Zi “ zs

on a compact A “ A1 ˆA2 Ă R` ˆ R.

As Er∆i|Ci, Zis “ F pCi, Ziq, we consider the least square contrast

γnphq “
1

n

n
ÿ

i“1

p∆i ´ hpCi, Ziqq
2
, h : A ÞÑ R
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Collection of models on A1 ˆ A2

Consider two collections of models on A1 and A2 :

Mpjq
n “ tSpjqmj ,mj P I

pjq
n u, j “ 1, 2 and

pφm1

k q
k“1,...,D

p1q
m1

and pψm2

k q
k“1,...,D

p2q
m2

orthonormal basis of Sp1qm1 and Sp2qm2 .

Linear subspaces of L2pA1 ˆA2q built as tensor products of the linear
subspaces of L2pA1q and L2pA2q. For every m “ pm1,m2q, let

Sm “ Sp1qm1
bSp2qm2

“

$

&

%

pt, zq P A ÞÑ

Dm1
ÿ

k“1

Dm2
ÿ

`“1

amk,`φ
m1

k ptqψm2

` pzq, pamk,`qk,` P RDm

,

.

-

linear subspace of L2pAq of dimension Dm “ D
p1q
m1D

p2q
m2

Finally, the collection of model on L2pAq is

Mn “ tSm,m P In “ Ip1qn ˆ Ip2qn u
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Example : Let A1 “ A2 “ r0, 1s, and

$

&

%

S
p1q
m1 “ regular histograms with D1 bins on r0, 1s “ vect

!

1IJ1
k
, k “ 1, . . . , D1

)

S
p2q
m2 “ regular histograms with D2 bins on r0, 1s “ vect

!

1IJ2
`
, ` “ 1, . . . , D2

)

Then
Sp1qm1

b Sp2qm2
“ vect

!

1IJ1
kˆJ

2
`
, k “ 1, . . . , D1, ` “ 1, . . . , D1

)
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Least square estimators

γnphq “
1

n

n
ÿ

i“1

p∆i ´ hpCi, Ziqq
2

For every Sm PMn,
pFm “ arg min

hPSm
γnphq

pFm is uniquely defined on the observations design pC,Zq

[notation : C “ pC1, . . . , Cnq and ∆ “ p∆1, . . . ,∆nq]

Collection of estimators t pFm,m P Inu.
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We consider two risks to quantify the distance between F and an estimator pFm

The empirical risk : we show that

Erγnphq|C,Zs “ }h´ F }2n ` cte with }h0}
2
n “

1

n

n
ÿ

i“1

ph0pCi, Ziqq
2

thus we consider the risk

E
”

} pFm ´ F }
2
n|C,Z

ı

ãÑ Evaluate the quality of estimation at the observations : naturally arise in
least-square
The integrated risk

E
”

} pFm ´ F }
2
ı

with }.} the L2-norm

ãÑ More general control
ãÑ Requires additional assumption to control the behaviour of the function
out of the observations.

We will first state an upper bound for empirical risk, then derive the result for the
L2-risk.
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Model selection

Bias-variance decomposition for the empirical risk : let
Fm “ arg minhPSm }F ´ h}

2
n,

E
”

} pFm ´ F }
2
n|Z,C

ı

“ }Fm ´ F }
2
n ` E

”

} pFm ´ Fm}
2
n|Z,C

ı

Bias estimated by γnp pFmq.

Variance : as ∆i has Bernoulli distribution

E
”

} pFm ´ Fm}
2
n|Z,C

ı

ď
1

4

Dm

n
with Dm “ Dp1qm1

Dp2qm2

Model selection : let

pm “ arg min
mPIn

!

γnp pFmq ` penpmq
)

with penpmq “
θ

4

Dm

n
, θ ą 1
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Oracle inequality for the empirical risk

Theorem
Assume that for every b ą 0, for j “ 1, 2, there exists Bjpbq s.t.

ÿ

mPI
pjq
n

exp

ˆ

´b

b

D
pjq
mj

˙

ď Bj pH0q

Then, there exists constants C1 and C2 such that,

E
”

} pF
xm ´ F }

2
n|C,Z

ı

ď C1 inf
mPIn

"

inf
hPSm

}F ´ h}2n `
Dm

n

*

`
C2

n

The model selection estimator realises the bias-variance compromise
There is no assumptions on the distributions of C and Z.
The result holds for non-random Z and/or C.
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Integrated risk : additional assumptions

pH1q pC,Zq has a density and there exists 0 ă h0 ď h1 ă 8 s.t.

h0 ď fpC,Zqpt, zq ď h1, @pt, zq P A

ãÑ guarantees sufficiently dense observations on the estimation set A and the
equivalence between norms } ¨ } and } ¨ }fpC,Zq

“ Er} ¨ }2ns

pH2q Restriction of the number of models in the collection Mn and

max
mPMn

Dm “ max
m1PMp1q

n ,m2PMp2q
n

Dp1qm1
Dp2qm2

ď
?
n{ logpnq

pH3q Assumptions related to the nature of the models.
ãÑ satisfied for classic collections (piecewise polynomials, wavelet,
trigonometric basis...)
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Oracle inequality for the integrated risk

Corollary
Assume that pH0q, pH1q, pH2q and pH3q hold, there exists constants C 11 and C 12
such that,

E
”

} pF
xm ´ F }

2
ı

ď C 11 inf
mPIn

"

inf
hPSm

}F ´ h}2 `
Dm

n

*

`
C 12
n

Optimality over the collection of estimator up to a multiplicative constant.
Optimality in a more general sense ? Minimax bound over classes of regularity
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Rate of convergence over classes of regularity

Anisotropic Besov balls Bβ2,8pLq with β “ pβ1, β2q P pR˚`q2 : generalisation of
the function Cpβ1,β2q with square integrable derivative.

