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ABSTRACT: The gut microbiota are increasingly considered as a main partner of
human health. Metaproteomics enables us to move from the functional potential
revealed by metagenomics to the functions actually operating in the microbiome.
However, metaproteome deciphering remains challenging. In particular, confident
interpretation of a myriad of MS/MS spectra can only be pursued with smart
database searches. Here, we compare the interpretation of MS/MS data sets from 48
individual human gut microbiomes using three interrogation strategies of the
dedicated Integrated nonredundant Gene Catalog (IGC 9.9 million genes from 1267
individual fecal samples) together with the Homo sapiens database: the classical
single-step interrogation strategy and two iterative strategies (in either two or three
steps) aimed at preselecting a reduced-sized, more targeted search space for the final
peptide spectrum matching. Both iterative searches outperformed the single-step
classical search in terms of the number of peptides and protein clusters identified and the depth of taxonomic and functional
knowledge, and this was the most convincing with the three-step approach. However, iterative searches do not help in reducing
variability of repeated analyses, which is inherent to the traditional data-dependent acquisition mode, but this variability did not
affect the hierarchical relationship between replicates and all other samples.
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■ INTRODUCTION

High-throughput sequencing of total fecal DNA of the gut
microbiome provides an enormous reservoir for the discovery
of unsuspected metagenomic signatures that can represent
predictive biomarkers and new therapeutic targets for different
human disease phenotypes or stages.1,2 The accompanying
challenge is a holistic metaproteomic approach to move
beyond the genetic potential addressed by metagenomics and
become closer to the real functionality of the gut microbiome
by exploring the expression of metabolic and cellular pathways.
Understanding how these pathways are altered in diseases can
have a profound impact on patient diagnosis and treatment
and eventually disease prevention. This may indeed open new
avenues for reducing risks, including the discovery of new
biomarkers, new targets, and new therapeutic molecules in
common diseases. However, despite recent progress in mass
spectrometry-based proteomics, which made possible the deep
analysis of single-cell types like yeast3 or human tissues and
fluids,4,5 proteomics of cell communities as diversified as those
found in ecosystems (the gut microbiota forming the most
densely populated community in the body) still remains a
challenge at every stage.6 This includes sample pretreatment,
proteolytic digestion, peptide separation and analysis using
liquid chromatography coupled to tandem mass spectrometry

(LC−MS/MS), microbial protein identification and quantifi-
cation, and lastly downstream taxonomic and functional
annotations. This has been recently reviewed, leading to an
early form of recommendations for performing and reporting
label-free metaproteomics studies of human microbiomes in a
more standardized way.7

Once the complex peptide mixture has been properly
prepared and analyzed, a major difficulty remains: mass
spectral interpretation, which is hampered by two main
obstacles in metaproteomics. The first is the construction of
a relevant multiorganism protein sequence database. Such a
database can be generated from individual bacterial genomes
translated into proteins. However, the risk is then to pick up a
great number of nonrelevant sequences and miss many others
from uncultured microorganisms.8 Matching mass spectra
against metagenomes specific to the samples studied would
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theoretically be the best solution.9,10 However, such individual
metagenomic data are not always available. In the absence of
genomic information on the host and its symbiotic micro-
biome, an ingenious iterative search combining filtered
generalist databases and RNA-seq-based protein database of
the host has been developed, opening new avenues to put into
perspective the taxonomic and functional compositions of a
microbiome with the host proteome.11 In the case of the
human gut microbiome, an economic and more easily
accessible solution is the use of the public metagenomic
database IGC 9.9 generated by our consortium MetaHIT
project.12 It is directly derived from the whole genome
sequencing of 1267 individual fecal samples from Europe,
United States, and China plus a selection of sequenced gut
bacterial genomes.2

