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Metagenomics

@ Microbial ecosystem : population of bacteria in a given environment.
— Ex : gut, skin, soil, sea water...

@ These bacteria ensure functions programmed by their genes (DNA).

Gene = A Protein produced The protein
Portionof DNA= |,/ fromthegene —  » realises a
Sequence of nucleotides sequence function

< Ex : degradation of chemical compounds
— By extension, we talk about the function of a gene

o Metagenomics : analysis of the genetic material of bacteria from
environment samples.
< A large proportion of these bacteria are unknown

o Genomics and metagenomics
Genomics : analysis of the genome of a given organism (animal or plant)
Metagenomics : analysis of genes in a given environment sample
<> genes are not gathered by organisms.
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Measurement of metagenomic abundances

@ Genes from all bacteria are measured together.

@ A catalogue is built by assembling pieces of DNA from a large number of
samples «~~» "metagenome" including genes from all bacteria.
<> catalogue for gut microbiote : 107 genes.

@ Genes are cut in pieces, whose sequences are read and mapped on the

catalogue.
10 M genes
(%2
Q<
Q.
€
©
Map on a catalogue 2
Sample from Cut in pieces _
environment: (chemistry) and Matrix of
bacteria « read » the pieces abundances

@ Abundance of gene j = proportion of gene j among all genes present in the
sample.
@ Very large dimension ("logp « n") : dimension reduction is necessary
— Phylogenetic grouping.
< Groups of gene with similar functions from biological knowledge / sequence of
translated proteins
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@ Biological context, data and model

@ Metabolism and metagenomic data
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Metabolism

Metabolism Fiber digestion metabolism

@ 86 elementary reactions

o Metabolism : set of bio-chemical -
extracted from literature

reactions occuring within a living
organism. @ nodes = chemical
arrows= reactions
o Elementary bio-chemical reaction :
transformation of a chemical A into eces soow

one or several chemical(s) B (C,D,...) » -

< Each elementary reaction is realised
by a protein (enzyme)

o Metabolism of fiber digestion in gut is
well known.
— Fiber digestion is exclusively realised

by bacteria (human genome does not
include those genes)
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Metabolism and metagenomics

Usually, metabolism is observed by measuring chemicals called "metabolites".
— How do we measure metabolism from metagenomics data?
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Metabolism and metagenomics

Usually, metabolism is observed by measuring chemicals called "metabolites".
— How do we measure metabolism from metagenomics data?

o KEGG database (Kyoto Encyclopedia of Genes and Genomes) gathers
biological knowledge about functions of bacterial genes.
— For some elementary reactions, KEGG provides a list of bacterial genes
which can realise this reaction.

— list of bacterial genes < list of columns in the abundance matrix

@ Therefore, from a metagene abundance matrix A = n x 107, we can compute
the abundance of reaction r in sample i as :

Z Aiyg

genes g associated to reaction 7
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Construction of a data matrix for fiber digestion analysis

e Original data : abundances of 107 metagenes in gut for 1408 individuals
(gather several studies)

@ Construction of a matrix with abundances in reactions associated to fiber
digestion, using prior biological knowledge

‘ Litterature ‘ KEGG database

Identify 86 elementary ’
reactions associated to
fiber digestion

For each reaction : list
oggg{é??fm;ﬂ;g Abundances in 86 reactions
el for 1408 individuals

X =1408x86
‘ Available datasets

Abundances of 10 M
metagenes for 1408
individuals
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Construction of a data matrix for fiber digestion analysis

e Original data : abundances of 107 metagenes in gut for 1408 individuals
(gather several studies)

@ Construction of a matrix with abundances in reactions associated to fiber
digestion, using prior biological knowledge

‘ Litterature ‘ KEGG database

Identify 86 elementary ’
reactions associated to
fiber digestion

For each reaction : list
oggg{é?z‘;or;ﬂ;g Abundances in 86 reactions
el for 1408 individuals

