
Contents

Vol. 18, No. 4, 2009

Estimation of the Density of Regression Errors by Pointwise Model Selection

S. Plancade 1





ISSN 1066-5307, Mathematical Methods of Statistics, 2009, Vol. 18, No. 4, pp. 1–34. c© Allerton Press, Inc., 2009.

Estimation of the Density of Regression Errors
by Pointwise Model Selection

S. Plancade1*
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Abstract—This paper presents two results: a density estimator and an estimator of regression error
density. We first propose a density estimator constructed by model selection, which is adaptive
for the quadratic risk at a given point. Then we apply this result to estimate the error density in
a homoscedastic regression framework Yi = b(Xi) + εi from which we observe a sample (Xi, Yi).
Given an adaptive estimator b̂ of the regression function, we apply the density estimation procedure
to the residuals ε̂i = Yi − b̂(Xi). We get an estimator of the density of εi whose rate of convergence
for the quadratic pointwise risk is the maximum of two rates: the minimax rate we would get if the
errors were directly observed and the minimax rate of convergence of b̂ for the quadratic integrated
risk.
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1. INTRODUCTION

Consider a sample (Xi, Yi) from the homoscedastic regression framework:

Yi = b(Xi) + εi, (1)

where the (εi) are unobserved independent identically distributed (i.i.d.) data with common density f ,
with zero mean and independent of the (Xi). The main goal of this paper is to propose an estimator for
the density of εi, and to provide an upper bound for the quadratic risk of this estimator at a fixed point x0.

The main issue in regression problems is to predict Yi by measuring only Xi. The first step in such
study is the estimation of the regression function b(x) = E[Y | X = x]. This question has already been
studied at length. The second step consists in studying the variations of Yi around its conditional mean,
which are characterized by the density of the errors (εi).

The knowledge of an estimator of the error density has many applications: for example, it allows model
validation and, combined with an estimator of the regression function, it provides confidence intervals for
future observations Y . The reader is referred to Efromovich [8] for practical applications. Many papers
are devoted to density estimation but the difficulty in our problem is to estimate the density from a sample
(εi) which is not observed. The natural approach consists in computing proxies of the (εi), i.e., quantities
based on the data which estimate the true (εi), and applying to them a density estimation procedure as if
they were the true error sample. Observing that εi = Yi − b(Xi), we naturally estimate the errors by the
residuals (ε̂i = Yi − b̂(Xi)), where b̂ is an estimator of the regression function. Efromovich applies this
strategy with a thresholding density estimation procedure (see, for example, Efromovich [8]). He gets
an estimator of the density of the (εi) whose L2-risk reaches the same minimax rate of convergence we
would obtain if the (εi) were observed. Nevertheless, this result requires strong regularity conditions
on the regression function b, and on the density of the (Xi) and (εi). Another estimator is built in
Plancade [17] by model selection. Its L2-risk has a rate equal to the maximum of the minimax rates
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2 PLANCADE

of estimation of b and f if the sample (εi) were observed. Let us also mention the papers by Akritas
and Van Keilegom [1] and Kiwitt et al. [9] which propose estimators of the regression errors distribution
functions. But to the author’s knowledge, no paper studies pointwise estimation of the error density by
any method.

The estimators presented in this paper are based on a pointwise model selection procedure. Model
selection theory has been initiated by Birgé and Massart (see, for example, Birgé and Massart [4]), and
adapted to regression function estimation in Baraud [3] in the study of integrated quadratic risks. We will
use here the estimator b̂ of b proposed in Baraud [3], constructed by a model selection procedure based on
least square estimators. Although the principle of pointwise model selection is the same, the techniques
to carry it out are different. In particular, the key tool to prove the adaptivity of classical model selection
estimators is the Talagrand inequality, whereas the adaptivity of pointwise model selection estimators
comes out of a simpler Bernstein inequality. The techniques developed in this paper are based on Laurent
et al. [11], in which they develop these methods in a different framework.

This paper presents two results. On the one hand, we build a density estimator which proves to be
adaptive for the pointwise risk over some classical classes of regularity. Such estimators have been
constructed using kernel methods in Butucea [5], with the same adaptivity properties, along with
minimax results over Sobolev classes. Nevertheless, our estimator is completely data driven, whereas
the estimation procedure in Butucea [5] brings into play upper bounds on unknown quantities. The
second result proceeds from the application of the above density estimation procedure to residuals from
the framework (1). We get an estimator of the error density whose pointwise rate of convergence is the
maximum of these two rates: the pointwise minimax rate of estimation of f we would get if the errors
(εi) where observed and the L2-minimax rate of estimation of b.

The paper is organized as follows. In Section 2, we introduce the definitions and notations, in
particular, we define spaces of regularity and collections of models. Section 3 presents the density
estimator and its convergence properties. This density estimation procedure is used in Section 4 to
produce an estimator of the error density. Section 5 is devoted to numerical results. The proofs are
gathered in Sections 6, 7 and 8. Section 6 is devoted to the results about density estimator, Section 5
contains the proof of error density Estimation Theorem, and proofs of minor results are gathered in
Section 8.

2. DEFINITIONS AND NOTATION
2.1. Notation

Let t be a function defined on an interval I of R and µ be a density on I . We consider several norms
of t:

‖t‖∞ = sup
x∈I

|t(x)|, ‖t‖ =
( ∫

I

t2(x) dx

)1/2

, ‖t‖µ =
( ∫

I

t2(x)µ(x) dx

)1/2

.

Besides, we consider the following spaces of functions over I :

L2(I) = {t : I → R, ‖t‖ < +∞}, L∞(I) = {t : I → R, ‖t‖∞ < +∞}.
Moreover, we denote by Supp(t) the closure of the set {x ∈ I, t(x) 6= 0}. If t is a function k times
differentiable, we denote by t(k) its kth derivative.

For every set S, we denote by 1S the indicator function of S, that is 1S(x) = 1 if x ∈ S and 1S(x) = 0
otherwise.

For every function t : R→ R, we denote by t∗ the Fourier transform of t:

t∗(u) =
∫

x∈R
t(x)e−iux dx, ∀u ∈ R.

For every linear space Sm we denote by tm the L2-orthogonal projection of t onto Sm.
Finally, for every x ∈ R, we denote by E(x) its integer part, that is E(x) ∈ Z and:

E(x) ≤ x < E(x) + 1.

Let I ⊂ J be two subsets ofR, we denote by J \ I = {x ∈ J, x /∈ I}. Finally, we denote by o(1) a quantity
such that limn→+∞ o(1) = 0.
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2.2. Spaces of Functions

We consider the following Sobolev classes, for every α, L > 0:

W (α, L) =
{

F ∈ L2(R),
1
2π

∫

R

|F ∗(u)|2u2α du ≤ L2

}
.

The Hölder classes are defined as follows. For every β, L > 0, and r the largest integer less than β, let

H(β, L) =
{

F ∈ L2(R), |F (r)(x)− F (r)(y)| ≤ L|x− y|β−r, ∀x, y ∈ R
}

.

2.3. Collections of Models

Sine-cardinal basis: Let φ be the function defined on R by:

φ(x) =
sin(πx)

πx
, ∀x ∈ R∗,

and φ(0) = 1. For every m > 0, k ∈ Z, set

φm,k(x) =
√

mφ(mx− k), ∀x ∈ R,

and set

Am = vect{φm,k, k ∈ Z}. (2)

Let An be the collection of models which incorporates the models (Am) for m belonging to a grid of step
1/B, B being a fixed positive integer:

An =
{

Am,m ∈ 1
B
N,m ≤ Mn

}

and Mn ≤ n. The following results hold.

Proposition 2.1. (1) The family {φm,k, k ∈ Z} is orthonormal.

(2) For every m > 0,
∥∥ ∑

k∈Z
φ2

m,k

∥∥
∞ ≤ m.

(3) For every 0 < m < m′, Am ⊂ Am′ .

This result is proved in Section 8.

Wavelet basis: We consider also a collection of functions on [−1, 1] constructed from the compact
wavelet decomposition. We only recall here the definition of wavelet bases, the reader is referred to
Meyer [16] for more details. Let ψ be an r times differentiable function, called mother wavelet, supported
on a compact set [−B, B] and satisfying the following conditions:

(1) ψ, . . . , ψ(r) are bounded on [−B, B];

(2) For every 0 ≤ k ≤ r and ` ≥ 1 there exists a constant C` such that |ψ(k)(x)| ≤ C`(1 + |x|)−`,
∀x ∈ [−B,B];

(3)
∫ B
−B xkψ(x) dx = 0 ∀ 0 ≤ k ≤ r;

(4) The set of functions {ψj,k : x → 2j/2ψ(2j/2x− k), (j, k) ∈ Z2} is an orthonormal basis of L2(R).

Consider an r times differentiable function ϕ, called the father wavelet, supported on [−B, B] and
satisfying conditions (1) and (2) above, as well as the following conditions:
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(3′)
∫ B
−B ϕ(x) dx = 1;

(4′) The set of functions {ϕk : x → ϕ(x− k), k ∈ Z} ∪ {ψj,k, j ∈ N, k ∈ Z} is an orthonormal basis
of L2(R).

See Meyer [16] for examples of such functions ψ and ϕ. The set {ψj,k, j ≥ 0, k ∈ Z} ∪ {ϕk, k ∈ Z}
is an orthonormal basis of L2[−1, 1]. As ψ is supported on [−B, B], the restriction of ψj,k to [−1, 1]
is identically equal to zero for all j ∈ N and k /∈ [−2j −B, 2j + B]. Let us denote Γ(j) = Z ∩ [−2j −
B, 2j + B]. Similarly, ϕk is identically equal to zero for all k /∈ [−B − 1, B + 1] = Γ′(0). Set

Bm = vect
({ψj,k, j = 0, . . . , m− 1, k ∈ Γ(j)} ∪ {ϕk, k ∈ Γ′(0)}). (3)

It is clear that for every positive integers m′ ≥ m, Bm ⊂ Bm′ . Now, we define

Bn = {Bm,m ∈ N∗, 2m ≤ Mn}
with Mn ≤ n. The following result holds.

Proposition 2.2. There exists a constant K, which only depends on the father and mother
wavelets ψ and ϕ, such that, for every m ∈ N∗,

∥∥∥
m−1∑

j=0

∑

k∈Γ(j)

ψ2
j,k +

∑

k∈Γ′(0)

ϕ2
k

∥∥∥
∞
≤ K22m. (4)

This result is proved in Section 8.

3. DENSITY ESTIMATION BY POINTWISE MODEL SELECTION
In this section, we present a density estimator which is adaptive for the pointwise risk, over classical

classes of regularity. In Section 4, this procedure will be applied to the pseudo observations ε̂i of εi to get
an estimator of the error density.

3.1. Framework and Assumptions
Let

(V1, . . . , V2n) (5)

be an i.i.d. sample drawn from a density g supported on I ⊂ R, which satisfies:

Hdens : supx∈I |g(x)| = ν < +∞.

Let Mn = {Sm,m = 1, . . . , Nn} be a collection of subsets of L2(I) and {Dm,m = 1, . . . , Nn} a
collection of positive integers smaller than or equal to n such that the following assumption holds.

Hmod : The collectionMn is nested, that is:
S1 ⊂ S2 ⊂ · · · ⊂ SNn . (6)

Thus, there exists an L2-orthonormal basis {χλ, λ ∈ In} of SNn such that, for every model m, Sm is
spanned by {χλ, λ ∈ Im}, where Im is a subset of In. Moreover, we suppose that Dm ≤ Dm′ for every
m ≤ m′.