The second obstacle is the optimization of the interrogation
strategy. In addition to increasing the computation time,
matching large mass spectral data sets to a large translated
metagenomic database may also dramatically decrease the
identification rates at a given false discovery rate (FDR)
threshold calculated via classical target-decoy-based ap-
proaches.13 To address this issue, Jagtap et al. proposed a
two-step interrogation strategy known as “iterative database
search”.14 Its principle is to first interrogate the target version
of a large metaproteomic database with a relaxed FDR
threshold, then to create a reduced database including all
microbial sequences identified at this first stage, and re-
interrogate the target-decoy version of this refined database
with a stringent FDR threshold. Iterative database search has
been used in metaproteomics studies10,14,15 and is now
implemented in automatic identification softwares.16−18 This
strategy has been successfully applied to interpret small
numbers of human salivary metaproteomes14,15 and gut
metaproteomes of humans and mice.10 When coupled with
the interrogation of the human proteome, the search also
allows identification of many human proteins that may be
highly relevant in clinical contexts.15,16 However, despite its
increasing popularity, this strategy has been implemented on
small data sets only (<10 samples), and its benefits have not
been evaluated within the context of large-scale metaproteomic
experiments nor was its possible impact on the reproducibility
of the final peptide and protein identification list assessed.
An additional obstacle in metaproteomics is then to provide

a reliable landscape of taxonomies and functions in a system
where proteins are clustered into groups,19−21 subgroups and
groups,22 or metaproteins,23 using various grouping algorithms
based on the shared peptide rule. Besides the fact that, even if
designated by the same term, those protein assemblies do not
necessarily correspond to the same thing due to various uses of
the shared peptide rule, their taxonomic and functional
annotation is not straightforward.24 Many annotation strategies
are proposed either at the peptide25,26 or the protein23 level by
using different currently available knowledge databases and
different taxonomic and functional annotation tools, which can
provide significant variability in the annotation results.27 In the
absence of a consensus on which method to adopt, new
approaches continue to emerge for taxonomic and functional
annotations in order to view metaproteomes in a more
physiologically meaningful way.
In this study, using X!Tandem and the grouping algorithm

of X!TandemPipeline,22 we aimed to optimize mass spectral
interpretation and downstream knowledge of taxonomies and
functions of the active bacterial community in the context of a

large-scale metaproteomics study of the human gut micro-
biome including 48 individual samples. To this end, we
compared three strategies of database interrogation: the
classical (single-step) strategy and two iterative strategies.
The first was the two-step strategy proposed by Jagtap et
al.14,15 In the second one, we included an intermediate step,
consisting of a refined individual subdatabase interrogation
before gathering the results into a concatenated final database
that was interrogated in the last step. We applied the three
strategies on the IGC 9.9 database concatenated with the
human database. The comparisons are based on a series of
well-defined qualitative and quantitative criteria such as the
number of peptides and protein clusters identified throughout
the entire data set or per sample, peptides and protein clusters
that are consistently or specifically identified, reproducibility of
MS/MS interpretations and final metaproteomic profilings of
replicated samples, and taxonomic and functional knowledge
brought by each strategy. Our results show that interrogating
IGC 9.9 using the iterative search brought significant gain in
terms of the number of peptides and protein clusters identified
and taxonomic and functional knowledge, and this was the
most convincing with the three-step approach. We also verified
that iterative searches added only slight variability to the
peptide and protein lists of replicated samples.

■ EXPERIMENTAL SECTION

Samples and MS/MS Data Sets

Stool samples were self-collected as previously detailed28 by 48
overweight/obese subjects, which were recruited at the Human
Research Center on Nutrition (CRNH), Pitie-́Salpet̂rier̀e
Hospital (75013 Paris), as part of the dietary intervention
study MICRO-Obes project.29,30 This study has been
registered in ClinicalTrials.gov (NCT01314690) and approved
by the Ethical Committee of Hôtel-Dieu Hospital in Paris,
France, in 2008 (under the number 0811792). All participants
provided written informed consent. Data collection occurred in
2009 and 2010. Fecal samples were transferred to a biobank at
−80 °C within 2 h of collection in anaerobic containers. Then
about 1 g stool aliquots were cut frozen, and the microbiota
were separated from the fecal matrix by flotation in a
preformed Nycodenz continuous gradient according to the
method previously detailed,28 except that we reduced the size
of the gradient as described in Section S1 (all steps on ice or at
4 °C, under anaerobiosis). The extracted microbiota were
lysed on ice with a probe sonicator in an antiprotease cocktail
containing buffer without a chaotrope or detergent. Then the
suspensions were centrifuged at 5000g for 30 min at 4 °C to
remove unbroken cells and large cellular debris. The
supernatants were finally ultracentrifuged at 220,000g for 30
min at 4 °C to pellet cell envelopes that were used for the
present study. These cell-envelope-enriched fractions were
resuspended in a surfactant containing buffer before acetone
precipitation and in-solution digestion of proteins in the
presence of a mass spectrometry-compatible surfactant. Finally,
the peptide bulk was desalted on C18 cartridges and analyzed
by liquid chromatography coupled with tandem mass
spectrometry (LC−MS/MS, all steps detailed in Sections
S1−S3), on the PAPPSO proteomic facility (http://pappso.
inrae.fr/).
Sample preparation and LC−MS/MS analysis were carried