X =1408x86
‘ Available datasets

Abundances of 10 M
metagenes for 1408
individuals

— (Xi;)i=1,...n,j=1,...,p : Matrix with abundances of p=86 elementary
reactions associated to fiber digestion, for n=1408 individuals.
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@ Biological context, data and model

@ Modelling metabolic pathways by NMF
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Metabolic pathways

@ Metabolic pathways are series of bio-chemical reactions occuring together

within a cell.
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@ Modelling : a metabolic pathway is characterised by its proportion in
elementary reactions

— A metabolic pathway associated to fiber digestion is defined by a vector
he (R+)36
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Metabolic pathways

@ Metabolic pathways are series of bio-chemical reactions occuring together
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@ Modelling : a metabolic pathway is characterised by its proportion in
elementary reactions
— A metabolic pathway associated to fiber digestion is defined by a vector
he (RT)S6

@ Our goal : extract the main metabolic pathways associated to fiber digestion
from data matrix X.
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Modelling metabolic pathways

We assume that fiber digestion mainly occures through a small number % of
metabolic pathways
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We assume that fiber digestion mainly occures through a small number % of
metabolic pathways

o Each metabolic pathway / is characterised by a given proportion of

elementary reactions :
Hg = (Hgﬁl, ey Hg,p) € (R+)p

o Each individual sample i includes abundances of pathways 1,... k% :
Wi = (Wi,l, ey Wi,k) € (R+)k

@ Then the abundance of reaction j in the sample i is

k
Xi,j%ZWi,éHl,ja V’L:].,J’L,]:].,,p
=1

Nonnegative Matrix Factorization for analysis ol 13 / 38
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o Each metabolic pathway / is characterised by a given proportion of

elementary reactions :
Hg = (Hgﬁl, ey Hg,p) € (R+)p

o Each individual sample i includes abundances of pathways 1,... k% :
Wi = (Wz‘,l, ey Wi,k) € (R+)k
@ Then the abundance of reaction j in the sample i is
k
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Modelling metabolic pathways

We assume that fiber digestion mainly occures through a small number & of
metabolic pathways

o Each metabolic pathway / is characterised by a given proportion of

elementary reactions :
Hg = (Hgﬁl, ey Hg,p) € (R+)p

o Each individual sample i includes abundances of pathways 1,... k% :
Wi = (Wi,h ey Wi,k) € (R+>k
@ Then the abundance of reaction j in the sample i is
k
Xij~ > WigHp;, Vi=1,....n, j=1,..p.
=1

W e (RT)™** individual profiles in the k metabolic pathways

< X~WH with { H e (RT)F*P composition of the metabolic pathways.

— Nonnegative Matrix Factorization (NMF)
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© Nonnegative Matrix Factorization
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o Formulation of the NMF problem. Let X € (RT)™*P be a matrix with
non-negative coefficients. The NMF decomposition is the solution of the
following minimisation problem :

W e (R+)nxk

(W,H)=arg%’12D(X,WH)+pen(W,H) for {HE(RJr)kXp

with & < min(n, p), D a distance on (R*)™*P and pen a penalty function.
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@ Questions to be addressed :

Distance

Number of profiles k : various criteria
Choice of a penalty function
Numerical computing.

Nonnegative Matrix Factorization for analysis ol 15 / 38



o Formulation of the NMF problem. Let X € (RT)™*P be a matrix with
non-negative coefficients. The NMF decomposition is the solution of the
following minimisation problem :

W e (R+)nxk

(W,H)=arg%’12D(X,WH)+pen(W,H) for {HE(RJr)kXp

with & < min(n, p), D a distance on (R*)™*P and pen a penalty function.

@ Questions to be addressed :

Distance

Number of profiles k : various criteria
Choice of a penalty function
Numerical computing.

