
1Scientific RepoRts�ȁ�ͼǣͿ�ȁ����ǣ�ͷͶǤͷͶ;Ȁ����Ϳ

���Ǥ������Ǥ���Ȁ�����������������

Integrated mRNA and miRNA 

��������������Ƥ����������������������
��������������������������������
with endurance exercise in the 

horse
Núria Mach

ͷǡ����������������ǡ�������������������ǡ�±�Ø��������������ͷǡ����������°��ͷ, 

�������������ͷ, Anne Vaiman
ͷǡ����������������������ͷ, Marine Beinat

ͷǡ�����±�������ͷ, 

�±�����������ͷ,ͺ
 & Eric Barrey

ͷ,ͻ

����������������������������������������������������������������������������������������������������
������������������������ȋ������ȌǤ����������ǡ������������������������������������������������������
�����������������������������������������������������������ȋ�����������������Ȍ���������������������
������������ͷͼͶ�������������������������Ǥ������������ǡͺͻ���ơ�������������������������������ͷͼͽ�
��ơ������������������������������������������Ƥ���������������������Ǧ���������Ǧ������������Ǥ����
���������������������������������������������������������������������������������������������������
�����������������������������ơ�����������������������������Ǥ��������������ǡ�ͺͺ���ơ���������������������
������������������������������������������ͻͷ������������ơ������������������������������������
�������������������������������ǡ���������������������ǡ�������������������������ǡ���������������������
��������Ǥ��������������������������������������������ǡ�����������
������������������Ƥ����������
���ǦͷǦͻ�ǡ����Ǧͷ;ͷ�Ǧͻ���������ǦͻͶͻǦͻ�����������������������������������������������������������
�������������������������������Ǥ�����������������������������ǡ��������������������������Ƥ�����������������
�������������ǡ������������������������������������Ǧ�������Ǧ������������������������������������
����������������������������Ǧ���������������������������������������������������Ǥ

The physiological and biochemical demands of endurance exercise elicit both muscle-based and systemic 
responses. !e main adaptations to endurance exercise include improvement of mechanical, metabolic, neu-
romuscular and contractile functions in muscle1, correction of electrolyte imbalance2, a decrease in glycogen 
storage3 and an increase in mitochondrial biogenesis in muscle tissue4, and the modulation of oxidative stress5, 
intestinal permeability, muscle damage, systemic in"ammation and immune responses5. Consequently, adap-
tations to endurance exercise are in"uenced by the transcriptional and translational regulation of genes that 
encode the proteins controlling these processes5. Over the past decade, microRNAs (miRNAs) have emerged as 
novel elements in the rapid, reversible regulation of transcription and translation6. MiRNAs are small non-coding 
RNAs molecules (~19–24 bp in length) that are synthesized from short hairpin precursors and that reportedly 
degrade or inhibit the translation of their target genes by binding to the 3′  untranslated region (UTR) of coding 
mRNAs7. In fact, miRNAs molecules may regulate up to one-third of the mammalian transcriptome8 and appear 
to be stable outside the cell (e.g. when incorporated into exosomes9, microvesicles10, lipoproteins11 or Argonaute2 
protein complexes12).
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It has been shown that some miRNAs can modulate mitochondrial biogenesis and glucose and fatty acid 
metabolism in skeletal and cardiac muscle a#er endurance exercise in humans1,13. Furthermore, circulating miR-
NAs induced by exhaustive exercise in humans may have an important role in the regulation of angiogenesis, 
in"ammation, skeletal and cardiac muscle contractility and damage, and adaptation to hypoxia/ischaemia13–19, 
whereas miRNA expression in peripheral blood mononuclear cells (PBMCs) may regulate in"ammatory pro-
cesses20,21. Whole blood-derived miRNAs induced in trained athletes a#er a 30-minute treadmill test may regulate 
immune function, apoptosis, membrane tra$c of proteins and transcription regulation22. Whole blood-derived 
miRNAs that control the stress response to endurance exercise have never previously been studied. However, we 
hypothesized that whole blood (which contains cells that circulate throughout the body) might be able to provide 
a rapidly measureable, e%ective marker of an athlete’s immune function and might also be sensitive enough to 
detect exercise-induced stress and metabolic disorders.

Given the miRNAs’ fundamental role in transcription and transcriptional regulation during physiological 
adaptation to endurance exercise, we hypothesized that the identi&cation of whole blood miRNA-mRNA rela-
tionships speci&cally regulated by endurance exercise in horses could (i) reveal unique biomarkers of the stress 
response to endurance exercise and (ii) provide signi&cant insights into the molecular control of this response. 
We therefore performed an integrated analysis of the blood transcriptome and miRNome in the horse before and 
a#er a long (160 km) endurance competition.

�������
!e morphological and physiological parameters of the 61 equine athletes’ included in the study are summarized 
in Supplementary Table S1, whereas the biochemical parameters average obtained from blood samples collected 
a#er the ride are depicted in the Supplementary Table S2. All horses had an above-normal total bilirubin, creatine 
kinase, aspartate transaminase and serum amyloid A concentrations, re"ecting haemolysis and muscular mem-
brane permeability or in"ammation.

On the basis of equine transcriptome and miRNome profiles before and after a 160 km ride, we used a 
multi-step approach to identify and characterize a dynamically co-regulated miRNA-mRNA network related to 
endurance exercise in the horse (Fig. 1).

��ơ���������������������������ȋ��
�Ȍ�����������Ǥ� We used custom equine mRNA and miRNA 
microarrays to study the e%ect of endurance exercise on the blood transcriptome and miRNome, respectively, 
using an experimental set of 14 animals. We focused on the identi&cation of genes whose expression was signi&-
cantly altered at T1 (post-ride) relative to T0 (baseline, pre-ride), with an adjusted p-value <  0.05 a#er Bonferroni 
correction for multiple testing (Supplementary Table S3). Application of this threshold led to the identi&cation of 
2,453 DEGs, of which 1,165 were over-expressed and 1,288 were under-expressed at T1 (relative to T0).

Figure 1. Overview of the data analysis. Step 1: a linear model analysis of DEmiRNAs and DEGs. Step 2: 
determination of the corresponding GO terms, KEGG pathways and TFs regulating the DEGs. Step 3: selection 
of experimentally validated target genes. Step 4: generation of the inverse correlation matrix for DEGs and 
miRNAs (in the hypergeometric test only). Step 5: the enrichment test (using the hypergeometric test or its 
generalization) used to select candidate miRNAs. Step 6: the functional network analysis; Step 7: validation of 
the functional network, using a validation set and GGMs; Step 8: Technical validation of the functional network, 
using RT-qPCR.
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A total of 362 miRNAs were found in the whole blood sample (Supplementary Table S4). We identi&ed dif-
ferentially expressed 167 miRNAs (DEmiRNAs) when comparing pre- and post-ride samples (Supplementary 
Table S5). Along with orthologous human-equine DEmiRNAs, we detected 12 equine-speci&c DEmiRNAs and 
19 putative novel miRNAs. Two of the putative novel miRNAs (mitomiR-009 and mitomiR-010) were probably 
encoded by the mitochondrial genome and thus are referred to here as mitomiRs (Supplementary Fig. S1). !e 
e%ect of exercise on the miRNome was also evidenced by a cluster analysis and a principle component analysis 
(PCA) (Fig. 2). !e &rst principal component accounted for 52.22% of the total variance, and the &rst two com-
ponents accounted for 62.58% of the total variance.

To gain a better understanding of the functional implications of these DEGs, we performed gene set enrich-
ment analysis in order to identify over-represented “biological process” gene ontology (GO) terms and we char-
acterized the transcription factors (TFs) that regulate DEGs. !e 1,165 DEGs over-expressed a#er exercise were 
strongly associated with the in"ammatory response, intestinal permeability and regulation of the response to 
stress and bacterium (Fig. 3A). In contrast, the 1,288 under-expressed DEGs were related to macromolecule 
catabolism, cellular respiration, mitochondrial transport, and transcriptional and translational activity (Fig. 3B). 
!e full list of signi&cantly enriched pathways (false discovery rate (FDR) <  0.001) is given in Supplementary 
Table S6. !e main putative regulatory TF in the network of DEGs was ZFP42, followed by the cooperatively 
transcriptional cofactors SPI1, FOXO3, IRF3 and NRF1 (Fig. 4). TFs act in regulatory networks and can drive or 
repress the expression of the miRNAs in a feed-forward and feedback manner23. Accordingly, we found that these 
TFs might control the spatiotemporal expression patterns of some of the DEmiRNAs (Fig. 4B).

!e Supplementary Information section contains further details of (i) the characterization of transcription 
factors that regulate di%erentially expressed genes and (ii) the validation of mRNA and miRNA expression exper-
iments using RT-qPCR.