out only once for 47 of the samples and repeated multiple
times for one randomly selected sample for a study of
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reproducibility. More precisely, this sample was prepared in
triplicate from microbiota extraction up to resolubilization of
the peptide mixture in LC buffer. These preparations, called A,
B, and C, were injected nine, three, and two times, respectively
(Figure S1). In total, we thus performed 61 LC−MS/MS runs
of which 47 corresponded to nonreplicated stool samples and
14 corresponded to the replicates, with a blank inserted
between each sample injection. The analytical sequence of the
samples is reported in Table S1. The mass spectrometry data
have been deposited to the MassIVE repository31 (https://
massive.ucsd.edu/ProteoSAFe/static/massive.jsp) with the
data set identifier MSV000085993 and the ProteomeXchange
identifier PXD021050.

Peptide and Protein Identifications

MS/MS data were searched using the X!Tandem software32

version 2015.04.01.1. against three databases: (i) IGC 9.9
(available at http://meta.genomics.cn/meta/dataTools), (ii)
the Homo sapiens protein catalog from UniProt (April 2018),
including canonical and isoform proteins from Swiss-Prot and
TrEMBL, and (iii) a contaminant database including 58
sequences of common contaminants of spectrometry experi-
ments, such as keratins, BSA, and trypsin. For all
identifications, four types of modifications were searched:
carbamidomethylation of cysteines (fixed modification),
oxidation of methionines, excision of the N-term methionine
with or without acetylation, and cyclization of the N-term
(potential modifications). The mass tolerance was set to 10
ppm for the precursor and 0.02 Da for the fragments, and one
missed cleavage was allowed. Final results from X!Tandem
searches were filtered based on statistical significance of
individual peptide and protein identifications.33

Interrogation was either classical or according to two
variants of the iterative search. The classical strategy consisted
of a one-step target-decoy interrogation of the translated IGC
9.9 database, together with the H. sapiens database and the
contaminant database. The e-value thresholds for peptides and
proteins were set to 0.05. The iterative strategy was either in
two steps14,15 or in three steps. Briefly, the two-step strategy
began with the search of mass spectra against the target version
of the translated IGC-9.9 sequences, along with the H. sapiens
and contaminants proteins, with a relaxed e-value threshold of
10 for peptides and proteins. In the second and last step, mass
spectra were searched again against a refined target-decoy
database constructed from all microbial proteins identified in
the first step, concatenated with H. sapiens and contaminant
proteins, with an e-value threshold of 0.05 for peptides and
proteins. In the three-step variant of this strategy, we added an
intermediate step, where each individual MS/MS data set was
searched against the target version of its own specific
subdatabase constructed from all bacterial proteins identified
in the first step, concatenated with H. sapiens and contaminant
proteins, with an e-value threshold of 0.05 for peptides and
proteins. In the third and last step, mass spectra were searched
again against the refined target-decoy database constructed
from all microbial proteins remaining at the second step, along
with H. sapiens and contaminant proteins, with an e-value
threshold of 0.05 for peptides and proteins. The three methods
used are illustrated in Figure S2.
Protein inference and clustering were performed using the

grouping algorithm included in X!TandemPipeline22 based on
the principle of parsimony (Figure S3) in “combine” mode to
generate a unique data table gathering all samples desired