Moreover, assume that for some positive constant K, the following condition holds:∥∥∥
∑

λ∈Im

χ2
λ

∥∥∥
∞
≤ K2Dm, ∀m ∈ {1, . . . , Nn}. (7)

Finally, we assume that there exists a constant M ≥ 1 such that for every n ∈ N and every α ∈]0, 1[ with
nαM ≤ DNn , there exists a model m which satisfies(

n

log n

)α

≤ Dm ≤ M

(
n

log n

)α

. (8)

Hbias(β) : Let β > 0. Denoting by gm the L2-projection of g on Sm, we assume that for some
positive constant C0,

‖g − gm‖∞ ≤ C0D
−β
m , ∀m ∈ {1, . . . , Nn}. (9)
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3.2. A Preliminary Risk Bound for Non-Adaptive Estimators

We split the sample (5) into two independent sequences:

Z0 = (Vi)i∈{1,...,n}, Z1 = (Vi)i∈{n+1...,2n}. (10)

The sequence Z0 is used to compute the collection {ĝm,m = 1, . . . , Nn} of non-adaptive estimators,
and the sequence Z1 to estimate the parameter ν = ‖g‖∞ that appears in the penalty. Let x0 be a fixed
point in I . For every model m ∈ {1, . . . , Nn}, the projection estimator ĝm of g on Sm, computed from the
sample Z0 is defined by

ĝm =
∑

λ∈Im

(
1
n

n∑

i=1

χλ(Vi)
)

χλ. (11)

Observing that E[ĝm(x0)] = gm(x0) for every model m, the squared risk of the estimator ĝm at the point
x0 can be written as:

E[(ĝm − g)2(x0)] = E[(ĝm − gm)2(x0)] + (gm − g)2(x0).

Moreover,

E[(ĝm − gm)2(x0)] = Var
[ ∑

λ∈Im

( 1
n

n∑

i=1

χλ(Vi)
)
χλ(x0)

]
= Var

[ 1
n

n∑

i=1

( ∑

λ∈Im

χλ(Vi)χλ(x0)
)]

.

The (Vi) are i.i.d, thus

E[(ĝm − gm)2(x0)] =
1
n

Var
[ ∑

λ∈Im

χλ(V1)χλ(x0)
]
≤ 1

n
E

[( ∑

λ∈Im

χλ(V1)χλ(x0)
)2]

=
1
n

∫

x∈I

( ∑

λ∈Im

χλ(x)χλ(x0)
)2

g(x) dx ≤ ν

n

∫

x∈I

( ∑

λ∈Im

χλ(x)χλ(x0)
)2

dx.

By developing the square in the integral, we get

E[(ĝm − gm)2(x0)] ≤ ν

n

∑

λ,λ′∈Im

[ ∫

x∈I

χλ(x)χλ′(x) dx

]
χλ(x0)χλ′(x0).

Besides, the family {χλ, λ ∈ Im} is orthonormal, which ensures that

E[(ĝm − gm)2(x0)] ≤ ν

n

∑

λ∈Im

χ2
λ(x0),

and inequality (7) yields

E[(ĝm − gm)2(x0)] ≤ K2ν
Dm

n
. (12)

This bound is standard for a variance term. Finally, for every model m ∈ {1, . . . , Nn} we have the
following non-adaptive bound for ĝm:

E[(ĝm − g)2(x0)] ≤ (g − gm)2(x0) + K2ν
Dm

n
. (13)

In Section 3.4, we will select a model by a penalized criterion, which requires to estimate the variance
term K2νDm/n. Thus, we present an estimator ν̂n of ν.
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3.3. Estimation of ν

In this section, we propose an estimator ν̂n of ν = ‖g‖∞ constructed from the sample Z1. We consider
a collection of models which satisfies the following properties:

Hν(β) : Let M′
n = {S′m,m = 1, . . . , N ′

n} be a collection of models. We suppose that for every
model m, {ξλ, λ ∈ I ′m} is an L2-orthonormal basis of S′m and the (ξλ) are continuous on I .

Moreover, letting g
(1)
m = arg mint∈S′m ‖g− t‖2, we assume that ‖g− g

(1)
m ‖∞ ≤ C0D

′
m
−β for some

positive integers (D′
m)m=1,...,N ′

n
.

Let m0 be a model such that p0 = Dm0 satisfies
(

n
log n

)γ ≤ p0 ≤ M
(

n
log n

)γ for some γ ∈]0, 1/2[. We
define:

ĝ(1)
m =

∑

λ∈I′m

(
1
n

2n∑

i=n+1

ξλ(Vi)
)

ξλ and ν̂n = ‖ĝ(1)
m0
‖∞.

Proposition 3.1. Suppose that Assumptions Hdens and Hν(β) hold. Then for every n such that

(A1) C0p
−β
0 <

ν

6

we have

P
[
ν̂n ≤ 1

2
ν
]
≤ 2 exp

(
− nν

84K2p0

)
. (14)

If in addition:

(A2)
p0√
n
≤ ν

12K2
,

then

P [ν̂n ≥ 2ν] ≤ exp
(
− nν

456K2p0

)
. (15)

This result is proved in Section 6.2.

Comment 1.

(1) There exists an integer N depending on (K,β, C0) such that for every n ≥ N , (A1) and (A2) hold.

(2) The collections of models in which ν̂n and ĝbm are computed can be different.

3.4. Construction of the Adaptive Estimator

The model selection procedure developed by Birgé and Massart relies on the following idea: the “best”
model among the collection Mn is the one which minimizes the bias-variance sum in the right hand-
side of (13), thus the natural idea consists in building an estimator of this sum and selecting the model
m̂ which minimizes it.

On the one hand, the variance term K2νDm/n is estimated by K2ν̂nDm/n.

On the other hand, the estimation of the bias term (g − gm)2(x0) is the main distinct point between
pointwise and global model selection procedures. In classical L2-model selection, the bias term ‖g −
gm‖2 is estimated, up to a quantity independent of m, by−‖ĝm‖2 (see Massart [15]), but this procedure
cannot be carried over to the pointwise bias.
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We note that, as j tends to infinity, the model Sj grows and gj tends to g. Therefore, instead of
estimating (g − gm)2(x0), we estimate the term supj,m≤j≤Nn

(gj − gm)2(x0), which has same order.
This heuristic is confirmed as follows. By (9) in Assumption Hbias(β),

sup
j,m≤j≤Nn

(gj − gm)2(x0) ≤ 2 sup
j,m≤j≤Nn

[(gj − g)2(x0) + (gm − g)2(x0)]

≤ 2 sup
j,m≤j≤Nn

[C0D
−2β
j + C0D

−2β
m ] ≤ 4C0D

−2β
m

and (g − gm)2(x0) has order D−2β
m as well.

Now, let the best theoretical model mopt be defined by

mopt = arg min
m∈{1,...,Nn}

[
sup

j,m<j≤Nn

(gj(x0)− gm(x0))2 + pen(m)
]

= arg min
m∈{1,...,Nn}

[Crit(m)], (16)

where pen(m) = AK2xmν̂n
Dm
n , A is a constant greater than or equal to 1, and

xm :=
45
2

log(1 + Dm)max
{

1,
9K2

ν̂n
log(1 + Dm)

Dm

n

}
.

Remark about the numerical constant in xm: If the constant 45/2 is replaced by any constant
B > 8, Theorem 3.1 would still hold, but with different constants (θi) (see Section 3.5). Moreover, the
condition B > 8 appears in theoretical upper bounds, but in numerical simulations (see Section 5) the
value B = 5 seems to perform well. Nevertheless, the empirical calibration of this constant, as well as
the constant in the penalty below, involves a lot of simulation experiments. This is a general problem in
model selection and it is not specific to pointwise model selection.

In view to estimate Crit(m), the natural idea would be to replace (gj − gm)2(x0) by (ĝj − ĝm)2(x0),
but this proceeding is clearly biased. In fact,

E[(ĝm − ĝj)2(x0)] = (gj − gm)2(x0) + E
[(

(ĝj − ĝm)(x0)− (gj − gm)(x0)
)2]

.

The term E
[(

(ĝj − ĝm)(x0)− (gj − gm)(x0)
)2] is upper bounded similarly to inequality (12). More

precisely,

E
[(

(ĝj − ĝm)(x0)− (gj − gm)(x0)
)2] = Var[(ĝj − ĝm)(x0)]

= Var
[ ∑

λ∈Ij\Im

( 1
n

n∑

i=1

χλ(Vi)
)
χλ(x0)

]
=

1
n

Var
[ ∑

λ∈Ij\Im

χλ(V1)χλ(x0)
]

≤ ν

n

∫

x∈I

( ∑

λ∈Ij\Im

χλ(x)χλ(x0)
)2

dx =
ν

n

∑

λ∈Ij\Im

χ2
λ(x0) ≤ ν

n

∑

λ∈Ij

χ2
λ(x0) ≤ νK2 Dj

n
.

Now, the theoretical criterion Crit(m) is estimated by

Ĉrit(m) = sup
j,m<j≤Nn

[
(ĝj − ĝm)2(x0)−K2ν̂nxj

Dj

n

]
+

+ pen(m) (17)

and m̂ = arg minm∈{1,...,Nn} Ĉrit(m).

Our estimator of g is ĝbm.
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3.5. Results
We can prove the following result about the risk of ĝbm at x0.

Theorem 3.1. Suppose that Assumptions Hbias(β), Hν(β), and Hmod hold with the constraint
M(n/ log n)1/(2β+1) ≤ Nn. Suppose that (A1), (A2) and the following condition hold:

(A3) : 1 + Mn log n ≤ n and
(

n

log n

)2β/(2β+1)

≥ 18MK2

ν
. (18)

Then,

E[(ĝbm − g)2(x0)] ≤ θ1

(
n

log n

)− 2β
2β+1

+Rn,

where

Rn =
θ2

n
+ (ν + K2 max

m=1,...,Nn

Dm)2 exp
[
− nν

84K2p0

]
+ θ3p

2
0 exp

[
− nν

456K2p0

]

and

θ1 = max
{

15, 4(3 +
2

45 log(1 + D1)
)
}

(2C2
0 + 45AK2ν) + 4C2

0 ,

θ2 = 20K2(ν + 16K2)
( Nn∑

m=1

(1 + Dm)1+1/4

)
,

θ3 =
45A

2
(M + 1)K4ν max

{
15, 4

(
3 +

2
45 log(1 + D1)

)}
.

Comment 2. Clearly,Rn is negligible with respect to the rate (n/ log n)−2β/(2β+1).

Assumption Hbias(β) couples the collection of models and the fact that g belongs to a certain space of
regularity (through the exponent β). The following Proposition gives examples for which this assumption
is satisfied.

Proposition 3.2. (1) Let (β, L) be two positive numbers, let Am be the linear subset of L2(R)
defined in (2), and let hm = arg mint∈Am ‖h− t‖, for every h ∈ L2(R), then there exists a constant
K(β) such that

‖h− hm‖∞ ≤ K(β)Lm−β, ∀h ∈ W (β + 1/2, L).

(2) Let (β, L) be two positive numbers, and r be an integer greater than β, let Bm be the linear
subset of L2([−1, 1]) defined in (3) and let hm = arg mint∈Bm ‖h− t‖ for every h ∈ L2([−1, 1]), then
there exists a constant K ′(β) such that

‖h− hm‖∞ ≤ K ′(β)L(2m)−β, ∀h ∈ H(β, L).

This Proposition is proved in Section 8. Moreover, by Propositions 2.1 and 2.2, the collections An

and Bn satisfy Assumption Hmod for M = 2.

Comment 3. It is well known that the minimax rate of convergence for pointwise density estimation over
W (β + 1/2, L) orH(β, L) is n−2β/(2β+1) (see, e.g., Tsybakov [19] for Hölder classes and Butucea [5] for
Sobolev spaces). Our estimator reaches this rate up to a logarithmic factor. Nevertheless, Lepski [12]
defines the adaptive minimax rate, which is the best rate of convergence for adaptive estimators over a
range of regularity classes, and proves that the logarithmic loss is unavoidable in adaptive estimation,
in several frameworks. Following this line, Butucea [5] proves that the adaptive minimax rate over the
classes {W (β, L), β > 0} for pointwise density estimation is (n/ log n)−2β/(2β+1). Hence if we consider
the collection of models An, ĝbm is adaptive minimax over Sobolev classes. Similar results are proved
over Hölder classes, for example, in a white noise model (see Lepski and Spokoiny [13]), so we expect
that the adaptive minimax rate in pointwise density estimation has the same order. Then if we consider
the collection Bn, our estimator should be adaptive minimax over Hölder classes.
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3.6. Comparison with Lepski’s Method

The reference method in pointwise estimation is the one originally presented by Lepski [12] and
developed in many others papers. In particular, it was adapted to density estimation by Butucea [5]. This
procedure provides adaptive rates of convergence and even exact adaptive results (see Butucea [5]). This
means that the estimator gets the adaptive rate of convergence and also the best asymptotic constant
on given classes of functions. Lepski estimators have better asymptotic properties than the estimator
presented in this paper, but the theoretical results remain asymptotic, whereas the results presented
here are non-asymptotic. One can object than the large constants which appear in the term Rn in
Theorem 3.1 require large-size samples, but these constants are much larger than the effective ones,
as proved by simulations.