���������
�������������������������������������������������������������Ǥ� We used two com-
plementary statistical approaches (detailed in the Methods section) to identify the target-enriched miRNAs and 
assess their role in regulating the exercise response. Firstly, for each of the 167 DEmiRNAs, we used the mul-
tiMiR package in R to build a comprehensive list of all the putative validated target genes. We found that only 91 
DEmiRNAs (70 of which were up-regulated and 21 of which were down-regulated in post-ride samples, compared 
with pre-ride samples) presented an experimentally annotated targetome. In total, these DEmiRNAs regulated 

Figure 2. !e di"erential miRNA expression pro#le in blood. In all cases, individual horses are represented 
as violet dots (for T0) and orange dots (for T1). (A) A heat-map representation of the 167 DEmiRNAs 
when comparing T0 and T1 (FDR <  0.05). (B) PCA of DEmiRNAs in blood when comparing T1 with T0 
(FDR <  0.05). !e &rst axis accounted for 52.22% of the variation, and the two axes accounted for 62.58% of 
the total inertia. !e two groups were found to di%er signi&cantly in a Monte Carlo test with 999 replicates 
(p <  0.001).
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7,150 putative target genes-most of which were down-regulated a#er the ride (Supplementary Table S7). For each 
of the 91 DEmiRNAs presenting at least one experimentally validated target, we looked at whether the DEGs that 
were signi&cantly and negatively correlated with DEmiRNAs were in fact miRNA targets. !e hypergeometric 
test revealed two DEmiRNAs (miR-138-5p and miR-26b-5p) with signi&cantly more predicted targets among 
the negatively correlated DEGs than among other genes in the transcriptome (FDR <  0.10; Supplementary Table 
S8). Next, to address the hypergeometric test’s lack of power (given that there were few anticorrelated target genes 
for a given DEmiRNA), we applied a generalization of the hypergeometric test to each of the 91 DEmiRNAs. !e 
objective was to establish whether the experimentally validated target genes displayed smaller Limma p-values 
for di%erential expression (when comparing pre- and post-ride samples) than other genes in the transcriptome 
(according to a Wilcoxon sum rank test). !is generalization of the hypergeometric test also encompassed targets 
a%ected by translation inhibition, i.e. targets for which changes in miRNA levels do not reduce mRNA levels 
(r >  0.5) but do reduce the protein levels24. We observed 45 enriched DEmiRNAs (FDR <  0.1; Supplementary 
Table S8) and then selected those for which the target genes were DEGs and were inversely correlated (r2 <  − 0.5). 
!is calculation removed the hsa-miR-374a-5p and hsa-miR-374b-5p from the list, since their targets were DEGs 
but were not greatly anticorrelated (r >  − 0.5).

Figure 3. A functional map of DEGs, showing the top categories of GO biological processes associated with 
signi&cantly over-expressed (A) and under-expressed (B) genes following endurance exercise. !e chart 
fragments represent the number of genes associated with the various terms.

Figure 4. Relationship between TFs, miRNAs and DEGs. (A) !e boxplot graph represents the expression 
levels (log2) of the main candidate TFs (discovered using iRegulon) within the set of DEGs. ZFP42 was the top 
regulator, followed by SPI1, FOXO3, IRF3 and NRF1. (B) A schematic view of the common correlations between 
TFs and miRNAs. !e correlation score for expression of the two interactants is indicated under each edge. 
!e network is displayed graphically as nodes (genes, TFs and miRNAs) and edges (biological relationships). 
!e edge colour intensity indicates the expression level of the association: red =  over-expression at T1 and 
green =  under-expression at T1. !e node shape indicates whether the node is a TF (triangles) or a miRNA 
(squares).
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Ultimately, we considered a total of 44 enriched miRNAs (Supplementary Fig. S2; Supplementary Table S9) 
inversely correlated with the expression of 351 target DEGs during exercise (Supplementary Table S10; Fig. 5). We 
next examined the protein-protein interaction (PPI) sub-network associated with the 44 enriched miRNAs and 
their inversely correlated target DEGs (see Supplementary Information Section).

To identify the most relevant cellular activities controlled by these 351 anticorrelated target DEGs, we analysed 
overrepresented GO biological process terms (using clueGO). !e most signi&cant GO terms were related to 
glucose metabolism, fatty acid oxidation, mitochondrial biogenesis trough the peroxisome proliferator-activated 
receptor (PPARγ ) signalling pathway, oxidation stress, proteolysis and immune response pathways (Fig. 6). 
To provide further insight into proteolysis and immune response pathways, we also analysed the correlations 
between changes in the enriched DEmiRNA levels and biochemical blood parameters (see Supplementary 
Information Section).

Furthermore, we found that the regulatory network based on the 351 target genes included 31 TFs 
(Supplementary Table S10). Our results suggest that the EP300, RFX5 and FOSL2 TFs regulated the expression 
of six di%erent miRNAs within the regulatory network (Fig. 7). For example, the EP300 protein stimulated tran-
scription of miR-92a, which in turn suppressed EP300 expression. More sophisticated regulation was provided 
by dual negative-feedback loops, such as the one involving miR-138-5p and the TFs FOSL2 and EP300 (Fig. 7).

��������������������������������������������������������������������������
��������������
����������
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��Ȍ��������������������Ǥ� We next used an independent cohort of 
animals to validate the inversely correlated target-miRNA regulatory network by applying GGMs in a regres-
sion framework. !is cohort included 16 horses sampled solely at T0 and 31 other horses sampled solely at T1. 
!e models were built with p =  44 miRNAs and j =  351 inversely correlated DEGs targeted by at least one of 
these miRNAs. In order to increase the degree of precision, we speci&ed a list of edges constrained to zero: only 
(i) interactions between miRNAs and their experimentally validated target genes, and (ii) gene-gene interac-
tions predicted by PPI were considered (Supplementary Fig. S3). For each time point (T0 and T1) and each 
enriched DEmiRNA, the coe$cient of determination (R2) and the mean squared error (MSE) were computed 

Figure 5. Regulatory network linking the 44 enriched miRNA and their respective inversely correlated 
target DEGs. We identi&ed a total of 44 enriched DEmiRNAs for which the miRNA targets de&ned by 
multimiR were signi&cantly enriched (according to a hypergeometric test or its generalization). !e 44 
DEmiRNAs were inversely correlated with a total of 351 unique target DEGs. !e network is displayed 
graphically as nodes (genes and miRNAs) and edges (biological relationships). !e edge colour intensity 
indicates the expression level (log2) of the association: red =  over-expression at T1 and green =  under-
expression at T1. !e node shape indicates whether the node is a transcription regulator (triangles), 
growth factor (round rectangles), peptidase (diamonds), phosphatase (hexagons), transmembrane receptor 
(parallelograms), transporter (octagons), a miRNA (squares) or other type of genes (ellipses).
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and compared with the values obtained with 351 repeatedly randomly selected genes (n =  500 times). Moreover, 
for each criterion, the extent to which each DEmiRNA was predicted by its inversely correlated target genes (as a 
p-value) was calculated as the proportion of repetitions with more statistically signi&cant results than the original 
data. None of the enriched DEmiRNAs had an adjusted p-value of below 0.05 in the FDR test (Supplementary 
Table S11). Although the adjusted p-values were not statistically signi&cant, these analyses allowed us to rank 
the enriched DEmiRNAs according to the strength of the direct interaction with their inversely correlated target 
genes (Fig. 8). At T0, the MSE and R2 criteria were concordant, displaying p-values <  0.05 for miR-181b-5p and 
miR-505-5p. At T1, miR-21-5p displayed a p-value <  0.05 for both R2 and MSE; this miRNA was not predicted 
by either R2 or MSE at T0, suggesting that it might be involved in the regulation of exercise-related physiological 
processes (Fig. 8).

Discussion

Endurance exercise has a profound impact on metabolism in tissues other than skeletal muscle (including heart, 
brain, adipose tissue and liver)25. !e level of exercise performed by horses during an endurance competition is 
similar to that of a human marathon runner26 or ultramarathon runner27. By using microarrays to analyse the 
blood transcriptome and miRNome, our objective was to identify and characterize candidate miRNAs and the 
interplay that ultimately resulted in the coordinated response to endurance exercise.

Peripheral blood is now widely used as a surrogate tissue for monitoring whole-body status28. Indeed, blood 
transcriptome analysis is undoubtedly capable of evidencing responses to exercise in the horse26,29,30. By compar-
ing the respective blood transcriptome pro&les before and a#er exercise, we were able to identify a large number 
of DEGs that &t neatly into the well-characterized context of adaptive regulation to exercise in endurance horses 
(including energy metabolism, the in"ammatory response, stress resistance, oxidative stress, cell death and pro-
teolysis26,29,31). !ese changes may help to supply the working muscles with energy or control excessive in"am-
matory reactions. !ey may also be involved in “staleness” and the transient immunosuppression that can occur 
during and/or a#er endurance exercise.