@ NMF in literature

o Originally developed in signal theory for source separation.
o Then applications to genomics.
o Methodological developments : mainly focused on algorithms
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Choice of a distance : underlying statistical model

In literature, two distances mainly used : Frobenius and Kullback-Leiber.
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Choice of a distance : underlying statistical model

In literature, two distances mainly used : Frobenius and Kullback-Leiber.
o Frobenius distance : D%(X,WH) =Y. . (X, ; — (WH), )

4,7
Assume that the (X ;)i—1.n,j—1:p are independent given W, H and
(X )(WH); j ~N((WH); ;,0%)

then —D%(X,WH) is equal to the log-likelihood of the observations X.
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Choice of a distance : underlying statistical model

In literature, two distances mainly used : Frobenius and Kullback-Leiber.
o Frobenius distance : D%.(X,WH) =3}, (X ; — (WH), ;)
Assume that the (X ;)i—1.n,j—1:p are independent given W, H and
(Xi)(WH)ij ~N(WH); 3,0°)
then —D%(X,WH) is equal to the log-likelihood of the observations X.

@ Generalized Kullback-Leiber distance

X
DKL(X‘WH) = 2 (Xi’j log W - X+ (WH)Z’])
i ir]

Assume that the (X; ;)i—1:n,j—1.p are independent given W, H and

Xi;j

(WH);; ~P(WH); ;)

then —Dg (X, WH) is equal to the log-likelihood of the observations X.
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Choice of a distance (2)

@ No methodology proposed to choose the distance (analysis of residuals, etc)
< Choice based on a priori modelling and implementation practicality

o Frobenius : easy computings, classic in regression and modelling, but
homoscedastic measurement error : not very realistic.

o KL : problem when (WH); ; = 0 (problem in iterative computing) but more
realistic variance modelling
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binomial)
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Choice of a distance (2)

@ No methodology proposed to choose the distance (analysis of residuals, etc)
< Choice based on a priori modelling and implementation practicality

o Frobenius : easy computings, classic in regression and modelling, but
homoscedastic measurement error : not very realistic.

o KL : problem when (WH); ; = 0 (problem in iterative computing) but more
realistic variance modelling

@ We have chosen Frobenius.

— Project : develop algorithms for other distances (zero-inflated KL, negative
binomial)

@ Rq : KL and Frobenius present computing facilities that can not be
generalised.

Nonnegative Matrix Factorization for analysis ol 17 / 38



Numerical computing

o If D is convex, then (W, H) — D(X, W H) is biconvex, but not convex :
alternate minimisation
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o Initialisation : (Wo, Ho)
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Numerical computing

o If D is convex, then (W, H) — D(X, W H) is biconvex, but not convex :
alternate minimisation
o Initialisation : (Wo, Ho)
o Update { W, « argminwso D(X, WH;_1) + pen(W, H; 1)
H; « argmingso D(X, W, H) + pen(W;, H)
e Stopping criterion : W;H; ~ W;_1H,;_;.
@ In practise, minimisation is replaced by decreasing of the criterion (first
step of a convex optimisation algo).
{ D(X,W;H;_1) + pen(W;, Hj—1) < D(X,W;_1H;_1) + pen(W;_1, H;_1)
D(X,W;H;) + pen(W;, H;) < D(X, W, H; 1) + pen(W;, H; 1)
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o If D is convex, then (W, H) — D(X, W H) is biconvex, but not convex :
alternate minimisation

o Initialisation : (Wo, Ho)
o Update W, « argminwso D(X, WH;_1) + pen(W, H; 1)
H; « argmingso D(X, W, H) + pen(W;, H)
e Stopping criterion : W;H; ~ W;_1H,;_;.
@ In practise, minimisation is replaced by decreasing of the criterion (first
step of a convex optimisation algo).