(Figure S3C). A minimum list of proteins present in the
samples was thus generated based on the following rules. (1) A
minimum of two peptides identified across all samples in the
data set is set to validate a protein in order to exclude proteins
with weak proof of presence. (2) The presence of a protein is
attested if it contains at least one specific peptide, which is not
seen in any other protein. (3) If a protein has no specific
peptide (no proof of presence), it is eliminated. (4) Proteins
identified with the same set of peptides are assembled into
subgroups because one cannot distinguish which of these
proteins are present. (5) At last, groups of proteins can be
formed by gathering subgroups that share peptide(s). We
based the present study on peptide and subgroup reports only
(group entities as defined in X!TandemPipeline were not used,
Figure S3), and we chose to designate “subgroups” of the X!
TandemPipeline by “metaproteins”, a term recently introduced
in metaproteomics,23,34 even if it may refer to different realities
according to the grouping algorithm used.

Metaprotein Quantification

In this study, comparisons were essentially based upon
inventories of peptides and metaproteins. We further
quantified metaproteins by summing the spectral counts
(SCs) of their specific peptides, i.e., excluding shared peptides,
which bear information that is difficult to deconvolve.35

Taxonomic and Functional Annotations

We chose to deal with annotations at the protein level. For this
purpose, all proteins embedded within each microbial
metaprotein were taxonomically annotated with the sequence
aligner DIAMOND (Double Index Alignment of Next-
generation sequencing Data)36 against the nonredundant
NCBI database, with an e-value threshold of 10−4. The
complete taxonomic assignment (from superkingdoms to
species) of the hit with the best bit-score was designated as
the taxonomic assignment of the protein. Then only
metaproteins whose all component proteins shared the same
taxonomic annotation at the species level were functionally
annotated using the KEGG (Kyoto Encyclopedia of Genes and
Genomes) resource (release 89.0), with an e-value threshold of
10−5, a bit-score threshold of 60, and using the sensitive mode
of DIAMOND. The functional annotations with the better bit-
scores were assigned to the protein. When multiple functions
were assigned to the same protein, all of them were taken into
account so that each species-specific metaprotein was func-
tionally annotated with all KEGG Orthology (KO) entries
assigned to all its component proteins. The functional and
taxonomical annotations are available at https://doi.org/10.
5281/zenodo.3997093.

Evaluation Criteria

The number of unique peptides and metaproteins and
taxonomic and functional annotations were considered to
compare the three search strategies at the individual or the
whole cohort level. Differences were tested by ANOVA and
with the post-hoc paired t test when the normality assumption
was fulfilled (Shapiro test, p > 0.05) and by the Friedman test
with the post-hoc paired Wilcoxon test otherwise. The p-values
were adjusted by the Bonferroni method, and the significance
threshold was set to 0.05. Interpolation of the total number of
unique peptides and metaproteins identified with an increasing
number of samples was performed with iNEXT.37 The number
of unique peptides and metaproteins specifically identified with
a given search strategy was also considered. For that purpose,
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lists of peptides were compared based on their sequence and
modifications, and lists of metaproteins were compared based
on their identifiers directly provided in the output file of the
grouping algorithm of X!TandemPipeline for comparisons of
samples within the same combination (within-combination
comparisons, Figure S3C) and lists of protein members
embedded within each metaprotein for comparisons of samples
from different combinations (between-combination compar-
isons). All computations were performed with RStudio version
1.1.383 and R version 3.3.3.38

■ RESULTS AND DISCUSSION

The Iterative Strategies Look More Deeply into Gut
Metaproteomes

In order to compare the ability of each strategy to identify
peptides and metaproteins, we randomly selected one of the 14
technical replicates for combination with all other non-
replicated 47 individual samples. Based on a cutoff of 0.05
for the e-value of individual peptide and protein identifica-
tions,33 the a-posteriori peptide FDR returned by X!Tandem
was always far below 1% (0.02, 0.03, and 0.05% for the