Lemma
Assume that the Spjqm are generated from either :

piecewise polynomials
wavelets
trigonometric polynomials

Then there exists a constant C0pLq s.t. for all F P Bβ2,8pLq,

inf
hPSm

}F ´ h}2 ď C0

´

pDp1qm1
q´β1 ` pDp2qm2

q´β2

¯
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Corollary
Assume that F P Bβ2,8pLq with β1, β2 ě 1. The bias-variance trade-off is obtained
with m s.t.

D
p1q
m1
9nβ2{pβ1`β2`2β1β2q and D

p2q
m2
9nβ1{pβ1`β2`2β1β2q

and the L2-risk of the model selection estimator is upper bounded by

E
”

} pF
xm ´ F }

2
ı

ď Cn´β{pβ`1q

with β “ 2β1β2{pβ1 ` β2q the harmonic mean.

Comments
The dimensions of the optimal model depends on the regularity of the
function
The estimator adapts to different regularities w.r.t. to the two variables.
Assumption pH2q on the maximum dimension of models imposes a minimum
regularity on F .
The rate of convergence with respect to the time variable is not 1{n like in
right-censoring framework.
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Minimax rate of convergence

Theorem
Let β P p1,`8q2, assume that pAsup

1 q holds, then there exists a constant
cpβ, L, h1q s.t.

inf
pFn

sup
FPBβ2,8pLq

E
”

nβ{pβ`1q} pFn ´ F }
2
ı

ě c

Comments

The model selection estimator is minimax over anisotropic Besov balls
The infimum is taken over all possible estimators : more general result than
oracle inequality
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Improvement of the estimator pF
pm

Restriction to [0,1]

F̃mpx, yq “

$

’

&

’

%

0 if pFmpx, yq ă 0
pFmpx, yq if 0 ď pFmpx, yq ď 1

1 if pFmpx, yq ą 1

For each z, pF˚
xmp¨, zq increasing rearrangement of pF

xmp¨, zq

ãÑ Decreases the risk of the estimator.
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Simulations

Distribution of the simulated data pZi, Ti, Ciqi“1,...,n

$

&

%

Z „ Γpk “ 1.5, θ “ 2q
T “ Z ` ε with ε „ Γpk “ 3, θ “ 2q
C “ Z ` ε1 with ε1 „ Γpk “ 3, θ “ 2q

Model selection estimator of F with histogram models

z t z t z t z t

True F n=500 n=2000 n=5000
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fixed value of z “ 5

t

F(.,z)

F̂m̂(,z)

t

F(.,z)

F̂m̂(,z)

t

F(.,z)

F̂m̂(,z)

fixed value of t “ 10

z

F(t,.)

F̂m̂(t,.)

z

F(t,.)

F̂m̂(t,.)

z

F(t,.)

F̂m̂(t,.)

n=500 n=2000 n=5000

Accurate estimation require large sample size due to
- current status data : low informative
- bi-dimensional setting without restrictive assumption : dimension curse.
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Simulations (2)

In right censoring, the censoring rate, defined as the proportion of
unobserved times of event, impacts the quality of estimation.
ãÑ Mean of the censoring rate depends on distribution of C and T .

In current status dat, impact of distance between distributions of C and T .
Heuristic : for a given sample size n and Z “ z,

˛ F is more accurately estimated if observations pCiqi are concentrated on area
where F varies the most

˛ High variations of F ô high density of T
˛ Thus, estimation should improve as distance between densities fC and fT

decreases.

Simulations
$

&

%

Z „ Γpk “ 1.5, θ “ 2q
T “ a` Z ˆ ε with ε „ Γpk “ 3, θ “ 2q
C “ Z ˆ ε1 with ε1 „ Γpk “ 3, θ “ 2q

and the parameter a tunes the distance between fT |Z and fC|Z .
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distpaq “ }fC ´ fT }L1
a 0 2 5 10

dist(a) 0 0.63 1.12 1.54

z t z t z t

True F a “ 0 a “ 2

z t z t

a “ 5 a “ 10
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Summary

Framework : $

’

’

’

’

&

’

’

’

’

%

Ti unobserved time of interest
Ci observation time
∆i “ 1ITiďCi current status at time Ci
Zi P R covariate
Ci K Ti|Zi

Least square contrast based on Er∆i|Ci “ c, Zi “ zs “ F pc, zq with F the
conditional c.d.f. of Ti.
Model selection estimator
˛ non-parametric estimation in finite dimensional spaces of functions called

models.
˛ Data driven-criterion to select a model by estimation of the bias-variance sum

Oracle inequalities : the selected model realises the bias-variance trade-off
Minimax optimality
Require large sample size
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Conclusion and perspectives

Time and covariate treated the same : unusual
ãÑ Minimax optimality validate the method
Method valid for non-random observation times :
ãÑ the distribution of C is not involved in the estimator (contrary to inverse
probability weighted method e.g.)
ãÑ for the control empirical risk control, no assumption on the covariate and
observation time repartition
Extension to covariates of dimension p : require very large sample size
(limitation to uni-variate model of dimension Dpjqmj ď n1{2p)
Generalisation to probabilistic discriminant classifier.
Isotonic regression
Simulations suggest impact of the distance between densities of T and C.
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