We found a total of 167 DEmiRNAs when comparing T1 with T0. These included two mitomiRs (i.e. 
DEmiRNAs encoded by the mtDNA), which might belong to the new family of miRNAs recently discovered in 
human vascular epithelium cells and matured from the mtDNA-transcribed long, non-coding RNA32. Endurance 
exercise is the most potent physiological inducer of mitochondrial biogenesis in skeletal muscle33. We hypothesize 
that the increase in mitochondrial biogenesis and cell energy regulation in endurance exercise is boosted by these 
mitomiRs. Despite the relatively small number of animals studied, these &ndings are valuable.

In order to assess the main e%ects of DEmiRNA regulation on exercise transcriptome patterns, we used the 
hypergeometric test and its generalization to search for DEmiRNAs with signi&cant target site enrichment within 
DEGs. In fact, 44 DEmiRNAs of the 167 DEmiRNAs had signi&cantly more targets among DEGs than among 
the transcriptome as a whole. Twenty-one of these 44 enriched miRNAs were already known to be related to 

Figure 6. A functional map of the 351 inversely correlated target genes regulated by the 44 enriched 
miRNAs. Within the network, the GO biological terms were identi&ed as nodes and then linked according to 
their kappa value (> 0.4) and FDR (< 0.001). !e size of the node corresponds to the statistical signi&cance of 
the enrichment term. Functionally related groups partially overlap. Similar GO terms are labelled in the same 
colour. Non-grouped terms are shown in grey. !e colour gradient shows the proportion of genes in each cluster 
associated with the term.
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exercise adaptation in humans, whereas all the others were identi&ed for the &rst time in the present study. Hence, 
our results have added to the list of miRNAs expressed in blood following exercise. Future studies will have to 
determine whether this novel list of orthologous equine miRNAs expressed in blood is horse-speci&c or re"ects a 
more general response to exercise in mammals (e.g. with counterparts in humans). More precisely, the observed 
di%erential expression of miR-15a, miR-16, miR-17, miR-18a, miR-20ab, miR-21-5p, miR-27a, miR-30b, miR-
93, miR-101, miR-106, miR-107, miR-125b, miR-130, miR-138-5p, miR-145, miR-181ab-5p, miR-221, miR-223, 
miR-342-3p and miR-505 was consistent with previously reports on exhaustive exercise in humans14,13,20,21,34. 
Many of the enriched DEmiRNAs observed in our study are known to originate from blood cells and to regulate 
genes that are involved in immune processes, apoptosis and transcription regulation. For example, miR-21, miR-
27a and miR-181 were found to be DE in the whole blood of highly trained human athletes a#er a 30-minute 
treadmill test22. It was then suggested that these miRNAs regulate physiological processes that are essential for the 
response to exercise (such as immune function, apoptosis, membrane tra$c of proteins and transcriptional regu-
lation)22. Furthermore, miR-17, miR-18a, miR-20a (all members of the miR-17-92 cluster), miR-106 and miR-93 
(paralogs of the miR-17-92 cluster) were found to be DE in circulating neutrophils of 11 men a#er a brief bout 
of exercise; the miRNAs regulated the ubiquitin-mediated proteolysis pathway21. Lastly, we observed di%erential 
expression of miR-181, which is known to be a%ected in di%erent types of leukocyte35 and likely to be involved 
in the regulation of some fundamental adaptive changes in the immune system during endurance exercise34. 
Similarly, Makarova et al.34 suggested that the exercise-induced expression of miRNA-181 in blood cells may be a 
compensatory, anti-in"ammatory adaptation to the primary, systemic in"ammatory response caused by exercise.

!e ability to exercise for extended periods requires not only adequate endocrine and immune machinery but 
also energy sources3. Studies on the role of miRNAs in these adaptive processes have just started. Some prelimi-
nary results in humans suggest that the post-exercise increase in miR-107 expression regulates glucose homeo-
stasis in liver and adipose tissue15, whereas in the horse the increased expression of miR-17 a#er exercise might 
be linked to the regulation of glucose metabolism in di%erent tissues30. Investigation of the adaptive signi&cance 
of each individual miRNA expressed in blood is still in its infancy, and the function of many miRNAs remains 
unknown.

!e earliest studies in this &eld also have demonstrated that endurance exercise-induced changes in plasma/
serum levels of circulating miRNAs (c-miRNAs)13,15–19. In most reports, plasma levels of human miR-136, 

Figure 7. Activators and repressors of the 44 enriched miRNAs. When screening the negatively correlated 
target genes of the 44 enriched miRNAs, we found three TFs able to up- or downregulate miRNA expression 
(EP300, RFX5 and FOSL2). !e promoter regions of the expressed miRNAs are very similar to those of 
protein-coding genes. !e presence of CpG islands, TATA box sequences, initiation elements and certain 
histone modi&cations indicate that the promoters of miRNA genes might be controlled by TFs. (A) RFX5 and 
FOSL2 both might inhibit expression of miR-192-5p, miR-93-5p and miR-138-5p in blood, although EP300 
might stimulate expression of miRNAs such as miR-125-5p and miR-223-3p. (B) Unilateral or reciprocal-
negative feedback loops result in oscillatory or stable mutually exclusive expressions of the TFs and miRNA 
components23. For instance, EP300 might repress miR-92a expression. miR-92a targets the EP300 TF and might 
block its expression. Figure adapted from Krol et al.23.
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miR-2013,18, miR-2113,18, miR-10315, miR-10715, miR-12619, miRNA-13319,36, miR-146a13,18, miR-20636, miR-22113,18 
and miR-22213,18 were found to be higher a#er endurance exercise – suggesting a possible role in exercise adap-
tations. Similarly, we observed an enrichment of miR-20ab, miR-21, miR-103a-3p, miR-107 and miR-221 when 
comparing pre- and post-ride blood samples. However, it is probable that most of the miRNAs in the present 
study came from blood cells, since the microarray-based estimation of circulating miRNA abundance from total 
blood RNA levels is particularly di$cult37. In the present study, the c-miRNAs may have been partly masked (or 
at least diluted) by greater amounts of cellular miRNAs38. Furthermore, we only considered miRNAs that dis-
played a signal intensity greater than the mean + 1.5 SD for the negative control; as a result, we probably missed 
some potentially detectable c-miRNAs. Baggish et al.13 suggested that human miR-20a, miR-21 and miR-221 
(i) are released a#er exercise into the bloodstream by tissues other than blood cells and (ii) may regulate key 
pathways in angiogenesis, in"ammation, muscle contractibility and adaptation to hypoxia. However, we believe 
that blood cells may have signi&cantly contributed to our present results. Accordingly, levels of miR-20a, miR-21 
and miR-221 were not correlated with changes in plasma markers of muscle in"ammation and liver damage. In 

Figure 8. Validation of the 44 enriched miRNAs by applying GGMs to an independent validation set. For 
each selected enriched miRNA, MSE and R2 were computed through a GGM implemented on the 44 enriched 
miRNAs and their 351 inversely correlated target genes. (A) !e upper row of boxplots shows the ratio between 
MSE values for the randomly selected genes from among the 24,415 genes and candidate gene set at T0, and the 
values of the R2 for predicted vs. observed values at T0, respectively. (B) !e lower row of boxplots shows the 
same boxplots at T1. In all cases, a total of 500 repetitions were performed with 351 genes randomly selected 
from among the 24,415 genes for each miRNA. For both criteria, we computed permutation p-values, i.e. the 
proportion of repetitions leading to a smaller MSE (or a larger R2) with respect to the values found with the 
originally selected 351 genes. MicroRNAs with p <  0.10 are shown in red.
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contrast, however, we found some signi&cant, positive correlations between miR-133 levels and changes in plasma 
creatine kinase and aspartate transaminase levels (which reportedly re"ect cell damage in human athletes a#er 
a marathon race19). In view of this result, the relationship between blood cell levels and plasma/serum levels of 
miR-133 also warrant further examination.

A further observation of interest relates to the fact that the 44 enriched miRNAs regulated a total of 351 
inversely correlated target DEGs. All target genes were involved in processes highly relevant to the response to 
exercise, including immune function, apoptosis, protein degradation, transcription regulation, and mitochon-
drial biogenesis and energy metabolism. We hypothesized that these 351 target genes were driven not only by the 
miRNAs within the regulatory network but also by some of the TFs. As further con&rmation of this hypothesis, 
we found that the regulatory network based on the 351 target genes and 44 enriched miRNAs featured a high 
proportion of TFs (n =  31) – including PPARγ, one of the master regulators of mitochondrial biogenesis and 
energy metabolism39. Furthermore, the assembly of miRNAs and TF co-regulators within the regulatory network 
revealed several interesting feed-forward and feedback loops.