D(X,W;H; 1) + pen(W;, Hj 1) < DX, W; 1 Hj1) + pen(Wj—1, Hj1)
D(X,W;H;) + pen(W;, Hj) < D(X, W;H;—1) + pen(W;, Hj—1)

< For Frobenius and KL distances, we obtain additive and multiplicative
update rules.

o No theroretical guarantee of convergence.
o No generalisation to other distance or additional constraints.
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o If D is convex, then (W, H) — D(X, W H) is biconvex, but not convex :
alternate minimisation
o Initialisation : (Wo, Ho)
o Update W, « argminwso D(X, WH;_1) + pen(W, H; 1)
H; « argmingso D(X, W, H) + pen(W;, H)
e Stopping criterion : W;H; ~ W;_1H,;_;.
@ In practise, minimisation is replaced by decreasing of the criterion (first
step of a convex optimisation algo).

D(X,W;H; 1) + pen(W;, Hj 1) < DX, W; 1 Hj1) + pen(Wj—1, Hj1)
D(X,W;H;) + pen(W;, Hj) < D(X, W;H;—1) + pen(W;, Hj—1)

< For Frobenius and KL distances, we obtain additive and multiplicative
update rules.

o No theroretical guarantee of convergence.
o No generalisation to other distance or additional constraints.

@ We implemented alternate minimisation using general algorithm for
constrainted convex optimisation.
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Choice of the reduced dimension k

@ k has to be chosen from data
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Choice of the reduced dimension k

@ k has to be chosen from data
o Contrary to PCA :

o NMF pathways are not automatically ranked and weighted by importance.
o The metabolic pathways for a given k are not included in pathways for k + 1.

@ Mostly used criteria : stability of W over various initialisations.

o Consensus in clustering of samples : each sample i is assigned to the profile
j = argmax(W;1,...,W;,), and the number of pathways k for which
clustering is best preserved along repetitions is selected.

o Concordance of W : for a individual profile matrix W, let S be the two-by-two
correlation matrix between individual profiles W; and Wy, : S is called the
similarity matrix associted to W.

Then the concordance index between two initialisations r and 7’ is defined as

1= 3 (55 -50) W

i#j

and k which maximises concordance between initialisations is selected.
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Choice of the reduced dimension k (2)

In alternative, we consider more heuristic criteria.
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Choice of the reduced dimension k (2)

In alternative, we consider more heuristic criteria.

o Reconstruction error D(X, W H)

o Automatically decreases as k increases
e Stop when adding a new profile do not improve significantly the reconstruction
error.
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Choice of the reduced dimension k (2)

In alternative, we consider more heuristic criteria.

o Reconstruction error D(X, W H)

o Automatically decreases as k increases
e Stop when adding a new profile do not improve significantly the reconstruction
error.

e Concordance of H when randomly spliting samples {1,...,n} =1, u I :
foreach k =2,... kg

° Compute NMF with X[Il,] and X[IQ,] : (Wl,Hl), (WQ,HQ).
o Compute concordance index (1) between H; and Ho.
o Stop when the concordance gets poor.
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Choice of the reduced dimension k (2)

In alternative, we consider more heuristic criteria.

o Reconstruction error D(X, W H)

o Automatically decreases as k increases
e Stop when adding a new profile do not improve significantly the reconstruction
error.

e Concordance of H when randomly spliting samples {1,...,n} =1, u I :
foreach k =2,... kg

° Compute NMF with X[Il,] and X[IQ,] : (Wl,Hl), (WQ,HQ).
o Compute concordance index (1) between H; and Ho.
o Stop when the concordance gets poor.

@ Bi-cross-validation : version of CV adapted to NMF.
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Recall : cross-validation in regression.
Let X e R™*P, Y € R", and {f;\, A€ A} a set of estimating procedures of the
regression function r(z) = E[Y|X = z].
let hulbu---uly={l,....,n}. For{=1,... N,
e Compute {f)(\é),)\ € A} from X[—1I;,] and Y[—1I,].
o Foriel, V) = fO(X,).

o CV-error : B4 =, LY —Y)?

i=1,...,

Then, we choose the A which minimises 3, | 4.
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Recall : cross-validation in regression.