classical, the two-step, and the three-step iterative approaches,
respectively). Step-by-step reduction of the database and final
percentages of interpreted spectra are summarized in Table S2.
For the whole data set comprising the 48 nonreplicated
biological samples, the three-step iterative method yielded
30,000 and 70,000 additional peptide spectrum matches
(PSMs) compared to the two-step and the classical method,
respectively. At the same time, distribution of the mass delta
values remained unchanged whatever the method (Figure S4),
indicating that PSMs were equally reliable for the three
methods. Under these conditions, the overall number of
identifications across the 48 individual samples increased when
moving from the classical to the two-step or from the classical
to the three-step strategy: +9.7 or +18.5% for unique peptides
and +10.9 or +22.5% for metaproteins. This benefit was
observed for every sample (Figure 1), resulting in very low
adjusted p-values by ANOVA followed by the post hoc paired t
test (all p.adj < 0.001).
The Venn diagram of Figure 2 further illustrates that only a

few peptides and metaproteins were specifically identified by
the classical or the two-step iterative search, while a substantial

Figure 1. Number of unique peptides (A) and metaproteins (B) identified with each search strategy in every of the 48 individual enriched-envelope
fractions of the human gut microbiome. Observations related to the same sample through the three methods are joined by dotted lines. All
differences are significant (p.adj < 0.001 by ANOVA followed by the post hoc paired t test).

Figure 2. Venn diagrams of unique peptides (A) and metaproteins (B) identified with each search strategy across 48 individual enriched-envelope
fractions of the human gut microbiome. The three-step strategy gave the highest number of peptides and metaproteins overall and specifically
identified.
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number of peptides and metaproteins were identified by the
three-step iterative strategy only.
The gain in peptide sequence matches provided by the two-

step strategy compared to the traditional one-step search was
first illustrated using the example of three human oral mucosa
exudates.15 Using the search algorithm ProteinPilot at a 0.05
local FDR threshold, the iterative two-step search increased by
26% the total number of unique peptides identified, and the
gain was the most remarkable for the microbial fraction, whose
contribution to the whole metaproteome was small in those
oral samples (4.7% of total unique peptides with the traditional
search) but almost doubled to 8.2% with the two-step search.
The authors also provided evidence for the superiority of the
two-step strategy when using other search algorithms,
including X!Tandem, even if the magnitude of gain was
program-dependent. In the present work including 48
individual human gut samples specially prepared to focus on
microbial cell surface metaproteomes for clinical interest
(beyond the scope of this paper), we demonstrate the interest
of the two-step search on a whole new dimension as regards
with sample size, database size, and the overwhelming
predominance of microbial peptides. We further demonstrate
that adding an intermediate step to refine each individual
subdatabase and therefore consistently decrease its size (Table
S2) before performing a last search of all MS/MS data sets
against an assemblage of these subdatabases still increases
peptide and metaprotein identifications by a substantial
amount. Importantly, the three-step strategy also reduced the
number of peptides that were matched in the classical search
but missed in the iterative searches (341 and 274 unique
peptides missed when using the two-step and the three-step
searches, respectively, instead of the classical search; Figure
2A). Loss of a very small number of peptide matches with the
iterative strategy was already observed by others, with the
reason for this being not clear.15 For the outcome of
metaprotein identifications, loss was somewhat greater when
moving from the classical to the three-step strategy (1211

metaproteins) than when moving from the classical to the two-
step strategy (828 metaproteins lost) (Figure 2B). This is
because increasing peptide matches by iterative search
increased the likelihood of clustering several protein members
within the same metaprotein based on the shared peptide rule.
At the same time, the likelihood of distinguishing many more
metaproteins based on the same shared peptide rule increased,
so that the overall outcome weighted heavily in favor of the
iterative strategies and even more of the three-step strategy. At
last, we could verify that the gain brought when moving from
the classical to the three-step strategy was as beneficial for a
small-sized experiment (five metaproteomes randomly selected
among the whole cohort) compared to several tens of samples
as here.39

However, even if peptide and metaprotein discovery
increased when moving from the classical to the two-step
and then the three-step iterative search, none of the method
enabled reaching a plateau with 48 individual samples (Figure
3), providing a clear illustration of the huge individual
specificity of gut metaproteomic profiles, even within a
relatively homogeneous group of overweighed patients
recruited in the same region. Although this result could have
been expected from what we know about specificity of
individual microbiomes, either by 16s rDNA40 or whole
metagenome sequencing,41 this is the first illustration of such a
diversity at the metaproteomic level, even when using the most
refined peptide mass matching strategy.