A#er we had examined the structural and functional aspects of the co-regulatory networks, we further con-
&rmed the regulatory e%ects of the 44 enriched miRNAs (identi&ed by computational predictions on an exper-
imental set of 14 animals) using an independent cohort of animals and a GMM approach. Our data con&rmed 
a seldom-measured relationship between target DEGs and their miRNA regulators. Interestingly, we con&rmed 
the post-exercise expression of miR-21-5p and their target DEGs. !e expression of miR-21-5p is known to be 
stress-responsive; this miRNA has an important role in heart failure40, renal ischemia reperfusion injury41, and 
in the self-protective anti-in"ammatory reaction to exercise22. Aforesaid, the up-regulation of circulating miR-
21-5p in humans was reported to occur in plasma of endurance athletes13–18 and in circulating PBMCs20 and 
blood cells22 upon exercise. At baseline (T0), we con&rmed the regulatory roles of miR-181a-5p, miR-505-5p and 
their target DEGs. As mentioned above, miR-181 in PBMCs has already been associated with a T-cell response to 
exercise in humans20, and Makarova et al.34 have suggested that miR-181 has several key roles in the adaptation to 
exercise. In contrast, miR-505-5p has not previously been linked to the regulation of exercise.

Our study had several limitations. Firstly, our main analysis was based on human orthologous miRNAs, 
for which we had a comprehensive list of validated miRNA–target interactions. We therefore had to ignore the 
predicted miRNA–target interactions that were speci&c to the horse. Moreover, the identi&cation of putative 
equine miRNAs using sRNAseq was performed using samples derived from six tissues other than blood and 
with small number of biological replicates; this may have prevented us from detecting certain blood-speci&c or 
exercise-induced miRNAs. Secondly, there are several modes of gene regulation other than down-regulation by 
miRNAs: these include up-regulation by miRNAs, DNA methylation and chromatin remodelling—all of which 
may be involved in the responses to exercise. Furthermore, chemical perturbations (such as changes in pH and 
local temperature), systemic increases in cytokine and growth factor levels, and other factors such as the exercise 
dose, gender, age, genetic background and stochastic factors can all potentially modify transcriptome expression. 
!erefore, future research will have to focus on how these various regulatory interactions are synchronized to 
maintain homeostasis during and following endurance exercise in horses. !irdly, we analysed miRNAs from 
whole blood. !us, it remains to be determined whether the individual components of this heterogeneous "uid 
(i.e. plasma, platelets, erythrocytes, nucleated blood cells and exosomes) re"ect the overall microRNA response to 
exercise in horses. With regard to the requirement for highly speci&c c-miRNA biomarkers of metabolic demand, 
muscle damage, myocardial injury or endotoxaemia during equine endurance events, it may make sense to focus 
on c-miRNAs not expressed by blood cells. However, it must be borne in mind that intravascular haemolysis 
occurs very frequently during and a#er intense exercise in horses42,43, which can signi&cantly a%ect levels of 
circulating miRNAs

Despite these limitations, our results extend earlier observations on gene expression in equine athletes26,29, and 
we showed that the main changes in the blood transcriptome appear to be driven by changes in the expression 
of trans-acting regulators in general and 44 enriched DEmiRNAs in particular. Characterization of these miR-
NAs that lead to endurance-exercise-mediated systemic adaptation might also lead to the development of novel 
nutritional, pharmacological, and exercise-based training interventions. !e goal would be to &ne-tune levels of 
miRNA expression and thus improve the athlete’s energy metabolism and in"ammatory response. Moreover, our 
results also demonstrated the sensitivity and speci&city of whole-blood derived mRNA and miRNAs as markers 
for the response to endurance exercise. In view of the availability of whole blood sample tubes that protect the 
RNA content and the minimal handling required during sample collection, the use of whole blood has some clear 
advantages for monitoring the post-exercise expression of miRNAs under &eld conditions. Lastly, the specialized 
nature of equine musculoskeletal tissues (e%ective high-speed locomotion and strength), the large size of both 
human and equine species, the good degree of access to tissue specimens, and the high overall degree of similarity 
between equine and human blood transcriptome responses to exercise make the horse a good natural model for 
basic exercise research.

�����������
!e microRNA and gene co-regulatory network pro&led in blood re"ects the physiological regulation of the tran-
scriptome following endurance exercise in the horse. Our present results suggest that 44 enriched miRNAs and 
their 351 inversely correlated target genes regulate lipid metabolism, carbohydrate metabolism, mitochondrial 
biogenesis, proteolysis and the immune response. By using various computational methods and an independ-
ent cohort of animals, we con&rmed that miR-21-5p, miR-181b-5p and miR-505-5p are putative regulators of 
the response to endurance exercise. Our results also suggest that (i) a variety of mechanisms underlie adaptive 
changes to the transcriptome and (ii) changes in the expression of a few key regulators may improve the metabolic 
and in"ammatory response to exercise in athletes.
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Methods

�������Ǥ� Sixty-one pure-breed or half-breed Arabian horses (20 females and 41 geldings; mean ±  SEM age: 
10 ±  2) competing in three 160 km endurance competitions were recruited with the owner’s agreement. !e 
weather conditions, terrain di$culty and altitude for the three endurance competitions were similar. !e 61 
horses were checked carefully for the population-genetic structure and covariates such as age, gender, and envi-
ronmental in"uences (disease states, medical treatment, etc.). To ensure sample homogeneity, the participat-
ing horses were subject to the same management practices throughout the ride and passed the International 
Equestrian Federation (FEI)’s compulsory examination before the start. Animals were fed 2–3 hours before the 
start of the endurance competition with ad libitum hay and 1 kg of concentrate pellets. During the endurance 
competition, all the animals underwent veterinary checks every 20 to 40 km, followed by recovery periods of 
40 to 50 minutes (in accordance with the FEI rules on endurance riding). A#er each vet gate check, animals 
were provided with ad libitum water and hay and a small amount of concentrate pellets. !e median winning 
speed over the entire ride was 15.7 ±  1.04 km/h. Information on training, nutrition and medical examinations was 
obtained but it was impossible to control for the feed composition and levels of consumption. !e study design 
was approved by the independent ethics committee at Alfort Veterinary School and the University of Paris Est 
(reference: 12/07/11-1). All methods were carried out in accordance with the approved guidelines. In all cases, 
the owner provided his/her informed consent prior to the initiation of study procedures with the animals. Further 
details have been published by Le Moyec et al.44.

!e horses were divided into two non-overlapping sets: the experimental set and the validation set. !e val-
idation set came from an independent cohort of animals, to ensure that the observed e%ects were reproducible 
in a broader context. !e experimental set included 14 horses sampled before the 160 km ride (T0, baseline) and 
then again a#erwards (T1). Samples were collected within 30 minutes of the end of the ride. Two horses in the 
experimental set failed a vet gate check (poor metabolic condition a#er 80 km and lameness at the end of the ride, 
respectively).

!e validation set included 16 horses sampled solely at T0 and 31 other horses sampled solely at T1. Of the 
horses sampled at T1, four were eliminated for lameness a#er 106 km (n =  1), 133 km (n =  2) or 160 km (n =  1), 
two were eliminated a#er 30 km for metabolic disorders and one was eliminated for tiredness a#er 130 km.

������������������������Ǥ� Blood samples were collected in dry tubes at the end of the endurance event. 
A#er clotting, the tubes were centrifuged and the harvested serum was stored at 4 °C until analysis (no more than 
48 later, in all cases). Sera were assayed for total bilirubin, conjugated bilirubin, total protein, creatinine, creatine 
kinase, aspartate transaminase, gamma glutamyltransferase and serum amyloid A levels on a RX Imola analyser 
(Randox, UK). Blood collected in EDTA tubes was used to measure the packed cell volume a#er centrifugation.

�������������ǡ�����������������������������������������Ǥ� A single blood sample for both tran-
scriptome and miRNome pro&ling was obtained in order to study direct relationships between mRNA expres-
sion and miRNA expression in each animal. Whole blood samples from each horse were collected in PAXgene 
Blood RNA tubes (Qiagen, Germany) and the total RNA was isolated using a PAXgene Blood RNA Kit (Qiagen), 
according to the manufacturer’s instructions.

The RNA’s purity and concentration were determined using a NanoDrop ND-1000 spectrophotometer 
(!ermo Scienti&c, USA) and RNA integrity was assessed using the Bioanalyzer 2100 (Agilent Technologies, 
USA). Each of the 61 RNA samples was then divided into two aliquots for use in the miRNA microarray or gene 
expression microarray experiments, respectively.