Let X e R™P Y € R", and {fA, A€ A} a set of estimating procedures of the
regression function r(z) = E[Y|X = z].

lLet hulbu---uly={1,...,n}. For{=1,...,N,
o Compute {fy),/\ e A} from X[—1,,] and Y[—I].
o Foriel, V) = f(X,).
o CV-error : XY =3, (Vi =Y})?

Then, we choose the A which minimises Zévzl E4X,

Bi-cross-validation in NMF

X X o (Wtrain ptrainy — aromin D(Xy, WH) + pen(W, H)
! 2 o HV = argmin D(Xo, W' " H) + pen(W' " H)
o W = argmin D(X3, WH! ") + pen(W, H'")
T v v @ Bi-CV error : D(X, Wvelfval),
L X X,
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Results on our data

Reconstruction error
T
I

L L L L L L L L L
12 0 s 15 20

0
Number of profiles

2 ¥ g 0

Goncordance

w9 , ‘ ‘ ‘ s , , P

2 n g 0 0 12 [ i s 20

Number of profiles

BGV error

Nonnegative Matrix Factorization for analysis of 22 / 38



Choice of penalty

o For alternate estimation of W and H : pen(W, H) = penw (W) + peng (H)
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Choice of penalty

o For alternate estimation of W and H : pen(W, H) = penw (W) + peng (H)
@ Similarly to regression :
o L'-penalty favor sparsity (possible lost of significant variables)

o L2-penalty usually offer a better reconstruction but no sparsity (less easy to
interprete)

o Elasticnet : trade-off

Group-lasso, etc : favor biological model of pathway/individual profiles
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A few word about unicity of NMF decomposition

@ Let M be an invertible matrix of dimension k x k such that M~! > 0 and
M > 0. Then,

WH= WM (MH)
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A few word about unicity of NMF decomposition

@ Let M be an invertible matrix of dimension k x k such that M~! > 0 and
M > 0. Then,

WH= WM (MH)
@ Trivial examples : M diagonal, M permutation matrix.

— the NMF is not unique.
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A few word about unicity of NMF decomposition

@ Let M be an invertible matrix of dimension k x k such that M~! > 0 and
M > 0. Then,

WH= WM (MH)
@ Trivial examples : M diagonal, M permutation matrix.

— the NMF is not unique.

e H. Laurberg (PhD 2008) : geometric conditions on X such that the NMF
solution is unique up to rescaling and permutations
< not easily interpretable.
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A few word about unicity of NMF decomposition

@ Let M be an invertible matrix of dimension k x k such that M~! > 0 and
M > 0. Then,

WH= WM (MH)
@ Trivial examples : M diagonal, M permutation matrix.

— the NMF is not unique.

e H. Laurberg (PhD 2008) : geometric conditions on X such that the NMF
solution is unique up to rescaling and permutations
< not easily interpretable.

@ In practise, we observe almost identical results up to scaling and
permutations over repeated initialisations of the algorithm.
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© Inclusion of biological knowledge : constrainted NMF
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Inclusion of a priori knowledge

@ Graph of reactions involved in fiber digestion
o Arrow = elementary reaction O == o

o Node = chemical -
o Intra/extra cellular chemicals =
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Inclusion of a priori knowledge

@ Graph of reactions involved in fiber digestion
o Arrow = elementary reaction O == o

o Node = chemical -
o Intra/extra cellular chemicals =

< Metabolic pathways in H are weighted subgraphs. K
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Inclusion of a priori knowledge

@ Graph of reactions involved in fiber digestion

e Arrow = elementary reaction b e . e, s
o Node = chemical -
o Intra/extra cellular chemicals =

< Metabolic pathways in H are weighted subgraphs. K

@ We want to constraint metabolic pathways to be :
unions of subgraphs which are :

o Starting and ending with extra-cellular chemicals. e
o Connex in the graph : if an intra-cellular chemical is |
created in a pathway, then it has to be degradated.
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Inclusion of a priori knowledge

@ Graph of reactions involved in fiber digestion

o Arrow = elementary reaction
o Node = chemical
o Intra/extra cellular chemicals

< Metabolic pathways in H are weighted subgraphs.