In more recent works, Lepski and Goldenshluger [14] prove oracle inequalities in the Gaussian white
noise framework, but as far as the author knows, these results have not been developed in density
estimation framework.

4. ERROR DENSITY ESTIMATION

4.1. Framework, Outline and Preliminary Results

We consider a 3n-sample

(Xi, Yi)i∈{−n,...,−1}∪{1,...,2n} (19)

from the regression framework (1), where the (Xi) are i.i.d. with density fX supported on [0, 1], the (εi)
are i.i.d. independent of the (Xi) and E(ε1) = 0. This section presents an estimation procedure of the
density f of the (εi). Let us outline this procedure, which can be decomposed in three steps.

Step 1: From the sequence

Z− = (Xi, Yi)i∈{−n,...,−1}, (20)

we compute an estimator b̂ of the regression function b.
In Section 4.4, we recall an example of adaptive estimation procedure of the regression function, but

the result that we establish in Theorem 4.1 holds for any estimator b̂ of b computed from the sequence Z−.

Step 2: We compute the residuals of the sequence (Xi, Yi){1,...,2n}, namely

ε̂i = Yi − b̂(Xi), ∀i ∈ {1, . . . , 2n}.
Noting that εi = Yi− b(Xi), the ε̂i are natural proxies for the unobserved (εi). Given Z−, the (ε̂i) are i.i.d.
Let us denote by f− their common density, which only depends on the sequence (Xi, Yi)i∈{−n,...,−1}. For
every integrable function t : R→ R

E[t(ε̂1) |Z−] = E[t((b− b̂)(X1) + ε1) |Z−] =

1∫

x=0

∫

y∈R
t((b− b̂)(x) + y)fX(x)f(y) dy dx

=

1∫

x=0

∫

z∈R
t(z)fX(x)f(z − (b− b̂)(x)) dz dx =

∫

z∈R
t(z)

[ 1∫

x=0

f(z − (b− b̂)(x))fX(x) dx

]
dz.

Hence,

f−(z) =

1∫

x=0

f
(
z − (b− b̂)(x)

)
fX(x) dx, ∀z ∈ R. (21)

Step 3: We apply the density estimation procedure described in Section 3 to the residuals (ε̂i).
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Thus, the risk of the estimator of f results from two consecutive approximations of different nature:
the first one consists in replacing the true (εi) by the residuals, and the second one is a density estimation
error.

These two approximations appear in the following inequality:

E[(f̂−bm − f)2(x0)] ≤ 2
{
E[(f̂−bm − f−)2(x0)] + E[(f− − f)2(x0)]

}
. (22)

We suppose that the error density f satisfies the following assumption.

Herror : f is Lipschitz with constant Lip(f), that is:

|f(x)− f(y)| ≤ Lip(f)|x− y|, ∀x, y ∈ I.

Besides, supx∈I |f(x)| = ν < +∞.

We consider a collection of models Mn, which satisfies Assumption Hmod and such that one of the
following two alternative assumptions holds:

H(1)
bias−error(β) : f ∈ H(β, L) and there exists a constant C0(β, L) such that, for every model

Sm ∈Mn,

‖h− hm‖∞ ≤ C0(β, L)D−β
m , ∀h ∈ H(β, L).

H(2)
bias−error(β) : f ∈ W (β + 1/2, L) and there exists a constant C0(β, L) such that, for every

model Sm ∈Mn,

‖h− hm‖∞ ≤ C0(β, L)D−β
m , ∀h ∈ W (β + 1/2, L).

Remark 1. According to Proposition 3.2, Assumption H
(1)
bias−error(β) is satisfied if f ∈ H(β, L) and the

collectionMn that we consider is the wavelet collection Bn, and Assumption H
(2)
bias−error(β) is satisfied

if f ∈ W (β + 1/2, L) andMn is the sine-cardinal collection An.

Remark 2. Assumptions H
(1)
bias−error(β) and H

(2)
bias−error(β) are less general than Assumption Hbias in

the density estimation Theorem. In fact, in order to apply the result of Section 3, we need the density f−

of the residuals to satisfy the Assumptions of Theorem 3.1, which is guaranteed under H
(1)
bias−error(β) or

H
(2)
bias−error(β). This fact comes out of the following proposition.

Proposition 4.1. (1) For every x ∈ R, |f−(x)| ≤ ν a.s.
(2) For every β, L positive, f ∈ H(β, L) ⇒ f− ∈ H(β, L) a.s.
(3) For every β, L positive, f ∈ W (β + 1/2, L) ⇒ f− ∈ W (β + 1/2, L) a.s.

Proposition 4.1 is proved in Section 8.
We consider another collection M′

n = {S′m,m = 1, . . . , Nn} (which can be equal to or different
from Mn) and for every m, S′m = vect{ξλ, λ ∈ I ′m} and the (ξλ) are continuous on I . For every

h ∈ L2(I), let h
(1)
m = arg mint∈S′m ‖h− t‖2. We suppose that one of the following two alternative

assumptions holds:

H(1)
ν−error(β) : f ∈ H(β, L) and for every model S′m ∈Mn,

‖h− h(1)
m ‖∞ ≤ C0(β, L)D−β

m , ∀h ∈ H(β, L).

H(2)
ν−error(β) : f ∈ W (β + 1/2, L) and for every model S′m ∈Mn,

‖h− h(1)
m ‖∞ ≤ C0(β, L)D−β

m , ∀h ∈ W (β + 1/2, L).
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4.2. Definition of the Estimator

Let us consider the 3n-sample (19). Let b̂ be any estimator of b constructed from the sequence Z−
(see 20). Set

ε̂i = Yi − b̂(Xi), ∀i = 1, . . . , 2n.

LetMn = {Sm, m = 1, . . . , Nn} be a collection of subsets of L2(I), {Dm,m = 1, . . . , Nn} a collec-

tion of positive integers, and β a positive number such that Assumptions Hmod, and H
(1)
bias−error(β) or

H
(2)
bias−error(β) hold.

For every model Sm = vect{χλ, λ ∈ Im}, let

f̂−m =
∑

λ∈Im

(
1
n

n∑

i=1

χλ(ε̂i)
)

χλ. (23)

Let M′
n = {S′m,m = 1, . . . , N ′

n} be a collection of subsets of L2(I), {D′
m,m = 1, . . . , Nn} a col-

lection of positive integers such that Assumption H
(1)
ν−error(β) or H

(2)
ν−error(β) holds. Let m0 be in

{1, . . . , N ′
n} such that p0 = Dm0 satisfies

(
n

log n

)γ

< p0 < M

(
n

log n

)γ

for some γ ∈]0, 1/2[, and

ν̂−n = ‖(f̂−m0
)(1)‖∞, where (f̂−m0

)(1) =
∑

λ∈I′m

( 1
n

2n∑

i=n+1

ξλ(ε̂i)
)
ξλ.

Finally, let

m̂ = arg min
m=1,...,Nn

{[
sup

j,m≤j≤Nn

(f̂−j − f̂−m)2(x0)−K2xj ν̂
−
n

Dj

n

]
+

+ pen−(m)
}

,

where pen−(m) = AK2x−mν̂−n
Dm
n with

x−m :=
45
2

log(1 + Dm)max
{

1,
9K2

ν̂−n
log(1 + Dm)

Dm

n

}
.

4.3. Result

For the estimator f̂−bm the following result holds.

Theorem 4.1. Suppose that Assumptions H
(i)
bias−error(β) and H

(i)
ν−error(β) hold for i = 1 or 2 and for

some β ≥ β′ > 3/4, where β′ is known. Suppose that Assumption Hmod holds with
(

n

log n

)1/(2β′+1)

≤ DNn ≤ M

(
n

log n

)1/(2β′+1)

.

Consider

γ ∈
]

1
β′(2β′ + 1)

, min
{

1
β′ + 1

,
4β′ + 1

3(2β′ + 1)

}[
.

Then, for every n such that 1 + Mn/ log n ≤ n, we have

E
[
(f̂−bm − f)2(x0)

] ≤ θ′1

(
n

log n

)−2β/(2β+1)

+ CnE
[‖b̂− b‖2

fX

]
+Rn, (24)
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where

θ′1 =
[
(2C2

0 + 45AνK2)max
(
15, 3 +

2
45 log(1 + D1)

)
+ C2

0

]
(M + 1),

Cn = Lip(f)2 + 2 log n
[(

ν
( n

log n

)−1/(2β′+1)
+ K2M

)2

×
(
36C2

0

( n

log n

)2/(2β′+1)−2β′γ
+ (18MK2)2

( n

log n

)(2−4β′)/(2β′+1))]
,

Rn = 2
(
ν + K2M

( n

log n

)1/(2β′+1))2
exp

(
−
√

n

7

)
+

θ2

n
,

and θ2 is defined in Theorem 3.1.

Remark 3. We have Cn = Lip(f)2 + o(1) andRn ≤ κ′1/n, where κ′1 depends on (ν,M,K, β′).

Comment 4. By (24), the rate of convergence of our estimator is upper bounded by the maximum of the
two following rates:

• the rate of convergence of the estimator b̂ of b.

• the minimax rate of estimation we would obtain for f if the (εi) were directly observed, that is
(n/ log n)−2β/(2β+1).

According to Comment 3 in Section 3.5, the rate of convergence of f̂−bm is clearly lower bounded by

(n/ log n)−2β/(2β+1). On the other hand, the term E[‖b̂− b‖2
fX

] seems to be avoidable. In an integrated
risk context, Efromovich [8] proposes an error density estimator whose rate of convergence does not
depend on the risk of b̂. Nevertheless, stronger conditions are required. In particular, the densities of Xi

and εi are supposed to be two times differentiable and the errors (εi) are supposed to be symmetrical.
The convergence results in Efromovich [8] are based on properties of the trigonometric basis and are not
easily transposable in a pointwise context.

Besides, in numerical examples, our error density estimator performs nearly as well as the estimator
we would obtain if the (εi) were observed (see Fig. 3, Section 5).

4.4. An Estimator of b

In this section, we briefly exhibit an estimator b̂ of b which suits to our setting. This is the estimator
which is implemented in the simulations. The regression function estimator presented here results from
Baraud’s works (see Baraud [3] and Baraud [2]), gathered in Plancade [17]. Consider the following
conditions.

Hb : The density fX of X1 is supported on a compact J , and is lower bounded by m0 > 0 and
upper bounded by m1 < +∞.

Let us consider a collection of finite-dimensional models Σn which satisfies the following assumption.

Hmod−b : Σn is included in a global model Sn with dimension smaller than n1/2−d for some
d > 0. Furthermore, there exists some nonnegative constants Γ and R such that for every
integer n,

|{m ∈ Σn : Dm = D}| ≤ ΓDR

for every D ∈ N∗. Finally, there exists a constant K such that

‖t‖∞ ≤ K
√

Nn‖t‖, ∀t ∈ Sn.
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For every model m ∈ Σn, let b̂m be the least squares estimator of b:

b̂m = arg min
t∈Sm

γn(t), where γn(t) =
1
n

−1∑

i=−n

(Yi − t(Xi))2,

and the selected model is m̂ = arg minm∈Σn

[
γn(̂bm) + A′σ̂2

n
Dm
n

]
, where A′ > 1 and σ̂2

n is an estimator
of the variance of ε1: let Vn be a space of dimension E(n/2) which includes the global model Sn, then:

σ̂2
n =

1
n−E(n/2)

inf
t∈Sn

(Yi − t(Xi))2.