!e transcriptome was pro&led with a custom equine 4 ×  44 K microarray (ID: 044466, Agilent Technologies). 
Cyanine-3 (Cy3)-labelled cRNAs were prepared from 100 ng of total RNA using the One-Color Low Input 
Quick Amp Labeling kit (Agilent Technologies). Speci&c activities and cRNA yields were measured using the 
NanoDrop ND-1000 (!ermo Scienti&c, USA). For each sample, 1.65 μg of Cy3-labeled cRNA (speci&c activity 
> 9.0 pmol Cy3/μg of cRNA) were fragmented at 60 °C for 30 minutes in a volume of 55 μl containing 25×  Agilent 
Fragmentation Bu%er and 10×  Agilent Blocking Agent. Subsequently, 55 μl of 2×  Agilent Hybridization Bu%er 
were added to the fragmentation mixture and hybridized to the array, in accordance with the recommended 
protocol. A#er hybridization, the microarrays were washed 1 minute at room temperature with GE Wash Bu%er 1 
(Agilent Technologies) and 1 minute at 37 °C using GE Wash Bu%er 2 (Agilent Technologies).

!e slides were then scanned using a G2565CA Scanner System (Agilent Technologies), using a scan proto-
col with a resolution of 3 μm and a dynamic range of 20 bits. !e resulting TIFF images were analysed with the 
Feature Extraction So#ware v10.7.3.1 (Agilent Technologies), using the GE1_107_Sep09 protocol. !e microar-
ray data can be obtained from the Gene Expression Omnibus (GEO) database45 with the accession number 
GSE72973 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =  GSE72973).

For the miRNome pro&ling, an Agilent custom equine miRNA 8 ×  60 K microarray was used (ID: 060464). 
For each sample (n =  61), a total amount of 100 ng of total RNA was dephosphorylated, 3′  end-labelled with 
Cy3-pCp, puri&ed on Micro Bio-Spin 6 columns (Bio-Rad, USA), dried, and hybridized to the arrays using 
the miRNA Complete Labeling and Hybridization Kit (Agilent Technologies) according to the manufacturer’s 
instructions. A#er a washing step, hybridized microarray slides were scanned using a G2565CA Scanner System 
(Agilent Technologies) and a scan protocol with a resolution of 3 μm and a dynamic range of 20 bits. !e result-
ing TIFF images were analysed with the Feature Extraction So#ware v10.7.3.1 (Agilent Technologies), using the 
miRNA_107_Sep09 protocol. !e microarray data are available at GEO (GSE73102: http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc =  GSE73102). !e whole reference series (mRNA and miRNA) is available at GEO 
(GSE73104: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =  GSE73104).

Microarray dataset was deposited in GEO, in accordance with the MIAME guidelines.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72973
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73102
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73102
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73104
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�����������������������������������������������;�×�ͼͶ�������������Ǥ� !e custom equine array 
contained 1,886 Homo sapiens (hsa) miRNA sequences from the miRBase database (V9.2). Hsa miRNAs were 
included in the custom equine microarray because Buza et al.46 reported that over 60% of known mature equine 
miRNAs had perfect matches with human-associated miRNAs. Furthermore, the microarray included 84 known 
equine (eca) miRNAs (with no known human homologs), 876 putative novel miRNAs and 20 putative small RNAs 
encoded by the mitochondrial DNA. !e putative novel sequences were identi&ed in an independent sRNAseq 
experiment during which we used 16 small RNA libraries from six di%erent equine tissues (heart, liver, cartilage 
and three muscles: the platysma, the gluteus medius and the masseter). miRNA from the platysma and masse-
ter muscles, heart and liver were extracted from 15 healthy horses of di%erent ages and breeds (collected at the 
slaughterhouse). MicroRNAs from the gluteus medius were extracted from 10 healthy and 8 Cob Normand horses 
a%ected by polysaccharide storage myopathy. Total RNA was puri&ed from tissues using the miRNeasy Mini kit 
(Qiagen) and the RNeasy MinElute Cleanup kit (Qiagen) for enrichment of small RNA (< 200 bp), according to 
the manufacturer’s protocol. Total RNA quality and concentration were assessed as described above. For each 
tissue, three pools of three horses were formed (i.e. yielding 16 libraries). Approximately 500 ng of total RNA 
were used for library constructions, according to the manufacturer’s protocol for the SOLiD®  Total RNA-Seq Kit 
(Applied Biosystems, USA). !e small RNA libraries were sequenced on a SOLiD 5500XL Series Genetic Analysis 
System at the Metaquant core facility (INRA, Jouy-en-Josas, France). Solid sequencing generated a total of 350 
million reads of ~50 bp. !e overall "ow of the sequencing and bioinformatics analysis for small RNA has been 
described previously47. In brief, a#er removal of low-quality reads, the "anking linker and primer sequences, 
all remaining small RNAs were aligned with the Equus caballus genome (Equ Cab 2; GCA_000002305.1) with 
BowTie48 (v0.12.7). Fewer than 2 mismatches were required. Reads with > 6 alignments were removed. Mapped 
reads overlapping with known non-coding RNAs obtained from RFAM (http://rfam.sanger.ac.uk/) were also 
discarded. To detect putative miRNAs within the small RNAs, reads were &ltered by length (17–27 bp). Sequences 
that mapped solely to the mitochondrion were designed as mitomiRs. Subsequently, all potential novel miR-
NAs and mitomiRs were sorted and assigned to the putative ncRNA locus (i.e. clusters). Clusters with fewer 
than 10 reads were discarded because of their low information content. Potential pre-miRNAs were excised. 
Excision was initiated when a stack of reads was encountered. If there was a higher read stack within 20 bp down-
stream of the current read stack, the former stack was selected. Hence, the highest local read stack was identi&ed. 
Next, sequences covered by the highest local read stack were excised twice: once including the 50 bp upstream 
and 10 bp downstream "anking sequences, and once including 10 bp upstream and 50 bp downstream "anking 
sequences (to simulate the 5p and 3p positions of the potential miRNA). !ese putative pre-miRNAs were then 
screened for microRNA-like hairpin structures with RNAfold (using the latter’s default settings). For further 
details on sequencing analysis and prediction of novel miRNAs, see Desjardins et al.47. Our analysis yielded a 
total of 876 novel miRNAs and 20 putative mitomiRs (Supplementary Table S12). !ree novel miRNAs were 
re-annotated as eca-miRNAs because they have been already included in the new update of the miRNA database 
(with new-eca-mir-824 updated to eca-miR-1388; new-eca-mir-1047 to eca-miR-676; and new-eca-mir-1072 to 
eca-miR-2114). Among the plausible mitomiRs, two mapped to the 16 S rRNA, nine mapped to various tRNAs, 
two mapped to genes for complex I subunits, two mapped to genes from complex IV subunits, and two mapped 
to genes from complex V subunits. Lastly, two potential mitoRNAs mapped to the D-loop locus (Supplementary 
Fig. S4). None of the predicted pre-miRNA sequences encoded by the mitochondrial genome were signi&cantly 
folded into a duplex structure.

����������������������������������������������Ǥ� All the transcriptome pre-processing, normalization and 
statistical analysis steps were carried out using several Bioconductor packages in R programming language (ver-
sion 3.02). Firstly, the data’s quality was checked with the arrayQualityMetrics package49. Subsequently, probes 
showing any of the following Agilent "ags (gIsFeatPopnOL =  1, gIsBGNonUnifOL =  1, gIsFeatNonUnifOL =  1) 
were removed from the analysis. !e raw intensity values were then background-corrected using the “normexp” 
function, and the expression data were quantile-normalized (using the Limma package50; version 3.14.4). Probe 
summarization was based on the median expression value for the replicated probes. A total of 24,415 genes were 
selected in this analysis. Given that many of the original annotations for the custom equine Agilent microarray 
(AMAMID 021322, enriched with 384 equine transcripts) have been found to be incomplete, the annotation 
available in June 2014 at (http://www.genomics.agilent.com/en/Custom-Design-Tools/eArray/?cid =  AG-PT-
122&tabId =  AG-PR-1047) was used to re-assign the probes to new probe sets.

PCA was performed with FactoMineR and Ade4 packages (version 1.23), in order to establish whether a 
particular array contributed markedly to variability in the gene expression data (i.e. whether it retained most of 
the information). Di%erences revealed by the PCA were assessed using the Monte Carlo Permutation Procedure 
(999 replicates; “randtest” function) in the Ade4 package in R. DEGs were identi&ed by using the Limma package. 
!e statistical linear model included the time point (T0/T1) as a &xed e%ect. To make the analysis more robust 
and control more strictly for the false discovery rate (FDR), the p-values were corrected for multiple testing using 
Bonferroni’s method with a threshold of adjusted p <  0.0551. An unsupervised analysis of DEGs was carried out 
to identify clusters of samples or genes on the basis of their variance-covariance structure. !us, a two-way hier-
archical cluster analysis was performed using the hclust function with “1-cor (x)” as the distance and di%erent 
aggregation criteria. !e heatmap function was used to generate images.