@ We want to constraint metabolic pathways to be
unions of subgraphs which are :

o Starting and ending with extra-cellular chemicals.
o Connex in the graph : if an intra-cellular chemical is
created in a pathway, then it has to be degradated.

@ We show that it's equivalent to a linear constraint :
1 +7t — 1t .
SQ H"'<Q ™ H*'</Q H" with §>1

with Q1 and Q~ defined from the graph.
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More precisely :

Let @ be the adjacence matrix of the graph without extra-cellular chemical :
for each reaction j and chemical ¢

1 if reaction j reaches metabolite ¢
Qc,; = } —1 if reaction j originates on metabolite ¢
0 otherwise

Let Q = Q* — @~ the decomposition of Q in positive/negative part.

For a metabolic pathway ¢,
(Q*H)y,. = sum of proportion in reactions which reach metabolite ¢
(Q~ H)g,c = sum of proportion in reactions which originate from metabolite ¢

Thus, the proportion of reactions which create and degradate metabolite ¢
have same order if :

(Q H)pe < (Q"H)pe <0(Q H)pe with §>1

STl
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@ Biological context, data and model
@ Introduction to metagenomics
@ Metabolism and metagenomic data
@ Modelling metabolic pathways by NMF

© Nonnegative Matrix Factorization

© Inclusion of biological knowledge : constrainted NMF

@ Results on our data
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NMEF procedure

@ X is the matrix of abundances in 86 reactions associated to fiber digestion,
for 1408 individuals.
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NMEF procedure

@ X is the matrix of abundances in 86 reactions associated to fiber digestion,
for 1408 individuals.

@ Criterion minimization

(W, H) =axg | min_ (IX = WH} + S (W[ + [1'H|3)  such that

%Q‘Hﬁ <QTH'<6Q H' with §=5
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NMEF procedure

@ X is the matrix of abundances in 86 reactions associated to fiber digestion,
for 1408 individuals.

@ Criterion minimization

(W.H) = axg | min_ (1X ~WH|} + S (W[} + [1'H[3) such that
1
EQ—Ht <QTH'<6Q H' with §=5

@ k =4 is chosen based on the 3 criteria presented above (reconstruction error,
concordance of H and bi-CV).
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NMEF procedure

@ X is the matrix of abundances in 86 reactions associated to fiber digestion,
for 1408 individuals.

@ Criterion minimization

(W.H) = arg | min_ (| X — WH|}+ (W[ + [1'HI3)  such that

%Q‘Hﬁ <QTH'<6Q H' with §=5

@ k =4 is chosen based on the 3 criteria presented above (reconstruction error,
concordance of H and bi-CV).

@ « is chosen by bi-cross-validation.
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Analysis of the NMF results

@ Our first goal is to prove that our whole method :

o Constitution of the reaction abundance matrix using KEGG
o Exploration of metabolic pathways through NMF decomposition

may be of interest for biological interpretation.
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Analysis of the NMF results

@ Our first goal is to prove that our whole method :

o Constitution of the reaction abundance matrix using KEGG
o Exploration of metabolic pathways through NMF decomposition

may be of interest for biological interpretation.
@ Thus, we are interested in

o what type of information can be recovered from this analysis
o existing biological knowledge (not included as a priori) actually recovered.
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Analysis of the NMF results

@ Our first goal is to prove that our whole method :

o Constitution of the reaction abundance matrix using KEGG
o Exploration of metabolic pathways through NMF decomposition

may be of interest for biological interpretation.
@ Thus, we are interested in

o what type of information can be recovered from this analysis
o existing biological knowledge (not included as a priori) actually recovered.