Let us define b̂ = b̂bm if ‖b̂bm‖ ≤ n and b̂ = 0 otherwise.

Proposition 4.2. Under Assumptions Hb and Hmod−b,

E[‖b− b̂‖2
fX

] ≤ C inf
m∈Σn

(
‖b− bm‖2 + σ2 Dm

n

)
+

C ′

n

for some constants C depending on A′ and m1 and C ′ depending on (σ,E[ε41],m0,m1).

Finally, classical results about approximation theory in Besov spaces lead to the following statement:
if b belongs to the Besov space Bα,∞

2 (for a definition of Besov space, see DeVore and Lorentz [7]), then
E[‖b̂− b‖2

fX
] ≤ Cn−2α/(2α+1). This entails the following Corollary:

Corollary 4.1. Suppose that the assumptions of Theorem 4.1 hold, as well as Assumptions Hb

and Hmod−b. Then, if b belongs to the Besov space Bα,∞
p for some p > 0 and α ≥ β > 1/2,

E
[
(f̂−bm − f)2(x0)

] ≤ θ
( n

log n

)− 2β
2β+1

for some constant θ independent of n.

In other words, if b is smoother than f , the rate of convergence of f̂−bm is the optimal rate we would get
if the (εi) were directly observed. We do not provide a detailed proof of Corollary 4.1, and the reader is
referred to the remark at the end of Theorem 5.1 in Plancade [17].

5. SIMULATIONS

5.1. Density Estimation

This section illustrates the density estimation procedure presented in Section 3 with the sine-cardinal
collection of models An described in (2). We choose B = 10 and Mn =

√
n. We draw 50 samples

(V1, . . . , Vn) of size n = 200, 500, 2000 of i.i.d. variables with Gaussian distribution (denoted byN (0, 1))
and with Laplace density g(x) = 1

2 exp(−|x|) (denoted by L(1)). Let J be the set of 150 regularly spaced
points in [−5, 5]. For each sample and for every point x ∈ J we compute an estimator ĝbm(x) as follows,
assuming that the maximum of the density ν is known:

• First we compute the projection density estimators (ĝm(x)) for every m ∈ 1
10N, m ≤ Mn, and

every x ∈ J (see (11)).

• Then for every x ∈ J , we select the best model as:

m̂ = arg min
{

sup
m≤j≤Nn

[
(ĝj − ĝm)2(x)− αν log(1 + j)

j

n

]
+

+ βν log(1 + m)
m

n

}

with α = 5 and β = 10.

• We plot the set of points {(x, ĝbm(x)), x ∈ J}.
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Vi ∼ N (0, 1)

n=200 n=500

n=2000

Vi ∼ L(1)

−3 −2 −1 0 1 2 3 4 5 −3 −2 −1 0 1 2 3 4 5

n=200 n=500

−3 −2 −1 0 1 2 3 4 5

n=2000

Fig. 1. Beam of 50 density estimators curves (dotted lines) built from i.i.d. samples of size n = 200, 500, and 2000 of
densitiesN (0, 1) and L(1) (thick lines), in sine-cardinal bases.
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In Figure 1, each graph presents 50 estimated curves of ĝbm for a given density gi and a given n.

Figure 2 presents a comparison between our pointwise model selection estimator and a global model
selection estimator computed following the procedure developed by Massart [15], Section 7, for sample
of size n = 500, 2000 with common density χ2(3). The global model selection estimator (dotted line) is
computed in a mixed piecewise polynomial and trigonometric polynomial basis using matlab programs
available on Yves Rozenholc’s web page (http://www.math-info.univ-paris5.fr/ rozen/). The pointwise
model selection estimator (solid line) is built following the procedure described above, on the set J of 150
regularly spaced points on [−1, 15]. We observe that the pointwise model selection estimator (solid line)
fits the true density (thick line) for a smaller sample size better than the global model selection estimator.

5 10 15 5 10 15

n=500 n=2000

Fig. 2. Pointwise model selection estimator (solid line) and global model selection estimator (dotted line) for a sample
of size n = 500, 2000 of density χ2(3) (thick line).

5.2. Error Density Estimation

This section proposes illustrations of the error density estimator described in Section 4, with the
following procedure:

• We draw a sample (X1, . . . , X2n) with common density fX uniform on [0, 1] and χ2(3). We
draw also a sample (ε1, . . . , ε2n) with common density f from a distribution N (0, 1) and L(1).
We choose a regression function b(x) = x3 + 5x and b(x) = exp(−|x|) and compute the sample
(Y1, . . . , Y2n), where Yi = b(Xi) + εi.

• From the sample {(Xi, Yi)}i=1...n, we compute an estimator b̂ of b following the procedure
described in Section 4, using mixed piecewise polynomial and trigonometric polynomial basis
(see Comte et al. [6]).

• We compute the residuals from the second sample (ε̂i)i=n+1,...,2n, where ε̂i = Yi − b̂(Xi).

• Let J be a set of 150 regularly spaced points on [−5, 5]. We apply the density estimation procedure
described in Section 5.1 to the residuals (ε̂i)i=n+1,...,2n.

Figure 3 presents the error density estimator (dotted line) and the theoretical estimator we obtain by
applying the density estimation procedure of Section 5.1 directly to the sample (εi)i=n+1,...,2n. The thick
line is the true density of ε1.

We have also checked that the error density estimator hardly depends on the design’s distribution.
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Xi ∼ U [0, 1], εi ∼ N (0, 1), b(x) = x3 + 5x

−3 −2 −1 0 1 2 3 4 5 −3 −2 −1 0 1 2 3 4 5

n=200 n=500

−3 −2 −1 0 1 2 3 4 5

n=2000

Xi ∼ χ2(3), εi ∼ L(1), b(x) = exp(−|x|)

−3 −2 −1 0 1 2 3 4 5 −3 −2 −1 0 1 2 3 4 5

n=200 n=500

−3 −2 −1 0 1 2 3 4 5

n=2000

Fig. 3. Error density estimator (solid line), theoretical estimator we would get if the errors were observed (dotted line)
and true density (thick line).
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6. PROOFS OF SECTION 3

6.1. Proof of Theorem 3.1

The proof is divided in four claims.
Let us denote by E1[·] = E[· | Z1] the conditional expectation given Z1 and P1[·] = P [· | Z1] the

probability given Z1.

Claim 1. Suppose that Assumptions Hdens and Hmod hold. Then

E1[(ĝbm − g)2(x0)]× 1{bνn≥ν/2}

≤ 2(gmopt − g)2(x0) + 11 sup
j,mopt≤j≤Nn

(gj − gmopt)
2 +

(
12 +

4
xmopt

)
pen(mopt) +

θ2

n
.

This entails the following result.

Claim 2. Under Assumptions Hdens, Hmod, Hbias(β), and (A3)

E1[(ĝbm − g)2(x0)]× 1{bνn≥ν/2}

≤ max(κ2, ν̂nκ3) inf
{m=1,...,Nn,(9K2/bνn) log(1+Dm)Dm/n≤1}

[
D−2β

m + log Dm
Dm

n

]
+

θ2

n
,

where

κ1 = 4
(
3 +

2
45 log(1 + D1)

)
, κ2 = 2C2

0 [max(15, κ1) + 2], κ3 = max(15, κ1)
45AK2

2
.

We can deduce from Claim 2 the following inequality.

Claim 3. Suppose that Assumptions Hdens, Hmod, Hbias(β) and (A3) hold. Moreover, suppose that
M(log n/n)1/(2β+1) ≤ DNn , then

E1[(ĝbm − g)2(x0)]× 1{bνn≥ν/2} ≤ max(κ2, ν̂nκ3)(M + 1)
( n

log n

) −2β
2β+1 +

θ2

n
.

Besides, the following result holds.

Claim 4. Under Assumptions Hdens and Hmod, for every model m ∈ {1, . . . , Nn} and every x ∈ I,

|ĝm(x)| ≤ K2Dm a.s.

The inequalities stated in Claims 3 and 4 allow us to prove Theorem 3.1. Indeed, on the one hand, by
Claim 3,

E[(ĝbm − g)2(x0)1{bνn≥ν/2}] ≤ E[max(κ2, ν̂nκ3)](M + 1)
( n

log n

)− 2β
2β+1 +

θ2

n
.

Moreover,

E[max(κ2, ν̂nκ3)] ≤ E[κ2 + κ3ν̂n] ≤ κ2 + 2κ3ν + κ3E[ν̂n1{bνn≥2ν}].

By Claim 4, ν̂n ≤ K2p0 almost surely, hence E[max(κ2, ν̂nκ3)] ≤ κ2 + 2νκ3 + κ3K
2p0P [ν̂n ≥ 2ν], and

under Assumptions (A1) and (A2), inequality (15) of Proposition 3.1 yields

E[max(κ2, ν̂nκ3)] ≤ κ2 + 2νκ3 + κ3K
2p0 exp

(
− nν

456K2p0

)
,

which induces that

E[(ĝbm − g)2(x0)1{bνn≥ν/2}]
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≤
(
κ2 + 2νκ3 + κ3K

2p0 exp
[
− nν

456K2p0

])
(M + 1)

( n

log n

)− 2β
2β+1 +

θ2

n
. (25)

On the other hand, by Claim 4 and inequality (14) in Proposition 3.1,

E[(ĝbm − g)2(x0)1{bνn<ν/2}] ≤ (ν + K2 max
m=1,...,Nn

Dm)2P
[
ν̂n <

ν

2

]

≤ (ν + K2 max
m=1,...,Nn

Dm)2 exp
[
− nν

84K2p0

]
, (26)

and inequalities (25) and (26) provide the result of Theorem 3.1.

Proof of Claim 1. For every j ∈ {1, . . . , Nn}, denote

H(j) = K2xj ν̂n
Dj

n
.

The proof of Claim 1 is based on the following steps: we exhibit a quantity Uopt such that

• E1[Uopt] has order Crit(mopt).

• ∫ +∞
0 P1[(ĝbm − g)2(x0)− Uopt ≥ x]1{bνn≥ν/2} dx decreases to 0 with rate 1/n.

Thus, inequality

E1[(ĝbm − g)2(x0)]1{bνn≥ν/2} ≤
(
E1[((ĝbm − g)2(x0)− Uopt)+] + E1[Uopt]

)
1{bνn≥/2ν}

≤
( +∞∫

0

P1

[
(ĝbm − g)2(x0)− Uopt ≥ x

]
dx + E1[Uopt]

)
1{bνn≥ν/2} (27)

yields the result of Claim 1. Let us consider the first result:

Lemma 6.1. For every δ > 0, x > 0 and for every model m:

P1[Ĉrit(m) ≥ (1 + δ)Crit(m) + x] ≤ 2
Nn∑

j=m

exp[−C(x, j, δ)], where

C(x, j, δ) = min
{

1
4νK2(1 + 1/δ)

(xn

Dj
+ K2xj ν̂n

)
,

1
4
√

2(1 + 1/δ)K2

(√xn

Dj
+ K

√
xj ν̂n

n

Dj

)}
.

Proof of Lemma 6.1. The empirical criterion Ĉrit(m) (defined in (17)) is built from Crit(m) (defined
in (16)) by replacing the unknown (gj − gm) by its empirical counterpart (ĝj − ĝm), so the deviation

between Ĉrit(m) and Crit(m) is upper bounded with Bernstein Inequality, which is recalled in Section 9,
Theorem 9.1. More precisely:

P1

[
Ĉrit(m) ≥ (1 + δ)Crit(m) + x

]

= P1

[
sup

j,m≤j≤Nn

(
(ĝj − ĝm)2(x0)−H(j)

)
+
≥ (1 + δ) sup

j,m≤j≤Nn

(gj − gm)2(x0) + x
]
.

As supj,m≤j≤nN
(gj − gm)2(x0) + x is positive, we omit the positive part (·)+.