For miRNome pro&ling, the raw data was pre-processed using a variant of the robust multi-array average 
(RMA) algorithm that has been speci&cally implemented for Agilent miRNA microarrays by Lopez-Romero  
et al.52. !e RMA implementation in the AgiMicroRna package was used without the initial background correc-
tion step, as recommended52. A miRNA transcript was considered to be detectable only if it met the following 
two conditions: (i) expression in at least 33% of the experimental samples; (ii) a signal intensity above the mean 
value of the negative control + 1.5 standard deviations. DEmiRNAs were identi&ed using the Limma package. In 

http://rfam.sanger.ac.uk/
http://www.genomics.agilent.com/en/Custom-Design-Tools/eArray/?cid=AG-PT-122&tabId=AG-PR-1047
http://www.genomics.agilent.com/en/Custom-Design-Tools/eArray/?cid=AG-PT-122&tabId=AG-PR-1047
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this case, correction for multiple testing (FDR <  0.05) was performed using the Benjamini-Hochberg method 
(as a compromise between the unadjusted analysis and the Bonferroni procedures). Multivariate analysis was 
performed as explained above.


�������������������������������������������������������������Ǥ� The GO term and the Kyoto 
Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses of DEGs and target DEGs were performed 
using Cytoscape V2.7 (http://cytoscape.org/) with the ClueGo V1.3 plug-in53. ClueGO determines the distribu-
tion of the gene list for the various GO terms and pathways. !e p-value was calculated using right-sided hyper-
geometric tests and the Benjamini-Hochberg correction for multiple testing (FDR <  0.001). Together with this 
very stringent FDR threshold, a high kappa value (0.4) enabled us to precisely select GO terms enriched in highly 
connected genes. !e size of the nodes re"ected the term’s degree of enrichment. !e network was automatically 
laid out using the organic layout algorithm in Cytoscape. Functional groups were created by iterative merging of 
the initially de&ned groups, according to the prede&ned kappa threshold. Only functional groups represented by 
their most signi&cant term were visualized in the network53. As a complementary approach, the list of selected 
genes was also fed into an Ingenuity Pathway Analysis (IPA; version 5.5, Ingenuity Systems, USA) to identify 
relevant categories of molecular functions, cellular components and biological processes. !e IPA enabled us to 
identify (i) signi&cantly overrepresented functional GO annotations, (ii) their over- or under-expression, and 
(iii) group-speci&c transcriptional networks. All listed or reconstructed cellular pathways were derived from the 
expert-annotated Ingenuity Knowledge Base of over 106 PPIs. !e IPA output a statistical assessment (based on 
Fisher’s exact test) of the signi&cance of representation for biological functions and signalling pathways. !e IPA 
computed networks and ranked them according to a statistical likelihood approach.

�����������������������������	����������������������������������Ǥ� !e iRegulon computational 
method was used to identify TFs within the set of DEGs and target DEGs54. iRegulon searches the regulatory 
sequences around each gene in order to detect enriched TF motifs. It uses a database of nearly 10,000 TF motifs. 
iRegulon links enriched motifs to candidate TFs and determines the optimal subset of direct target genes.

������������������� ������������������������������
�ǣ��������������������Ǥ� For each 
DEmiRNA, we assembled a comprehensive list of all experimentally validated target genes (using the multiMiR 
package in R). multiMiR is a comprehensive collection of predicted and validated miRNA–target interactions and 
their associations with diseases and drugs55. It contains human and murine data from 14 external databases that 
are categorized into three components, including three validated miRNA–target databases (miRecords, miRTar-
Base and TarBase), eight predicted miRNA–target databases (DIANA-microT, ElMMo, MicroCosm, miRanda, 
miRDB, PicTar, PITA and TargetScan), and three disease- or drug-related miRNA databases (miR2Disease, 
Pharmaco-miR and PhenomiR)55.

To investigate the biological relevance of the DEmiRNAs, we used two complementary statistical approaches. 
For each of the DEmiRNAs presenting at least one target gene, we performed: (i) the hypergeometric test for 
enrichment in targets DEGs negatively correlated with the DEmiRNA; and (ii) the generalization of the hyper-
geometric test. Both methods were implemented on the experimental set. For the hypergeometric test, we per-
formed a pair-wise Pearson correlation analysis of the expression levels of DEGs and the expression levels of 
DEmiRNAs presenting at least one experimentally validated target. Subsequently, we subtracted the set of cor-
related DEmiRNAs-DEGs with r <  − 0.5 and p <  0.05. One should note the existence of two types of negative 
regulatory interactions: (i) over-expressed mRNA/under-expressed miRNA and (ii) under-expressed mRNA/
over-expressed miRNA. We next looked at whether the DEmiRNA targets were over-represented among the 
subtracted set of genes, when compared with the other genes in the transcriptome. Benjamini and Hochberg 
correction56 for multiple testing was applied to the 91 p-values obtained.

Moreover, in order to address the hypergeometric test’s lack of power when the number of inversely corre-
lated target genes for a given DEmiRNA was very small, we also implemented a variant of the hypergeometric 
test. In contrast to the hypergeometric test (which is focused on the number of genes that were both DEGs and 
inversely correlated with a DEmiRNA at &xed signi&cance thresholds), the generalization of the hypergeometric 
test considers all possible thresholds. In this variant, we tested for enrichment in target genes by selecting DEGs 
regardless of the sign of their correlation with the miRNA. When considering a given DEmiRNA with at least 
one experimentally validated target gene, we looked at whether their target genes presented smaller p-values than 
the other genes in the transcriptome using a one-sided Wilcoxon rank sum test (implemented with the “wilcox.
test ()” function in R). !e FDR was determined to correct for multiple testing. Only the enriched DEmiRNAs 
for which at least one target gene was inversely correlated (r <  − 0.5) were selected. Lastly, only those DEmiRNAs 
that were signi&cant either in the hypergeometric test or its generalization a#er correction for multiple testing 
(FDR <  0.1) were analyzed further. !e FDR was set to 0.1 in order to retain as many biological functions as 
possible.

To &nd possible associations between the enriched DEmiRNA expression and biochemical blood parameters, 
a Pearson and a non-parametric Spearman rank correlation were applied using the cor () function in R.

�������������������������Ǧ�����������������������������Ǧ�����������������Ǥ� !e latest avail-
able version of the human PPI datasets from BioGRID (http://thebiogrid.org/) (release 3.2.105) was used for 
our analysis. !e curated PPI data (containing 15,352 unique proteins and 281,862 interactions) constituted 
the parental PPI network. !e Cytoscape program was used to visualize and analyze PPI networks. Firstly, the 
BioGRID parent PPI network was imported into Cytoscape. !e target DEGs (human orthologous gene symbols) 
were listed in a text &le (down regulated and up regulated DEGs, respectively) and mapped to the parental PPI 
network using the command “Select R Nodes R From ID List File”. To con&ne the analysis to interactions close 

http://cytoscape.org/
http://thebiogrid.org/
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to the target DEGs and to achieve maximum signi&cance, only &rst-level interactions between target DEGs and 
their neighbours were detected.

�������������������������Ǥ� !e networks’ topology was analysed using the NetworkAnalyzer Cytoscape 
plugin57. NetworkAnalyzer provides insights into the organization and structure of complex networks formed by 
the interacting molecules. It computes a comprehensive set of topological parameters, such as network diameter, 
density, centralization, heterogeneity, and clustering coe$cient, neighbourhood connectivity, average clustering 
coe$cients and the distribution of node degrees57. !e degree of a node corresponds to the number of its directly 
connected neighbours. Brie"y, the distribution of node degree P(k) is de&ned as the number of nodes with a 
degree k of 0, 1, 2, and so on. !e dependency pattern can be visualized by &tting a line to the node degree data. 
NetworkAnalyzer calculates the positive coordinate value for &tting the line with the power law curve of the 
form y =  β xa. !e R2 value is a statistical measure of the linearity of the curve &t and used to quantify the &t to the 
power line. When the &t is good, R2 is very close to 1.

�������

����������������������Ǧ���������������������������������������������Ǥ� GGMs can 
infer direct relationships between variables within a set of repeated observations and in the absence or presence of 
a priori knowledge58. In the GGM method, networks are represented as undirected graphs. Each node represents 
a gene or a miRNA, and an edge connects two nodes if they are partially correlated. In contrast to correlation 
analyses (which measure both direct and indirect interactions between pairs of variables), partial correlation anal-
yses measure the strength of direct interaction only58. A direct relationship between two variables corresponds to 
a non-zero entry in the partial correlation matrix. In a large-dimension context in which the number of variables 
exceeds the sample size, regularisation methods are needed for the estimation procedure. Moreover, in order to 
increase the estimation’s precision, some interactions between variables may be neglected by setting some edges 
to zero. We considered animals at T0 and animals at T1 separately. For each scenario, GGMs were built to model 
interactions between enriched miRNAs and DEGs that were inversely correlated and were targeted by at least 
one of the enriched miRNAs. In the correlation matrix, the following edges were set to zero: (i) miRNA-miRNA, 
(ii) miRNA-mRNA when the mRNA was not a validated target of the miRNA, and (iii) mRNA-mRNA when the 
interaction was not found in the BioGRID human PPI dataset (Supplementary Fig. S3). !e analyses were carried 
out with the R package glasso, which uses a lasso penalty for GGM estimation and allows a speci&ed list of edges 
to be set to zero. !e value of the constant in the lasso penalty (which has to be speci&ed in the glasso package) 
was set to 0.03 by minimising the cross-validation MSE described below.