@ X ~ WH can be seen as a dimension reduction method preserving
interpretability,

o The rows of W gives the individual profiles in the reduced space.
o The columns of H gives the composition of the metabolic pathways.
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Analysis of the NMF results

@ Our first goal is to prove that our whole method :

o Constitution of the reaction abundance matrix using KEGG
o Exploration of metabolic pathways through NMF decomposition

may be of interest for biological interpretation.
@ Thus, we are interested in

o what type of information can be recovered from this analysis
o existing biological knowledge (not included as a priori) actually recovered.

@ X ~ WH can be seen as a dimension reduction method preserving
interpretability,

o The rows of W gives the individual profiles in the reduced space.
o The columns of H gives the composition of the metabolic pathways.

@ Our results are mainly descriptive.
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Contribution of pathway to the total signal
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Contribution of pathway to the total signal

@ Contrary to PCA or ICA, the part of explained
variance of the metabolic pathway is not relevant
since pathways are not orthogonal /independent.

Fig : Pearson correlation between the 4 pathways
{H[¢,],6=1,...,4}
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Contribution of pathway to the total signal

@ Contrary to PCA or ICA, the part of explained
variance of the metabolic pathway is not relevant
since pathways are not orthogonal /independent.

Fig : Pearson correlation between the 4 pathways
{H[¢,],6=1,...,4}

@ Alternative : contribution of each metabolic pathway to the total signal :

n 86 n 86 k n 86
"Total signal" = >° Y X;;~ > Y Y Wi H, ;= 2 (2 > Wi ZHU>

i=1j=1 i=1j=11=1 1=1 \i=1j=1
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Contribution of pathway to the total signal

@ Contrary to PCA or ICA, the part of explained
variance of the metabolic pathway is not relevant
since pathways are not orthogonal /independent.

Fig : Pearson correlation between the 4 pathways
{H[¢,],6=1,...,4}

@ Alternative : contribution of each metabolic pathway to the total signal :

n 86 n 86 k n 86
"Total signal" = Z 2 Xi; ~ Z 2 Z Wi Hyj = 2 (2 Z W; lHlj>

i=1j=1 i=1j=11=1 1=1 \i=1j=1

We define the contribution of pathway ¢ as :

n 86
= 2iz1 Zj:l Wi H,

- n 86
Zi:l Zj:1(WH)i,j
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Contribution of pathway to the total signal

@ Contrary to PCA or ICA, the part of explained
variance of the metabolic pathway is not relevant
since pathways are not orthogonal /independent.

Fig : Pearson correlation between the 4 pathways
{H[¢,],6=1,...,4}

@ Alternative : contribution of each metabolic pathway to the total signal :

n 86 n 86 k n 86
"Total signal" = 2 Z Xi; ~ Z 2 Z Wi Hyj = 2 (2 Z W; 1H1J>

i=1j=1 i=1j=11=1 1=1 \i=1j=1
We define the contribution of pathway ¢ as : Contribution of the 4 pathways
n 86 :
_ 2iz1 Zj:l Wi H, :
G =G 86 WH :
Diic1 2o (WH); : D

Nonnegative Matrix Factorization for analysis ol : - 31 / 38



Analysis of H

Pathways in H are represented as
weighted subgraphs

— Biological interpretation .

— Pathways with a strong total signal
include more reactions.
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Analysis of the individual profiles in W (1)

Is there an underlying clustering structure in matrix W 7

Nonnegative Matrix Factorization for analysis ol 33 / 38



Analysis of the individual profiles in W (1)

Is there an underlying clustering structure in matrix W 7

@ Visual examination : hierarchical clustering of rows and columns.
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Analysis of the individual profiles in W (1)

Is there an underlying clustering structure in matrix W 7

@ Visual examination : hierarchical clustering of rows and columns.

w r

X
o Gap = difference between the ratio "variance intra cluster / total
variance" between true and bootstrapped data
- For a given clustering method, compute the gap for k = 1,2, ... clusters
- Asa the gap decreases when a new cluster is added, this cluster is not significant.
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Analysis of the individual profiles in W (1)

Is there an underlying clustering structure in matrix W 7

@ Visual examination : hierarchical clustering of rows and columns.