P1

[
Ĉrit(m) ≥ (1 + δ)Crit(m) + x

]

= P1

[
sup

j,m≤j≤Nn

(
(ĝj − ĝm)2(x0)−H(j)

) ≥ (1 + δ) sup
j,m≤j≤Nn

(gj − gm)2(x0) + x
]

≤
Nn∑

j=m

P1

[
(ĝj − ĝm)2(x0) ≥ (1 + δ)(gj − gm)2(x0) + x + H(j)

]
=

Nn∑

j=m

Pj,m (28)
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and for every (j,m),

Pj,m = P1

[
(ĝj − ĝm)2(x0) ≥ (1 + δ)(gj − gm)2(x0) +

(
1 +

1
δ

)(√
x + H(j)
(1 + 1

δ )

)2]
.

We recall that for every x, y ∈ R, (x + y)2 ≤ x2(1 + 1/δ) + y2(1 + δ), thus

Pj,m ≤ P1

[
(ĝj − ĝm)2(x0) ≥

(
|(gj − gm)(x0)|+

√
x + H(j)

1 + 1
δ

)2]

= P1

[
|(ĝj − ĝm)(x0)| ≥ |(gj − gm)(x0)|+

√
x + H(j)

1 + 1
δ

]

≤ P1

[
|(ĝj − ĝm)(x0)− (gj − gm)(x0)|+ |(gj − gm)(x0)| ≥ |(gj − gm)(x0)|+

√
x + H(j)

1 + 1
δ

]

= P1

[∣∣∣ 1
n

n∑

i=1

(Ui − E(Ui))
∣∣∣ ≥

√
x + H(j)

1 + 1
δ

]
, (29)

where

Ui =
∑

λ∈Ij

χλ(Vi)χλ(x0)−
∑

λ∈Im

χλ(Vi)χλ(x0) =
∑

λ∈Ij\Im

χλ(Vi)χλ(x0)

and E(Ui) = (gj − gm)(x0). We are going to upper bound the term (29) with Bernstein’s Inequality
(Theorem 9.1). Let us compute the terms v and c involved.

Similarly to (12) we get:

E1(U2
1 ) ≤ ν

∑

λ∈Ij\Im

χ2
λ(x0) ≤ ν

∑

λ∈Ij

χ2
λ(x0) ≤ νK2Dj = v. (30)

Let ` be an integer greater than 2, then,

E1[(U1)`
+] ≤ E1[U2

1 ]× ‖U1‖`−2
∞ ≤ v

∥∥∥
∑

λ∈Ij\Im

χλ(V1)χλ(x0)
∥∥∥

`−2

∞

≤ v

[∥∥∥∥
√ ∑

λ∈Ij\Im

χ2
λ(V1)

∥∥∥∥
∞

√ ∑

λ∈Ij\Im

χ2
λ(x0)

]`−2

and according to (7) in Hmod, E1[(U1)l
+] ≤ v[K2Dj ]l−2. So, we set

c = K2Dj . (31)

Finally, we denote by

ε =

√
x + H(j)
1 + 1/δ

≥ 1√
2(1 + 1/δ)

(√
x +

√
H(j)

)
. (32)

Then by Bernstein’s Inequality,

Pj,m ≤ 2 exp
[
−min

(nε2

4v
;
nε

4c

)]
.

Moreover:
nε2

4v
=

1
4νK2(1 + 1/δ)

(
xn

Dj
+ K2xj ν̂n

)
,

nε

4c
≥ 1

4
√

2(1 + 1/δ)K2

(√
xn

Dj
+ K

√
xj ν̂n

n

Dj

)
.

This provides an upper bound of Pj,m for every (j, m), which, being inserted in inequality (28), ends the
proof of Lemma 6.1.
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We derive from Lemma 6.1 the following result.

Lemma 6.2. For every positive numbers δ and x and every sequence Z1,

(1) P1

[{
(ĝbm − g)2(x0) ≥ (1 + δ)

(
sup

j,mopt≤j≤Nn

(gj − g)2(x0) + Crit(mopt)
)

+ x
} ∩ {m̂ > mopt}

]

≤ 4
Nn∑

m=1

exp[−C(x,m, δ)];

(2) P1

[{
(ĝbm − g)2(x0) ≥ 2(ĝmopt − g)2(x0) + 2H(mopt) + 2(1 + δ)Crit(mopt)

} ∩ {m̂ ≤ mopt}
]

≤ 2
Nn∑

j=mopt

exp[−C(x, j, δ)].

Proof. • Let us prove inequality (1):

P1

[{
(ĝbm − g)2(x0) ≥ (1 + δ)

(
sup

j,mopt≤j≤Nn

(gj − g)2(x0) + Crit(mopt)
)

+ x
} ∩ {m̂ > mopt}

]

≤ P1

[{
(ĝbm − g)2(x0) ≥ (1 + δ) sup

j,mopt≤j≤Nn

(gj − g)2(x0) + Ĉrit(m̂) + x
} ∩ {m̂ > mopt}

]

+ P1

[
Ĉrit(m̂) ≥ (1 + δ)Crit(mopt)

]
. (33)

By definition of m̂, Ĉrit(m̂) = infm=1,...Nn Ĉrit(m) ≤ Ĉrit(mopt). Hence, by Lemma 6.1,

P1

[
Ĉrit(m̂) ≥ (1 + δ)Crit(mopt)

] ≤ P
[
Ĉrit(mopt) ≥ (1 + δ)Crit(mopt)

]

≤ 2
Nn∑

j=mopt

exp[−C(x, j, δ)] ≤ 2
Nn∑

m=1

exp[−C(x,m, δ)]. (34)

Besides it is clear that for every model m, Crit(m) ≥ pen(m), and if m̂ > mopt, then

sup
j,mopt≤j≤Nn

(gj − g)2(x0) ≥ (gbm − g)2(x0).

So,

P1

[{
(ĝbm − g)2(x0) ≥ (1 + δ) sup

j,mopt≤j≤Nn

(gj − g)2(x0) + Ĉrit(m̂) + x
} ∩ {m̂ > mopt}

]

≤ P1

[
(ĝbm − g)2(x0) ≥ (1 + δ)(gbm − g)2(x0) + pen(m̂) + x

]

≤
Nn∑

m=1

P1

[
(ĝm − g)2(x0) ≥ (1 + δ)(gm − g)2(x0) + pen(m) + x

]
=

Nn∑

m=1

Pm. (35)

For every m ∈ {1, . . . , Nn}, we have almost surely

(ĝm − g)2(x0) ≤ (1 + δ)(g − gm)2(x0) +
(
1 +

1
δ

)
(ĝm − gm)2(x0)

and pen(m) = AH(m) ≥ H(m), so

Pm ≤ P1

[(
1 +

1
δ

)
(ĝm − gm)2(x0) ≥ pen(m) + x

]

≤ P1

[
|(ĝm − gm)2(x0)| ≥

√
H(m) + x

1 + 1/δ

]
= P1

[∣∣∣ 1
n

n∑

i=1

(Ui − E(Ui))
∣∣∣ ≥

√
H(m) + x

1 + 1/δ

]
,
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where Ui =
∑

λ∈Im
χλ(Vi)χλ(x0). Similarly to the proof of Lemma 6.1, we apply Bernstein’s Inequality

with the parameters defined in (30), (31), and (32), and we get

Pm ≤ 2 exp(−C(x,m, δ)). (36)

Combining inequalities (33), (34), (35) and (36), the result of Lemma 6.2 (1) follows.

• Let us prove now inequality (2) in Lemma 6.2. By definition of m̂, Ĉrit(m̂) ≤ Ĉrit(mopt), so

P1

[
Ĉrit(mopt) ≥ (1 + δ) Crit(mopt)

] ≥ P1

[
Ĉrit(m̂) ≥ (1 + δ)Crit(mopt)

]

≥ P1

[
sup

j,bm≤j≤Nn

[
(ĝj − ĝbm)2(x0)−H(j)

]
+ pen(m̂) ≥ (1 + δ)Crit(mopt)

]

≥ P1

[{
(ĝmopt − ĝbm)2(x0)−H(mopt) + pen(m̂) ≥ (1 + δ)Crit(mopt)

} ∩ {m̂ ≤ mopt}
]
. (37)

Besides, (ĝbm − g)2(x0) ≤ 2(ĝmopt − ĝbm)2(x0) + 2(ĝmopt − g)2(x0), therefore

(ĝmopt − ĝbm)2(x0) ≥ 1
2
(ĝbm − g)2(x0)− (ĝmopt − g)2(x0).

So we derive from (37) that

P1

[
Ĉrit(mopt) ≥ (1 + δ)Crit(mopt)

] ≥ P1

[{1
2
(ĝbm − g)2(x0)− (ĝmopt − g)2(x0)

≥ (1 + δ)Crit(mopt) + H(mopt)− pen(m̂)
}
∩ {m̂ ≤ mopt}

]
.

As pen(m̂) is positive, we get

P1

[
Ĉrit(mopt) ≥ (1 + δ)Crit(mopt)

]

≥ P1

[{
(ĝbm − g)2(x0) ≥ 2(ĝmopt − g)2(x0) + 2H(mopt) + 2(1 + δ)Crit(mopt)

} ∩ {m̂ ≤ mopt}
]
.

By Lemma 6.1, inequality (2) of Lemma 6.2 follows.

Let us prove Claim 1. Consider

Uopt = 2(ĝmopt − g)2(x0) + 2(1 + δ)Crit(mopt) + 2H(mopt) + sup
j,mopt≤j≤Nn

(gj − g)2(x0).

Then, by inequalities (1) and (2) in Lemma 6.2, we get

P1

[
(ĝbm − g)2(x0) ≥ Uopt + x

] ≤ 4
Nn∑

m=1

exp[−C(x,m, δ)].

Take δ = 4, then

E1

[(
(ĝbm − g)2(x0)− Uopt

)
+

] ≤
+∞∫

0

P1

[
(ĝbm − g)2(x0) ≥ Uopt + x

]
dx

≤ 4

+∞∫

0

( Nn∑

m=1

exp[−C(x,m, 4)]
)

dx. (38)

We recall that, for every positive constant C ′:
+∞∫

0

exp(−C ′x) dx =
1
C ′ ,

+∞∫

0

exp(−C ′√x) dx =
2

C ′2 .
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Therefore, according to the expression of C(x,m, δ) defined in Lemma 6.1,
+∞∫

0

Nn∑

m=1

exp[−C(x, m, 4)] dx ≤
Nn∑

m=1

[
5νK2 Dm

n
exp

[
− xmν̂n

5ν

]

+ 80K4 D2
m

n2
exp

[
− 1

2
√

10K

√
xmν̂n

n

Dm

]]
.

Besides, assuming that ν̂n ≥ ν/2,

xm ≥ 45
2

log(1 + Dm) ⇒ xm ≥ 45
4

ν

ν̂n
log(1 + Dm) ⇔ exp

[
− xmν̂n

5ν

]
≤ (1 + Dm)−(2+1/4)

⇔ Dm exp
[
− xmν̂n

5ν

]
≤ (1 + Dm)−(1+1/4) (39)

and similarly,

xm ≥ 45
2
× 9K2

ν̂n
log2(1 + Dm)

Dm

n
⇔ exp

[
− 1

2
√

10K

√
xmν̂n

n

Dm

]
≤ (1 + Dm)−(2+1/4)

⇔ Dm exp
[
− 1

2
√

10K

√
xmν̂n

n

Dm

]
≤ (1 + Dm)−(1+1/4). (40)

Hence
+∞∫

0

Nn∑

m=1

exp[−C(x,m, 4)] dx ≤ 5K2(ν + 16K2)
( Nn∑

m=1

(1 + Dm)1+1/4
) 1

n
.

Plugging these upper bounds in inequality (38) yields

E1

[
((ĝbm − g)2(x0)− Uopt)+

] ≤ 20K2(ν + 16K2)
( Nn∑

m=1

(1 + Dm)1+1/4
) 1

n
=

θ2

n
. (41)

It remains to upper bound E1[Uopt]:

E1[Uopt] = 2E[(ĝmopt − g)2(x0)] + 2ν̂nK2xmopt

Dmopt

n

+ sup
j,mopt≤j≤Nn

(gj − gmopt)
2(x0) + 10 Crit(mopt)

≤ 2
[
(gmopt − g)2(x0) + νK2 Dmopt

n

]
+ 2ν̂nK2xmopt

Dmopt

n

+ sup
j,mopt≤j≤Nn

(gj − gmopt)
2(x0) + 10 Crit(mopt).