Furthermore, GGMs can be viewed as regression models of each variable with regard to all the other variables; 
regression coe$cients are then expressed as a function of the partial correlation matrix. !e regression coe$cient 
of a variable i with regard to a variable j is equal to zero if and only if there is an edge between nodes i and j59. !e 
GGM method represents a re&nement of simple linear regression models of genes with regard to each miRNA 
because it takes account of mRNA-mRNA correlations. We made use of this property to build a cross-validation 
procedure and thus estimate the predictive ability of each miRNA from the list of target mRNAs. We considered 
two criteria: (i) the cross-validation MSE, which increases with the precision of the prediction, and (ii) the R2 for 
predicted vs observed values, which decreases as the linear correlation between predicted and observed values 
increases. For each miRNA, MSE and R2 were computed on the network composed by the selected enriched 
miRNAs and their inversely correlated target genes. !ese MSE and R2 values were then compared with those 
obtained using the same procedure and the same number of genes randomly selected from the transcriptome. 
More precisely, for 500 repetitions, the genes were randomly selected from among a total of 24,415. Lastly, we 
computed permutation p-values, i.e. the proportion of repetitions leading to a smaller MSE (or a larger R2) with 
respect to the values observed with the originally selected genes.

��Ǧ��������������������������������������������������������Ǥ� To validate the technical robust-
ness of the transcriptome data generated in the microarray study, quantitative RT-qPCR was carried out on a 
subset of candidate genes (Supplementary Table S13). We selected (i) genes with significant differences in 
expression levels when comparing T1 and T0 (a dynamic range of at least log2 (ratio) >  0.485), and (ii) genes 
of biological interest (e.g. IRF3, CASB5,). Speci&c PCR primers for these genes were designed using ABI Primer 
Express so#ware (version 3.0.1, Applied Biosystems) with melting temperatures of 58 °C to 60 °C and product 
lengths of between 100 and 150 bp. Reverse transcription of 500 ng of isolated total RNA was performed using 
the SuperScript®  VILO™  cDNA Synthesis Kit (Invitrogen, France), according to the manufacturer’s protocol. 
Dilutions (1/100) were used for qPCR with ABsolute Blue qPCR SYBR Green ROX mix (!ermoFisher Scienti&c, 
USA) in an Eppendorf Mastercycler RealPlex 4 (Eppendorf, France). !e diluted cDNA samples were mixed with 
1 ×  SYBR Green Master Mix and the speci&c reverse and forward primers (&nal concentration: 300 nM) in a &nal 
volume of 25 μl. Cycling conditions were 95 °C for 15 min, then 40 cycles of 95 °C for 15 sec and 60 °C for 1 min. 
For each sample and each gene, qPCR runs were performed in triplicate (in accordance with the manufacturer’s 
protocol). In order to quantify and normalise the expression data, we used the ΔΔCt method and the geometric 
mean Ct value from the succinate dehydrogenase complex, subunit A (SDHA), and beta actin (ACTB) as the 
endogenous reference genes. !e set of genes chosen for con&rmation by RT-qPCR was analysed in 10 animals 
of the experimental set using a linear e%ect model, including group (T0 or T1) as a &xed e%ect. !e threshold for 
statistical signi&cance was set to p <  0.05.

For analysis of the miRNome, &ve candidate miRNAs were selected from the microarray dataset for validation 
in the miRCURY LNA™  Universal RT microRNA PCR system (Exiqon, Denmark), using the same RNA sam-
ples used in the microarray pro&ling. cDNAs were obtained with the Universal cDNA synthesis kit II (product 
#203301, Exiqon, Denmark). !e primer sets and their product numbers are given in Supplementary Table S14. 
!e qPCR reaction was performed according to the kit manufacturer’s instructions (ExiLENT SYBR®  Green 
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master mix, product #203403, Exiqon). !e hsa-miR191 (#204306, Exiqon, Denmark)) was used as endogenous 
control. As for mRNA, the set of miRNAs chosen for con&rmation by RT-qPCR was analysed in 10 animals of 
the experimental set using a linear e%ect model, including group (T0 or T1) as a &xed e%ect. !e threshold for 
statistical signi&cance was set to p <  0.05.

����������
1. Russell, A. P. et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance 

training. J. Physiol. 591, 4637–4653 (2013).
2. Munoz, A., Riber, C., Trigo, P., Castejon-Riber, C. & Castejon, F. M. Dehydration, electrolyte imbalances and renin-angiotensin-

aldosterone-vasopressin axis in successful and unsuccessful endurance horses. Equine Vet. J. 42, 83–90 (2010).
3. Snow, D. H., Baxter, P. & Rose, R. J. Muscle &bre composition and glycogen depletion in horses competing in an endurance ride. Vet. 

record 108, 374–378 (1981).
4. Davies, K. J., Packer, L. & Brooks, G. A. Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to 

endurance training. Arch. biochem. bioph. 209, 539–554 (1981).
5. Hoppeler, H., Klossner, S. & Fluck, M. Gene expression in working skeletal muscle. Adv. Exp. Med. Biol. 618, 245–254 (2007).
6. Cannell, I. G., Kong, Y. W. & Bushell, M. How do microRNAs regulate gene expression? Biochem. Soc. Trans. 36, 1224–1231 (2008).
7. Grimson, A. et al. MicroRNA targeting speci&city in mammals: determinants beyond seed pairing. Mol. cell 27, 91–105 (2007).
8. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, o#en "anked by adenosines, indicates that thousands of human 

genes are microRNA targets. Cell 120, 15–20 (2005).
9. Kosaka, N. et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285, 17442–17452 

(2010).
10. Collino, F. et al. Microvesicles derived from adult human bone marrow and tissue speci&c mesenchymal stem cells shuttle selected 

pattern of miRNAs. PLoS one 5, e11803 (2010).
11. Lira, F. S. et al. Acute high-intensity exercise with low energy expenditure reduced LDL-c and total cholesterol in men. Eur. J. Appl. 

Physiol. 107, 203–210 (2009).
12. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. 

Proc. Natl. Acad. Sci. USA 108, 5003–5008 (2011).
13. Baggish, A. L. et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise 

training. J. Physiol. 589, 3983–3994 (2011).
14. Bye, A. et al. Circulating microRNAs and aerobic &tness—the HUNT-Study. PloS one 8, e57496 (2013).
15. Nielsen, S. et al. !e miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS one 9, e87308 

(2014).
16. Mooren, F. C., Viereck, J., Kruger, K. & !um, T. Circulating micrornas as potential biomarkers of aerobic exercise capacity. Am. J. 

Physiol. Heart Circ. Physiol. 306, 557–563 (2014).
17. Sawada, S. et al. Pro&ling of Circulating MicroRNAs a#er a Bout of Acute Resistance Exercise in Humans. PloS one 8, e70823 (2013).
18. Wardle, S. L. et al. Plasma MicroRNA Levels Di%er between Endurance and Strength Athletes. PloS one 10, e0122107 (2015).
19. Uhlemann, M. et al. Circulating microRNA-126 increases a#er di%erent forms of endurance exercise in healthy adults. Eur. J. Prev. 

Cardiol. 21, 484–491 (2014).
20. Radom-Aizik, S. et al. E%ects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clin. Transl. 

Sci. 5, 32–38 (2012).
21. Radom-Aizik, S., Zaldivar, F. Jr., Oliver, S., Galassetti, P. & Cooper, D. M. Evidence for microRNA involvement in exercise-associated 

neutrophil gene expression changes. J. Appl. Physiol. 109, 252–261 (2010).
22. Tonevitsky, A. G. et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 13, 9–20 (2013).
23. Krol, J., Loedige, I. & Filipowicz, W. !e widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 

597–610 (2010).
24. Liu, H. et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma. 

BMC Syst. Biol. 4, 51–68 (2010).
25. Boveris, A. & Navarro, A. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 44, 

224–229 (2008).
26. Capomaccio, S. et al. RNA sequencing of the exercise transcriptome in equine athletes. PloS one 8, e83504 (2013).
27. Scott, J. M. et al. Cardiovascular Consequences of Completing a 160-km Ultramarathon. Med. Sci. Sport Exerc. 41, 25–33 (2009).
28. Mohr, S. & Liew, C. C. !e peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol. Med. 13, 

422–432 (2007).
29. Barrey, E., Mucher, E., Robert, C., Amiot, F. & Gidrol, X. Gene expression pro&ling in blood cells of endurance horses completing 

competition or disquali&ed due to metabolic disorder. Equine Vet. J. Suppl. 36, 43–49 (2006).
30. Gim, J. A. et al. Transcriptional expression changes of glucose metabolism genes a#er exercise in thoroughbred horses. Gene 547, 

152–158 (2014).
31. Kavazis, A. N., Smuder, A. J. & Powers, S. K. E%ects of short-term endurance exercise training on acute doxorubicin-induced FoxO 

transcription in cardiac and skeletal muscle. J. Appl. Physiol. 117, 223–230 (2014).
32. Bianchessi, V. et al. !e mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. 