. @fl

X
o Gap = difference between the ratio "variance intra cluster / total
variance" between true and bootstrapped data
- For a given clustering method, compute the gap for k = 1,2, ... clusters
- Asa the gap decreases when a new cluster is added, this cluster is not significant.
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Analysis of the individual profiles in W (1)

Is there an underlying clustering structure in matrix W 7

@ Visual examination : hierarchical clustering of rows and columns.

X

| I

o Gap = difference between the ratio "variance intra cluster / total
variance" between true and bootstrapped data
- For a given clustering method, compute the gap for k = 1,2, ... clusters
- Asa the gap decreases when a new cluster is added, this cluster is not significant.
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Analysis of the individual profiles in W (2)

o 8 metavariables (age, disease, nationality, BMI...) are available.
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Analysis of the individual profiles in W (2)

o 8 metavariables (age, disease, nationality, BMI...) are available.

@ Are metabolic pathways associated with some metavariables ?
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Analysis of the individual profiles in W (2)

o 8 metavariables (age, disease, nationality, BMI...) are available.
@ Are metabolic pathways associated with some metavariables ?

@ The metavariables are highly correlated by construction (e.g. study focused
on a specific disease and done in a given country).

— Caution in interpretation
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Analysis of the individual profiles in W (2)

0.05 010 0.15

0.00

o 8 metavariables (age, disease, nationality, BMI...) are available.
@ Are metabolic pathways associated with some metavariables ?

@ The metavariables are highly correlated by construction (e.g. study focused
on a specific disease and done in a given country).

— Caution in interpretation

o Example of visual result : boxplot of abundances of metabolic pathway 4 by
study*disease :

4
.

- L. e In Spanish study, pathway 4 is more present in Crohn disease
‘ patients.

sy em
-

o Difficult to validate statistically

o Multiple testing problem.
e Pathways have been built to discriminate individuals :

p-values may be biased.
<> Perspective for validation on an independent data set of
Crohn/healthy indivduals.
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@ Metabolism and metagenomic data
@ Modelling metabolic pathways by NMF

© Nonnegative Matrix Factorization

© Inclusion of biological knowledge : constrainted NMF

@ Results on our data

@ Summary and conclusion
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Summary of the biological analysis

@ Goal : explore potential of our methodology to analyse metabolic
pathways based on metagenomics data
— Focus on fiber digestion in gut

@ Procedure :
- Build a matrix with abundances in reactions associated to fiber digestion,
combining metagenomic data and a priori knowlegde.
- Decompose this matrix in pathways by NMF

@ Results
- This procedure provides results easy to handle and interprete.
- Some biological knowledge is recovered
- NMF can enlight metabolic pathways which represent a low signal but may
be significantly discriminative.

@ Perspective : validation on independent data.

Nonnegative Matrix Factorization for analysis ol 36 / 38



Summary on the NMF methodology

NMF procedure is defined by the following elements :

Distance = statistical model
< We have chosen Frobenius as a first approach.

Criterion for the choice of the reduced dimension : linked to the global goal
of NMF decomposition.
— We have proposed more interpretable criteria than the usual numerical stability.

Penalty : linked to general biological assumptions / posterior use of the NMF
results

Possibly : additional constraints

Algorithm
— We have developed an alternate minimisation algorithm that can be adapted to
various distances and constraints
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Methodological perspectives

o Compare results on our data with Frobenius and KL distances (adapt
algorithm for KL distance)

@ Develop a simulation framework for NMF
— Further : pseudo-simulations which keep the correlation structure of
experimental data and generate a controlled signal on them

@ Propose an analysis of the criteria used for the choice of the reduced
dimension k, at first using simulations.
< In particular, the concordance of H could require a rescaling by a function of k

@ Develop residuals analysis to choose between various distances.

@ Theoretical analysis of NMF estimator in a statistical context : convergence,
consistence...
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