Thus on the set {ν̂n ≥ ν/2} we have

E1[Uopt]1{bνn≥ν/2} ≤ 2(gmopt − g)2(x0) + 4ν̂nK2 Dmopt

n

+ (2 + 10A)ν̂nK2xmopt

Dmopt

n
+ 11 sup

j,mopt≤j≤Nn

(gj − gmopt)
2

≤ 2(gmopt − g)2(x0) + 11 sup
j,mopt≤j≤Nn

(gj − gmopt)
2

+
(
12 +

4
xmopt

)
pen(mopt). (42)
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Putting together inequalities (27), (41), and (42), we get

E1[(ĝbm − g)2(x0)]× 1{bνn≥ν/2}

≤ 2(gmopt − g)2(x0) + 11 sup
j,mopt≤j≤Nn

(gj − gmopt)
2 +

(
12 +

4
xmopt

)
pen(mopt) +

θ2

n
,

which ends the proof of Claim 1.

Proof of Claim 2. First of all, note that

4
(
3 +

1
xmopt

)
≤ 4

(
3 +

2
45 log(1 + Dmopt)

)
≤ 4

(
3 +

2
45 log(1 + D1)

)
= κ1.

Suppose that ν̂n ≥ ν/2 and denote
{

F (m) = D−2β
m + log(1 + Dm)Dm

n ,

m1 = arg min{F (m), m = 1, . . . , Nn, (9K2/ν̂n) log(1 + Dm)Dm/n ≤ 1}.
Thus, xm1 = (45/2) log(1 + Dm1). We consider two cases: mopt ≥ m1 and mopt < m1.

• If mopt ≥ m1, by Hbias(β), (gmopt − g)2(x0) ≤ C2
0D−2β

mopt ≤ C2
0D−2β

m1 . Besides, it is obvious that
11 ≤ κ1. Thus by Claim 1, we get

E1[(ĝbm − g)2(x0)]1{bνn≥ν/2} ≤ 2C2
0D−2β

m1
+ κ1 Crit(mopt) +

θ2

n
.

As mopt = arg minm=1,...,Nn Crit(m), Crit(mopt) ≤ Crit(m1). Then,

E1[(ĝbm − g)2(x0)]1{bνn≥ν/2} ≤ 2C2
0D−2β

m1
+ κ1 Crit(m1) +

θ2

n

≤ 2C2
0 (1 + κ1)D−2β

m1
+ κ1

45AK2

2
ν̂n log(1 + Dm1)

Dm1

n
+

θ2

n

≤ max
{

2C2
0 (1 + κ1), κ1

45AK2

2
ν̂n

}
F (m1) +

θ2

n
. (43)

• If mopt < m1, then

(gmopt − g)2(x0) ≤ 2(gmopt − gm1)
2(x0) + 2(gm1 − g)2(x0)

≤ 2 sup
j,mopt≤j≤Nn

(gj − gmopt)
2(x0) + 2C2

0D−2β
m1

.

Hence,

E1[(ĝbm − g)2(x0)]1{bνn≥ν/2} ≤ 15 sup
j,mopt≤j≤Nn

(gj − gmopt)
2(x0) + κ1 pen(mopt) + 4C2

0D−2β
m1

+
θ2

n

≤ max(15, κ1)Crit(mopt) + 4C2
0D−2β

m1
+

θ2

n

≤ max(15, κ1)Crit(m1) + 4C2
0D−2β

m1
+

θ2

n

≤ max(15, κ1)
[
2C2

0D−2β
m1

+ pen(m1)
]
+ 4C2

0D−2β
m1

+
θ2

n

≤ max
{

2C2
0 [max(15, κ1) + 2], max(15, κ1)

45AK2

2
ν̂n

}
F (m1) +

θ2

n
. (44)

Moreover, it is clear that

2C2
0 (1 + κ1) ≤ 2C2

0 [max(15, κ1) + 2], κ1
45AK2

2
≤ max(15, κ1)

45AK2

2
.

Therefore, inequalities (43) and (44) yield the proof of Claim 2.
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Proof of Claim 3. Let m2 be a model such that
( n

log n

) 1
2β+1 ≤ Dm2 ≤ M

( n

log n

) 1
2β+1

. (45)

On the set {ν̂n ≥ ν/2}, by Assumption (A3),

9K2

ν̂n
log(1 + Dm2)

Dm2

n
≤ 18K2

ν

( n

log n

)−2β/(2β+1)
≤ 1.

Hence, by definition of m1,

F (m1) ≤ F (m2) ≤ M
log n

n

( n

log n

) 1
2β+1 +

( n

log n

)− 2β
2β+1 ≤ (M + 1)

( n

log n

)− 2β
2β+1

.

Thus we derive from Claim 2 that

E1[(ĝbm − g)2(x0)]1{bνn≥ν/2} ≤ max(κ2, ν̂nκ3)(M + 1)
( n

log n

) −2β
2β+1 +

θ2

n
.

Proof of Claim 4. For every model m, (ĝm − g)2(x0) ≤ (|ĝm(x0)|+ ν)2 almost surely. Besides,

(ĝm)2(x0) =
∑

λ∈Im

( 1
n

n∑

i=1

χλ(Vi)χλ(x0)
)2
≤ 1

n

n∑

i=1

( ∑

λ∈Im

χλ(Vi)χλ(x0)
)2

≤
∥∥∥

∑

λ∈Im

χ2
λ

∥∥∥
2

∞
≤ K4D2

m (46)

which provides the result of Claim 4.

6.2. Proof of Proposition 3.1

Let us prove inequality (14). Let x1 ∈ I be such that g(x1) ≥ 5ν/6, then by definition of ν̂n,

P
[
ν̂n ≤ ν

2

]
≤ P

[
ĝ(1)
m0

(x1) ≤ ν

2

]
= P

[
(ĝ(1)

m0
− gm0)(x1) ≤ 5ν

6
− gm0(x1)− ν

3

]

≤ P
[
(ĝ(1)

m0
− gm0)(x1) ≤ (g − gm0)(x1)− ν

3

]
.

By Assumption Hbias(β),

P
[
ν̂n ≤ ν

2

]
≤ P

[
(ĝ(1)

m0
− gm0)(x1) ≤ Lp−β

0 − ν

3

]

and by condition (A1),

P
[
ν̂n ≤ ν

2

]
≤ P

[
(ĝ(1)

m0
− gm0)(x1) ≤ −ν

6

]
≤ P

[
|(ĝ(1)

m0
− gm0)(x1)| ≥ ν

6

]

= P

[∣∣∣ 1
n

2n∑

i=n+1

Ui − E(Ui)
∣∣∣ ≥ ν

6

]
. (47)

Now, apply Bernstein’s Inequality (Theorem 9.1) with the following parameters:

E[U2
1 ] = E

[( ∑

λ∈Im0

ξλ(V1)ξλ(x1)
)2]

=
∫

I

( ∑

λ∈Im0

ξλ(x)ξλ(x1)
)2

g(x) dx

≤ ν
∑

λ,λ′∈Im0

[ ∫

I

ξλ(x)ξλ′(x) dx

]
ξλ(x1)ξλ′(x1) = ν

∑

λ∈Im0

ξ2
λ(x1),
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since the family {ξλ} is orthonormal. Finally, Assumption (7) in Hmod yields

E[U2
1 ] ≤ νK2p0 = v.

Let l be an integer greater than 2,

E[(X1)l
+] ≤ E[U2

1 ]× ‖U1‖l−2
∞ ≤ v

∥∥∥
∑

λ∈Im0

ξλ(V1)ξλ(x0)
∥∥∥

l−2

∞

≤ v

[√∥∥∥
∑

λ∈Im0

ξ2
λ(V1)

∥∥∥
∞

√ ∑

λ∈Ip0

ξ2
λ(x0)

]l−2

≤ v(K2p0)l−2.

Hence we set c = K2p0. By Bernstein’s Inequality, we derive from inequality (47) that

P
[
ν̂n ≤ ν

2

]
≤ 2 exp

[
− nν

84K2p0

]
,

which is the result we wanted to prove.

Let us prove inequality (15). Let x̂1 ∈ I be such that ĝm0(x̂1) ≥ 5bνn
6 . Similarly to (47), under

condition (A1),

P
[
ν ≤ ν̂n

2

]
≤ P

[
|(ĝ(1)

m0
− gm0)(x̂1)| ≥ ν

6

]
.

Moreover,

P
[
ν ≤ ν̂n

2

]
≤ P

[
sup
x∈I

|(ĝ(1)
m0
− gm0)(x)| ≥ ν

6

]

= P
[
sup
x∈I

1
n

2n∑

i=n+1

{ ∑

λ∈Im0

(
ξλ(Vi)ξλ(x)− E[ξλ(Vi)ξλ(x)]

)} ≥ ν

6

]

= P
[
sup
x∈I

1
n

2n∑

i=n+1

ϕx(Vi) ≥ ν

6

]
.

We have in view to apply Talagrand’s Inequality recalled in Section 9, Theorem 9.2, but the set of
functions

F =
{

ϕx : u →
∑

λ∈Im0

ξλ(x)ξλ(u)− E[ξλ(x)ξλ(V1)], x ∈ I
}

is not countable. Nevertheless, the (ξλ) are continuous, thus for every u the mapping x → ϕx(u) is
continuous. Hence, since the setQ ∩ I is dense in I, we have

Z = sup
x∈I

1
n

2n∑

i=n+1

ϕx(Vi) = sup
x∈I∩Q

1
n

2n∑

i=n+1

ϕx(Vi),

so

P
[
ν ≤ ν̂n

2

]
≤ P

[
sup

x∈I∩Q
1
n

2n∑

i=n+1

ϕx(Vi) ≥ ν

6

]

andQ ∩ I is countable. Let x ∈ I, by the Cauchy–Schwarz Inequality,
( 1

n

2n∑

i=n+1

ϕx(Vi)
)
≤ 1

n

2n∑

i=n+1

(ϕx(Vi))2 =
1
n

2n∑

i=n+1

( ∑

λ∈Im0

(
ξλ(Vi)− E[ξλ(Vi)]

)
ξλ(x)

)2

≤ 1
n

2n∑

i=n+1

( ∑

λ∈Im0

ξ2
λ(x)

)( ∑

λ∈Im0

(
ξλ(Vi)− E[ξλ(Vi)]

)2
)
.
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Then, by Assumption Hmod,

( 1
n

2n∑

i=n+1

ϕx(Vi)
)
≤ K2p0

1
n

2n∑

i=n+1

( ∑

λ∈Im0

(
ξλ(Vi)− E[ξλ(Vi)]

)2
)
.

Hence,
(
E

[ ∣∣∣ sup
x∈I∩Q

1
n

2n∑

i=n+1

ϕx(Vi)
∣∣∣
])2

≤ E
[(

sup
x∈I∩Q

1
n

2n∑

i=n+1

ϕx(Vi)
)2]

≤ K2p0

∑

λ∈Im0

E
[ 1
n

2n∑

i=n+1

(
ξλ(V1)− E[ξλ(V1)]

)2
]

=
K2p0

n
E

[ ∑

λ∈Im0

(
ξλ(V1)− E[ξλ(V1)]

)2
]

=
K2p0

n

∑

λ∈Im0

Var(ξλ(V1)) ≤ K2p0

n
E

[ ∑

λ∈Im0

ξ2
λ(V1))

]
≤ K4p2

0

n
.

Thus,

E
[ ∣∣∣ sup

x∈I∩Q
1
n

2n∑

i=n+1

ϕx(Vi)
∣∣∣
]
≤ K2p0√

n
= H.

Let us compute the terms v and c involved in Talagrand’s Inequality. For every x ∈ I,

Var
( ∑

λ∈Im0

ξλ(V1)ξλ(x)
)
≤ E

[( ∑

λ∈Im0

ξλ(V1)ξλ(x)
)2]

=
∫

I

( ∑

λ∈Im0

ξλ(u)ξλ(x)
)2

g(u) du

≤ ν

∫

I

( ∑

λ∈Im0

ξλ(u)ξλ(x)
)2

du = ν
∑

λ,λ′∈Im0

[ ∫

I

ξλ(u)ξλ′(u) du

]
ξλ(x)ξλ′(x).