J. Mol. Cell Cardiol. 81, 62–70 (2015).
33. Holloszy, J. O. & Coyle, E. F. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 

Respir. Environ. Exerc. Physiol. 56, 831–838 (1984).
34. Makarova, J. A. et al. Exercise immunology meets MiRNAs. Exerc. Immunol. Rev. 20, 135–164 (2014).
35. Safdar, A., Abadi, A., Akhtar, M., Hettinga, B. P. & Tarnopolsky, M. A. miRNA in the regulation of skeletal muscle adaptation to 

acute endurance exercise in C57Bl/6 J male mice. PloS one 4, e5610 (2009).
36. Gomes, C. P. et al. Circulating miR-1, miR-133a, and miR-206 levels are increased a#er a half-marathon run. Biomarkers 19, 

585–589 (2014).
37. Tzimagiorgis, G., Michailidou, E. Z., Kritis, A., Markopoulos, A. K. & Kouidou, S. Recovering circulating extracellular or cell-free 

RNA from bodily "uids. Cancer Epidemiol. 35, 580–589 (2011).
38. Moldovan, L. et al. Methodological challenges in utilizing miRNAs as circulating biomarkers. J. Cell Mol. Med. 18, 371–390 (2014).
39. Koulmann, N. & Bigard, A. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. 

P#ugers Archiv-Europ. J. Physiol. 452, 125–139 (2006).
40. !um, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in &broblasts. Nature 456, 

980–984 (2008).
41. Godwin, J. G. et al. Identi&cation of a microRNA signature of renal ischemia reperfusion injury. Proc. Natl. Acad. Sci. USA 107, 

14339–14344 (2010).
42. Pellegrini Masini, A., Tedeschi, D., Badagli, P., C, S. & G, L. Exercise-induced intravascular haemolysis in standardbred horses. 

Comp. Clin. Pathol. 12, 45–48 (2003).
43. Inoue, Y. et al. E%ect of exercise on iron metabolism in horses. Biol. Trace Elem. Res. 107, 33–42 (2005).



www.nature.com/scientificreports/

1 5Scientific RepoRts�ȁ�ͼǣͿ�ȁ����ǣ�ͷͶǤͷͶ;Ȁ����Ϳ

44. Le Moyec, L. et al. Protein catabolism and high lipid metabolism associated with long distance exercise are revealed by plasma NMR 
metabolomics in endurance horses. Plos one 9, e90730 (2014).

45. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. 
Nucleic Acids Res. 30, 207–210 (2002).

46. Buza, T., Arick, M. 2nd, Wang, H. & Peterson, D. G. Computational prediction of disease microRNAs in domestic animals. BMC 
Res. Notes 7, 403–416 (2014).

47. Desjardin, C. et al. Next-generation sequencing identi&es equine cartilage and subchondral bone miRNAs and suggests their 
involvement in osteochondrosis physiopathology. BMC genomics 15, 798–809 (2014).

48. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-e$cient alignment of short DNA sequences to the 
human genome. Genome Biol. 10, 25–35 (2009).

49. Kau%mann, A., Gentleman, R. & Huber, W. ArrayQualityMetrics—a bioconductor package for quality assessment of microarray 
data. Bioinformatics 25, 415–416 (2009).

50. Smyth, G. K. Linear models and empirical bayes methods for assessing di%erential expression in microarray experiments. Stat. Appl. 
Genet. Mol. Biol. 3, Article3 (2004).

51. Bland, J. M. & Altman, D. G. Multiple signi&cance tests: the Bonferroni method. BMJ 310, 170 (1995).
52. Lopez-Romero, P. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna 

Bioconductor library. BMC Genomics 12, 64–72 (2011).
53. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. 

Bioinformatics 25, 1091–1093 (2009).
54. Janky, R. et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput. Biol. 10, 

e1003731 (2014).
55. Drugs to treat overweight and obesity. J. Psychosoc. Nurs. Ment. Health Serv. 52, 21–22 (2014).
56. Ge, Y., Sealfon, S. C. & Speed, T. P. Some Step-down Procedures Controlling the False Discovery Rate under Dependence. Stat. Sin. 

18, 881–904 (2008).
57. Assenov, Y., Ramirez, F., Schelhorn, S. E., Lengauer, T. & Albrecht, M. Computing topological parameters of biological networks. 

Bioinformatics 24, 282–284 (2008).
58. Villers, F., Schaeffer, B., Bertin, C. & Huet, S. Assessing the validity domains of graphical Gaussian models in order to infer 

relationships among components of complex biological systems. Stat. Appl. Genet. Mol. Biol. 7, Article 14 (2008).
59. Meinshausen, N. & Buhlmann, P. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436–1462 (2006).

����������������
!is work was funded by grants from the Fonds Eperon, the Institut Français du Cheval et de l’Equitation (IFCE), 
the Association du Cheval Arabe (ACA), the Swiss National Science Foundation (grant No. 310030–138295) 
and Swiss Institute of Equine Medicine Research. !e authors acknowledge the assistance of David Garal from 
Open University of Catalonia, Barcelona, Spain) who helped with the mitochondrial small RNA analysis, and the 
assistance of Xavier Mata, Sylvain Marthey, Rachel Legendre, Sean Kennedy and Laurent Schibler who designed 
the custom miRNA array. !e authors also thank Stéphane Robin (from the Mathématiques et Informatique 
Appliquées group at INRA/AgroParisTech, Paris, France) for his recommendation of the hypergeometric variation 
test. Lastly, we also thank all the horse owners, riders and endurance race organizers who participated in the study 
and David Fraser from Biotech communication for the English editing.

��������������������
N.M. carried out the functional biological analysis and the mitochondrial sRNAseq bioinformatics analysis, wrote 
the main manuscript text, and prepared all the &gures. S.P. designed and carried out the di%erential expression 
analysis, the hypergeometric tests and the GGM analyses. A.V. isolated the RNA. J.L. and M.M. performed the 
RNA labelling, microarray hybridization/scans and the exploratory statistical analysis. A.P. and M.B. helped to 
interpret data. J.R. carried out the RT-qPCR analyses. C.M. helped to check the quality of microarray design. 
A.N. helped with the functional biological analysis. C.R. and E.B. designed the study. All authors reviewed the 
manuscript and approved the &nal version.

����������������������
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing #nancial interests: !e authors declare no competing &nancial interests.
How to cite this article: Mach, N. et al. Integrated mRNA and miRNA expression pro&ling in blood reveals 
candidate biomarkers associated with endurance exercise in the horse. Sci. Rep. 6, 22932; doi: 10.1038/
srep22932 (2016).

!is work is licensed under a Creative Commons Attribution 4.0 International License. !e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in  ...
	Results
	Differentially expressed genes (DEGs) and miRNAs. 
	Target DEGs were inversely correlated with functionally enriched miRNAs. 
	Validation of the enriched miRNAs and their inversely correlated target DEGs by applying graphical Gaussian models (GGMs) t ...

	Discussion
	Conclusions
	Methods
	Animals. 
	Blood biochemical assays. 
	Blood samples, RNA isolation and microarray experiments. 
	Description of the Agilent custom equine miRNA 8 × 60 K microarray. 
	Statistical analysis of the microarray results. 
	Generation of a functional annotation map from a list of genes. 
	Use of iRegulon to identify TFs involved in biological processes. 
	DEmiRNAs and their inversely correlated target DEGs: enrichment analysis. 
	Construction of a PPI sub-network on the basis of miRNA-mRNA interactions. 
	Network topology analyses. 
	Use of GGMs to validate DEmiRNA-gene association networks in a validation set. 
	RT-qPCR validation of the transcriptome and miRNome results. 

	Acknowledgements
	Author Contributions
	Figure 1.  Overview of the data analysis.
	Figure 2.  The differential miRNA expression profile in blood.
	Figure 3.  A functional map of DEGs, showing the top categories of GO biological processes associated with significantly over-expressed (A) and under-expressed (B) genes following endurance exercise.
	Figure 4.  Relationship between TFs, miRNAs and DEGs.
	Figure 5.  Regulatory network linking the 44 enriched miRNA and their respective inversely correlated target DEGs.
	Figure 6.  A functional map of the 351 inversely correlated target genes regulated by the 44 enriched miRNAs.
	Figure 7.  Activators and repressors of the 44 enriched miRNAs.
	Figure 8.  Validation of the 44 enriched miRNAs by applying GGMs to an independent validation set.


