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Different levels of statistical modeling in Epidemiology

General statistical methods: survival analysis (e.g. Cox), gene-by-gene
tests.

ãÑ No biological assumption.

Our approach:

ãÑ no causal modeling.

ãÑ model of gene expression evolution during carcinogenesis.

Causal modeling: complex system approach.

ãÑ Recently developed

ãÑ Precise parametrization of biological/epidemiological phenomenons.

ãÑ Use of prior information

The results from these different approaches can be compared and
reinforce/validate the biological model.
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Multi-stage model and gene expression

Initiation Promotion Diagnosis

Time

CancerLast stage

Multi-stage model and gene expression

At beginning of last stage, the genes involved in carcinogenesis start to
over/under express.

Random last stage length (=LS)

Case 1 Case 2
Gene expression
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The NOWAC cohort

Cohort of 50,000 women

Time
BS 

(E,G)

50,000

women

�: case

: control

For each case-control pair:

(Ecase, Ectl) = Exposure at time of BS.

T = Follow-up time.

DG = Difference of gene expression at time T before diagnosis (25,000
genes).
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Set of data
6 years of follow-up.

700 case-control pairs.

only one measurement by pair.

Time
Diagn

700 Cases

6 years
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The latent last-stage statistical model

Gene expression
DG

Diagn

Last−stage DG

Diagn

Last−stage

Linear dependence on time.

Let C � LS � T , DG depends on C iif C ¡ 0

The genes can be constantly differentially expressed before last stage.

Let DE be the ”difference of exposures” between case and control.

For each gene g, DGg � βg
0 � xβg

1 , DEy � βg
2CIpC ¡ 0q � εg

and g is involved in the last-stage iif βg
2 � 0.

Last-stage length

LS � Γpk, θq, with pk, θq dependent on the exposures of the case Ecase
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Estimation of the model

Algorithm SEM (Simulated Expectation Maximization)

Validation on simulated data

Primary goals

Detect genes involved in the last stage (multiple testing).

Estimate the distribution of the last stage depending on the exposures.
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Further developments

Modeling of P rDG|C,DEs

Alternative parametrization of time dependence.

Interval between between beginning of last stage and gene expression
changes.

Cross-effect Time/Exposure (Cancer driven by exposure).

Dependence between genes: - Statistical inference
- A priori knowledge (Gene Ontology,...)

Subgroups

Classification by exposure/type of cancer

Stratification/hierarchical model.
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Conclusion

Goal: study gene expression through the multi-stage model of carcinogenesis.

Conceptual model based on biological modeling

Good results on simulations but require development to be applied on
experimental data.
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