The family {ξλ, λ ∈ Im0} is orthonormal, so

Var
( ∑

λ∈Im0

ξλ(V1)ξλ(x)
)
≤ ν

∑

λ∈Im0

ξ2
λ(x) ≤ νK2p0 = v.

Besides,
∥∥∥

∑

λ∈Im0

ξλ(x)ξλ

∥∥∥
∞
≤

√ ∑

λ∈Im0

ξ2
λ(x)×

∥∥∥∥
√ ∑

λ∈Im0

ξ2
λ

∥∥∥∥
∞
≤ K2p0 = b.

Moreover, Assumption (A2) yields

P
[
ν ≤ ν̂n

2

]
≤ P

[
Z ≥ ν

6

]
= P

[
Z ≥ H+

(ν

6
− K2p0√

n

)]
≤ P

[
Z ≥ H+

ν

12

]
.

Finally, Talagrand’s Inequality provides the following upper bound:

P
[
Z ≥ H+

a

3
ν
]
≤ exp

[
− n(ν/12)2

2(νK2p0 + 4(K2p0)2/
√

n + 3K2p0(ν/12))

]
.

Applying once again Assumption (A2), we get

exp
[
− n(ν/12)2

2(νK2p0 + 4(K2p0)2/
√

n + 3K2p0(ν/12))

]

≤ exp
[
− n(ν/12)2

2(νK2p0 + 4K2p0(ν/12)/
√

n + 3K2p0(ν/12))

]

= exp
[
− nν

456K2p0

]
.
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7. PROOF OF THEOREM 4.1
The proof is based on the decomposition (22).

7.1. Upper Bound of E[(f − f−)2(x0)]
Proposition 7.1. Suppose that f is Lipschitz, then

E
[
(f− − f)2(x0)

] ≤ Lip(f)2E
[‖b− b̂‖2

fX

]
. (48)

In fact, for every Z−

(f − f−)2(x0) =
( 1∫

0

[
f(x0)− f(x0 − (b− b̂)(x))

]
fX(x) dx

)2

≤
1∫

0

[
f(x0)− f(x0 − (b− b̂)(x))

]2
fX(x) dx

≤ Lip(f)

1∫

0

[
(b− b̂)(x)

]2
fX(x) dx = Lip(f)‖b− b̂‖2

fX

and by considering the expectation of the above inequality we get the result of Proposition 7.1.

7.2. Upper Bound of E[(f̂−bm − f−)2(x0)]

Now, the term E[(f̂−bm − f−)2(x0)] in (22) is upper bounded with the results of Section 3. By
Proposition 4.1, under the assumptions of Theorem 4.1, for every fixed sequence Z−, f− satisfies the

assumptions of Theorem 3.1. Indeed, let Z− be fixed, and suppose that Assumption H
(1)
bias−error(β) holds,

then f ∈ H(β, L), and by Proposition 4.1, f− ∈ H(β, L). Besides, for every t ∈ H(β, L), ‖t− tm‖∞ ≤
LD−β

m thus ‖(f−)m− f−‖∞ ≤ LD−β
m and f− satisfies Assumption Hbias(β). The same argument holds

with Assumption H
(2)
bias−error(β). Similarly, if f satisfies Assumption H

(1)
ν−error(β) or H

(2)
ν−error(β), then f−

satisfies Hν . Thus we have,

Proposition 7.2. Suppose that Assumption H
(1)
bias−error(β) or H

(2)
bias−error(β) holds for some β ≥

β′ > 3/4. Let p0 satisfy (n/ log n)γ ≤ p0 ≤ M(n/ log n)γ for some

γ ∈
]

1
β′(2β′ + 1)

, min
{

1
β′ + 1

,
4β′ + 1

3(2β′ + 1)

}[
. (49)

Then

E
[
(f̂−bm − f−)2(x0)

] ≤ θ′1
( n

log n

)−2β/(2β+1)
+ C′nE

[‖b̂− b‖2
fX

]
+Rn

with
θ′1 = (κ2 + 2νκ3)(M + 1),

C′n = 2 log n

[(
ν
( n

log n

)− 1
2β′+1 + K2M

)2(
36C2

0

( n

log n

) 2
2β′+1

−2β′γ

+ (18MK2)2
( n

log n

) 2−4β′
2β′+1

)
+ (12K3)2

( n

log n

)3γ− 4β′+1
2β′+1

]
,

Rn = 2
[
ν + K2M

( n

log n

)1/(2β′+1)]2
exp

(
− C0

14K2
n1−γ(1+β′)

)
+

θ2

n
.

Moreover, lim
n→+∞ C

′
n = 0 andRn ≤ κ′1/n for some constant κ′1, which depends on (M,K, β′, ν).
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Let us define the following sets, which depend on the sequence Z−:

A−1 =
{

C0p
−β
0 ≤ ν−

6

}
, A−2 =

{
12K2 p0√

n
≤ ν−

}
, A−3 =

{18MK2

ν−
≤

( n

log n

)− 2β
2β+1

}
.

The proof of Proposition 7.2 comes out of the following decomposition:

E[(f̂−bm − f−)2(x0)] = E[(f̂−bm − f−)2(x0)1A−1 ∩A−3
] + E[(f̂−bm − f−)2(x0)1(A−1 )c∪(A−3 )c ]

≤ E[(f̂−bm − f−)2(x0)1{bν−n ≥ν−/2}∩A−3
] + E[(f̂−bm − f−)2(x0)1{bν−n <ν−/2}∩A−1

]

+ E[(f̂−bm − f−)2(x0)1 (A−1 )c∪(A−3 )c ]. (50)

Then, the following claims provide an upper bound for each term in the right-hand side of (50). There
exists an integer n0, which depends on (σ2, β), such that for every n ≥ n0,

Claim 5.

E[(f̂−bm − f−)2(x0)1(A−1 )c∪(A−3 )c ]

≤ 2 log n
(
ν + K2M

( n

log n

) 1
2β′+1

)2
×

[(6C0

pβ
0

)2
+ (18MK2)2

( n

log n

)− 4β
2β+1

]
E[‖b̂− b‖2

fX
].

Claim 6.

E[(f̂−bm − f−)2(x0)1{bν−n <ν−/2}∩A−1
] ≤ 2

(
ν + MK2

( n

log n

) 1
2β′+1

)2
exp

(
− C0

14K2

n

p1+β
0

)
.

Claim 7.

E[(f̂−bm − f−)2(x0)1{bν−n ≥ν−/2}∩A−3
]

≤
{

κ2 + κ3

(
2ν + 2K2p0 exp

(
−
√

n

38

)
+ 2(12K3)2 log n

p3
0

n
E[‖b̂− b‖2

fX
]
)}

× (M + 1)
( n

log n

)− 2β
2β+1 +

θ2

n
.

These claims lead to the proof of Proposition 7.2. Indeed,

E[(f̂−bm − f−)2(x0)] ≤ (κ2 + 2νκ3)(M + 1)
( n

log n

)− 2β
2β+1

+ 2 log n

[(
ν + K2M

( n

log n

) 1
2β′+1

)2(36C2
0

p2β
0

+ (18MK2)2
( n

log n

)− 4β
2β+1

)

+ (12K3)2
p3
0

n
(M + 1)

( n

log n

)− 2β
2β+1

]
E[‖b̂− b‖2

fX
]

+ 2
(
ν + K2M

( n

log n

) 1
2β′+1

)2
exp

(
−
√

n

7

)
+

θ2

n
.

By the conditions β ≥ β′ and (n/ log)γ ≤ p0 ≤ M(n log n)γ , we have
(
ν + K2M

( n

log n

) 1
2β′+1

)2(36C2
0

p2β
0

+ (18MK2)2
( n

log n

)− 4β
2β+1

)
+ (12K3)2

p3
0

n
(M + 1)

( n

log n

)− 2β
2β+1

≤
(
ν
( n

log n

)− 1
2β′+1 + K2M

)2(
36C2

0

( n

log n

) 2
2β′+1

−2β′γ
+

(
18MK2)2

( n

log n

) 2−4β′
2β′+1

)

+ (12K3)2
( n

log n

)3γ− 4β′+1
2β′+1 = C′n.
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According to assumption (49), 2/(2β′ + 1)− 2β′γ < 0 and 3γ − (4β′ + 1)/(2β′ + 1) < 0, hence
limn→+∞ C′n = 0. Moreover,

exp
(
− C0

14K2

n

p1+β′
0

)
= exp

(
− C0

14K2
n1−γ(1+β′)

)

and 1− γ(1 + β′) > 0, which entails thatRn ≤ κ′1 for some constant κ′1.

Let us prove these Claims. First of all, the probabilities P [(A−1 )c], P [(A−2 )c], and P [(A−3 )c] are upper
bounded via the following lemma.

Lemma 7.1. Consider a sequence (αn) of positive numbers such that αn = o(1/
√

log n). Then for
every n ∈ N such that

(C)
2√

log n
+ σ2α2

n log n ≤ 1
2
,

where σ2 = E[ε21], we have

P [ν− ≤ αn] ≤ 2 log nα2
nE[‖b̂− b‖2

fX
].

Hence there exists an integer n0, which depends on (σ2, β, C0,K), such that, for every n ≥ n0,

P [(A−1 )c] = P [ν− < 6C0p
−β
0 ] ≤ 2 log n

(
6C0

pβ
0

)2

E[‖b̂− b‖2
fX

], (51)

P [(A−2 )c] = P
[
ν− ≤ 12K2 p0√

n

]
≤ 2 log n(12K2)2

p2
0

n
E[‖b̂− b‖2

fX
], (52)

and

P [(A−3 )c] = P
[
ν− < 18MK2

( n

log n

)− 2β
2β+1

]
≤ 2 log n(18MK2)2

( n

log n

)− 4β
2β+1E[‖b̂− b‖2

fX
]. (53)

Proof of Lemma 7.1. Given Z−, ε1 and (b− b̂)(X1) are independent, which entails

E[ε̂21 | Z−] = E[ε21 | Z−] + E[(b− b̂)2(X1) | Z−] + 2E[ε1(b− b̂)(X1) | Z−].

Moreover, E[ε1 | Z−] = 0, thus

E[ε̂21 | Z−] = σ2 + ‖b− b̂‖2
fX

.

Then for every An > 0,
∫

|y|>An

f−(y) dy ≤ 1
A2

n

∫

|y|>An

y2f−(y) dy ≤ 1
A2

n

(
σ2 + ‖b− b̂‖2

fX

)
,

which entails
∫

|y|≤An

f−(y) dy ≥ 1− σ2 + ‖b− b̂‖2
fX

A2
n

.

On the other hand,
∫
|y|≤An

f−(y) dy ≤ 2ν−An by definition of ν−. Hence,

ν− ≥ 1
2An

(
1− σ2 + ‖b− b̂‖2

fX

A2
n

)
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for every An > 0. Thus,

P [ν− ≤ αn] ≤ P

[
1− σ2 + ‖b− b̂‖2

fX

A2
n

≤ 2Anαn

]
= P

[
1−

(
2Anαn +

σ2

A2
n

)
≤ ‖b− b̂‖2

fX

A2
n

]
.

Let us consider An = 1/(αn
√

log n), then condition (C) gives

P [ν− ≤ αn] ≤ P
[
1−

( 2√
log n

+ σ2α2
n log n

)
≤ ‖b− b̂‖2

fX
log nα2

n

]

≤ P
[1
2
≤ ‖b− b̂‖2

fX
log nα2

n

]
≤ 2 log nα2

nE[‖b− b̂‖2
fX

].

Proof of Claim 5. According to Claim 4 in Section 6,

(f̂−bm − f−)2(x0) ≤ (ν− + K2 max
m=1,...,Nn

Dm)2 a.s.

and ν− ≤ ν. Besides, by assumption, maxm=1,...,Nn Dm ≤ M(n/ log n)1/3,

E[(f̂−bm − f−)2(x0)1(A−1 )c∪(A−3 )c ] ≤
(
ν + K2M

( n

log n

) 1
2β′+1

)2(
P [(A−1 )c] + P [(A−3 )c]

)
,

and inequalities (51) and (53) end the proof of Claim 5.

Proof of Claim 6. For every Z−,

E[(f̂−bm − f−)2(x0)1{bν−n <ν−/2} | Z−]1A−1
≤ (ν− + K2 max

m=1,...,Nn

Dm)2P
[
ν̂−n <

ν−

2
| Z−

]
1A−1

≤ 2
(
ν + MK2

( n

log n

) 1
2β′+1

)2
exp

(
− nν−

84K2p0

)
1A−1

≤ 2
(
ν + MK2

( n

log n

) 1
2β′+1 )2 exp

(
− C0

14K2

n

p1+β
0

)
,

since ν− ≥ 6C0p
−β
0 on A−1 .

Proof of Claim 7. According to Claim 3 in Section 6,

E
[
(f̂−bm − f−)2(x0)1{bν−n ≥ν−/2} | Z−

]
1A−3

≤ E[max(κ2, ν̂
−
n κ3) | Z−]1A−3

(M + 1)
( n

log n

)− 2β
2β+1 +

θ2

n

≤ (κ2 + κ3E[ν̂−n | Z−])(M + 1)
( n

log n

)− 2β
2β+1 +

θ2

n
,

which entails that

E[(f̂−bm − f−)2(x0)1{bν−n ≥ν−/2}∩A−3
] ≤ (κ2 + κ3E[ν̂−n ])(M + 1)

( n

log n

)− 2β
2β+1 +

θ2

n
. (54)

Besides,

E[ν̂−n | Z−] ≤ E[ν̂−n 1bν−n ≤2ν− | Z−] + E[ν̂−n 1{bν−n >2ν−} | Z−]1A−2
+ E[ν̂−n | Z−]1(A−2 )c .

According to inequality (46), ν̂−n = ‖ĝ(1)
m0‖∞ ≤ K2p0, thus

E[ν̂−n | Z−] ≤ 2ν− + K2p0 exp
(
− nν−

456K2p0

)
+ K2p01(A−2 )c .

On A−2 , exp(−nν−/456K2p0) ≤ exp(−√n/38) a.s., so

E[ν̂−n ] ≤ 2ν + K2p0

(
exp

(
−
√

n

38

)
+ P [(A−2 )c]

)
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and with (52),

E[ν̂−n ] ≤ 2ν + K2p0 exp
(
−
√

n

38

)
+ 2 log n(12K3)2

p3
0

n
E[‖b̂− b‖2

fX
]. (55)

Then inequalities (54) and (55) provide the proof of Claim 7.

8. ADDITIONAL PROOFS
8.1. Proof of Proposition 4.1

(1) Let x ∈ R,

|f−(x)| ≤
1∫

0

|f(x− (b− b̂)(y))|fX(y) dy ≤ ν

1∫

0

fX(y) dy = ν a.s.

(2) Suppose that f ∈ H(β, L) and β = r + α with α ∈]0, 1]. We have,

(f−)(r)(x) =
∂r

∂xr

( 1∫

0

f(x− (b− b̂)(y))fX(y) dy

)

=

1∫

0

∂r

∂xr
(f(x− (b− b̂)(y)))fX(y) dy =

1∫

0

f (r)(x− (b− b̂)(y))fX(y) dy.

Hence, for every x, x′ ∈ R,

∣∣(f−)(r)(x)− (f−)(r)(x′)
∣∣ ≤

1∫

0

|f (r)(x− (b− b̂)(y))− f (r)(x′ − (b− b̂)(y))|fX(y) dy

≤
1∫

0

L2|x− x′|αfX(y) dy = L2|x− y|α,

which proves that f− ∈ H(β, L).

(3) First of all, for every u ∈ R, the Fourier transform of f− is

(f−)∗(u) =
∫

x∈R
f−(x)e−iux dx =

∫

x∈R

1∫

y=0

f(x− (b− b̂)(y))fX(y)e−iux dx dy.

Set z = x− (b− b̂)(y), then

(f−)∗(u) =

1∫

y=0

∫

z∈R
f(z)e−iuze−iu(b−bb)(y) dzfX(y) dy = f∗(u)

1∫

y=0

e−iu(b−bb)(y)fX(y) dy.

Hence,

|(f−)∗(u)| ≤ |f∗(u)|
1∫

y=0

|e−iu(b−bb)(y)|fX(y) dy = |f∗(u)|.

Then, if f ∈ W (β, L),

1
2π

∫

u∈R
|(f−)∗(u)|2u2β+1 du ≤ 1

2π

∫

u∈R
|f∗(u)|2u2β+1 du ≤ L2,

so f− ∈ W (β, L).
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8.2. Proof of Proposition 2.1 and Proposition 3.2 (1)

Let us prove Proposition 2.1.

(1) A simple calculus proves that the Fourier transform of 1[−π,π] is 2πφ, then for every u ∈ R,

φ∗(u) =
∫

R

φ(y)e−iuy dy =
1
2π

∫

R

1∗[−π,π](y)eiuy dy =
1
2π

1[−π,π](−u) =
1
2π

1[−π,π](u).

Hence, for every (m, k),

φ∗m,k(u) = (1/
√

m)e−iku/m1[−πm,πm](u). (56)

Then, let m > 0 and k, l ∈ Z, according to the Parseval formula, we have

〈φm,k, φm,l〉 =
1
2π
〈φ∗m,k, φ

∗
m,l〉 =

1
2πm

πm∫

−πm

e−i(k−l)u/m du = 1k=l.

(2) First of all, we recall that for every subset Sm of L2(I), the two following properties are equivalent
(see Birgé and Massart [4], Lemma 1):

(
‖t‖∞ ≤ K

√
Dm‖t‖, ∀t ∈ Sm

)
⇔

∥∥∥
∑

k∈Z
φ2

m,k

∥∥∥
∞
≤ K2Dm. (57)

So, for t ∈ Sm and x ∈ R, we prove that |t(x)| ≤ √
m‖t‖. As Supp(t∗) ⊂ [−πm, πm], we have

(t(x))2 =
[

1
2π

πm∫

−πm

t∗(u)eixu du

]2

≤ 1
(2π)2

( πm∫

−πm

|t∗(u)|2 du

)
× 2πm = m‖t‖2

by Parseval’s Equality, which proves the assertion (2) of Proposition 2.1.

(3) By (56), it is obvious that Sm ⊂ {t ∈ L2(R), Supp(t∗) ⊂ [−πm, πm]}. Conversely, let t ∈ L2(R)
be such that Supp(t∗) ⊂ [−πm, πm], then t∗ decomposes in Fourier series as

t∗(u) =
(∑

k∈Z
ake

ikuπ/m
)
1[−πm,πm] ∈ vect{φ∗m,k, k ∈ Z}

for some numbers (ak)k∈Z. Thus t ∈ Sm. Hence Sm = {t ∈ L2(R), Supp(t∗) ⊂ [−πm, πm]}. Then it is
obvious that Sm ⊂ Sm′ for every m ≤ m′.

• Let us prove (1) of Proposition 3.2. For every h ∈ L2(R),

hm = arg min
t∈Am

‖h− t‖2 = arg minSupp(t∗)⊂[−πm,πm]

1
2π
‖h∗ − t∗‖ =

1
2π

(h∗1[−πm,πm])
∗.

Suppose that h ∈ W (β + 1/2, L), let x ∈ R,

(h− hm)2(x) =
[

1
2π

∫

R

(h∗ − h∗m)(u)eiux du

]2

=
[

1
2π

∫

|u|>πm

h∗(u)eiux du

]2

≤ 1
(2π)2

∫

|u|>πm

|h∗(u)|2|u|2β+1 du×
∫

|u|>πm

1
|u|2β+1

du

≤ L2

2βπ2β+1
m−2β.
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8.3. Proof of Proposition 2.2 and Proposition 3.2 (2)
Let us prove Proposition 2.2. For every j ∈ N, x ∈ R,

|{k ∈ Γ(j) : ψj,k(x) 6= 0}| ≤ |{k : −B ≤ 2jx− k ≤ B}| ≤ 2B + 1.

Thus, for every m ∈ N∗, t ∈ Bm and x ∈ [−1, 1], we have,

(t(x))2 =
( ∑

k∈Γ′(0)

〈ϕk, t〉ϕk(x) +
m−1∑

j=0

∑

k∈Γ(j)

〈ψj,k, t〉ψj,k(x)
)2

≤
( ∑

k∈Γ′(0)

〈ϕk, t〉2 +
m−1∑

j=0

∑

k∈Γ(j)

〈ψj,k, t〉2
)
×

( ∑

k∈Γ′(0)

ϕ2
k(x) +

m−1∑

j=0

∑

k∈Γ(j)

ψ2
j,k(x)

)

≤ ‖t‖2 × (2B + 1)
(
‖ϕ‖2

∞ +
m−1∑

j=0

2j‖ψ‖2
∞

)
≤ K2‖t‖22m,

where K depends only on the structure of the mother and father wavelets. According to (57), this proves
the result of Proposition 2.2.

• Assertion (2) of Proposition 3.2 follows from Proposition 4 (Section 9, Chapter 2) in Meyer [16].
The result stated there is more general (for Besov spaces and a Lq-norm), and we only recall it in the
form we require. Let h ∈ L2(R), then

h(x) =
∑

k∈Γ′(0)

〈h, ϕk〉ϕk +
∑

j≥0

∑

k∈Γ(j)

〈h, ψj,k〉ψj,k

and

hm(x) =
∑

k∈Γ′(0)

〈h, ϕk〉ϕk +
m−1∑

j=0

∑

k∈Γ(j)

〈h, ψj,k〉ψj,k.

On the one hand, by Meyer [16], if h ∈ H(β, L) = Bβ,∞∞ (L) (see Meyer [16] or DeVore and Lorentz [7]
for the definition of Besov spaces),

sup
j≥0

2jβ
∥∥∥

∑

k∈Γ(j)

〈h, ψj,k〉ψj,k

∥∥∥
∞

= ‖ |h| ‖ < +∞.

Moreover, there exists a constant, which only depends of ψ and ϕ, such that ‖ |h| ‖ ≤ CL for every
h ∈ H(β, L). Thus, for every m ≥ 1,

‖h− hm‖∞ =
∥∥∥

∑

j≥m

∑

k∈Γ(j)

〈ψj,k, h〉ψj,k

∥∥∥
∞
≤

∑

j≥m

C‖ |h| ‖2−jβ ≤ CL
2−mβ

1− 2−β
=

K ′(β)L
2m

.

9. APPENDIX : DEVIATION INEQUALITIES FOR EMPIRICAL PROCESSES

The following inequality, called Bernstein’s Inequality, is stated in Birgé and Massart [4] (Lemma 8,
p. 366).

Theorem 9.1. Let (X1, . . . , Xn) be independent random variables. Suppose that:

1
n

n∑

i=1

E[X2
i ] ≤ v,

1
n

n∑

i=1

E[(Xi)l
+] ≤ l!

2
v cl−2

for every l ≥ 2. Let S = 1
n

∑n
i=1 Xi − E[Xi]. Then, for every ε > 0:

P [S ≥ ε] ≤ exp
(
− nε2

2(v + cε)

)
, P [|S| ≥ ε] ≤ 2 exp

(
− nε2

2(v + cε)

)
.
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The following deviation inequality called Talagrand’s Inequality is originally due to works by Tala-
grand [18] and is stated in this form by Klein and Rio [10].

Theorem 9.2. Let (X1, . . . , Xn) be i.i.d., F a set of functions, and

Z = sup
t∈F

1
n

n∑

i=1

(
t(Xi)− E[t(Xi)]

)
.

LetH, v, and b be such that

E[|Z|] ≤ H, sup
t∈F

Var(t(Xi)) ≤ v, sup
t∈F

‖t‖∞ ≤ b.

Then for every λ > 0

P
[|Z| > H+ λ

] ≤ exp
(
− nλ2

2(v + 4Hb + 3bλ)

)
.
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