The Iterative Strategies Look More Deeply into the
Taxonomies and Functions of Gut Metaproteomes

Our protein-centric taxonomic annotation allowed us to
annotate all human proteins and more than 99% of microbial
proteins (99.14, 99.18, and 99.16% for the classical, the two-
step, and the three-step strategies, respectively). Then, we
looked at the taxonomic consensus among protein members
within each metaprotein. Only two metaproteins from the
classical and the two-step iterative searches and one from the
three-step iterative search contained a mix of human histones

Figure 3. Diversity of unique peptides (A) and metaproteins (B) defined as the mean number identified with an increasing number of individual
enriched-envelope fractions of the human gut microbiome. (red circle) Classical, (blue triangle) two-step iterative, (green square) three-step
iterative. No plateau was observed even with the more refined search strategy.
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and various microbial proteins. The remainder was composed
of 608, 676, and 716 “pure” human metaproteins and 22,521,
24,964, and 27,630 “pure” microbial metaproteins for the
classical, the two-step, and the three-step approaches,
respectively (Table S3). Therefore, in these pretreated samples
where microbiota were first extracted from the fecal matrix by
gradient and where spectra were searched against both IGC
and human databases, the percentages of metaproteins from
human origin were low: 2.6% for the classical and the two-step
iterative approaches and 2.5% for the three-step iterative
approach. Among them, the most abundant (based on the sum
of SCs of their specific peptides) were pancreatic Elastase 3A,
Chymotrypsin-C, IgGFc-binding protein, Submaxillary gland
androgen-regulated protein 3B, Phospholipase A2, pancreatic
triacylglycerol lipase, Polymeric immunoglobulin receptor, and
Mucin-2. Bacterial surface-coating proteins from human origin
can provide valuable information about the host−microbiome
interactions. For instance, we found in three volunteers
substantial amounts of the well-known neutrophil-derived
proteins S100-A8 and S100-A9 (also called calprotectins),
whose dosage in feces is used to identify an inflammatory
bowel condition and determine the next course of action in
diagnosis and treatment.42 We also identified other immune-
cell-derived proteins that are all related to host defense against
bacterial infections and were over-represented in the same
samples that already presented high levels of calprotectins, and
this is despite the fact that these patients were not known to
have symptoms of gastrointestinal disease. Interestingly, the
abundance of those proteins slightly increased when moving
from the classical to iterative strategies in the concerned
samples but not in the other ones, making iterative strategies
potentially useful to boost statistical power. In this respect, it
should be mentioned that cell surface metaproteomes display
more than twice the proportion of proteins from human origin
than do whole metaproteomes (own scientific data), which
might be of particular interest in clinical research and host−
microbiome interaction studies.43,44

For all three search strategies, 1% of the “pure” microbial
metaproteins had at least one component protein that could
not be annotated, about 11% had components with more than
one taxonomic annotation at the species level, and about 88%
had components with a unique annotation at this level, with a
slightly higher consensus when moving from the classical to the
two-step and then the three-step search (Figure 4 and Table
S3). Consensus substantially increased at the genus level and
then at the order level, with nearly 94 and 98% of all microbial
metaproteins, respectively, with a unique annotation at these
taxonomic levels, for all three strategies (Figure 4).
Therefore, any of the three strategies using X!Tandem to

match the mass spectra against the translated public
metagenomic database IGC 9.9 (plus the H. sapiens protein
catalog from UniProt), combined with the grouping algorithm
of X!TandemPipeline22 to cluster proteins into metaproteins,
and taxonomic annotations at the protein level, allowed us to
reliably predict the taxonomic lineage of about 88% of all
microbial metaproteins up to the species level (a little bit less
with the classical search and a little bit more with the three-
step search). At the highest phylum and superkingdom levels,
consensus reached almost 99.0%, with the three-step strategy
giving the most consensual results. It should be remembered
that, for each member of the protein list returned by X!
Tandem, we chose to retain only the first alignment hit
returned by the sequence aligner DIAMOND36 against the

nonredundant NCBI database. We then looked at the
consensus of these first hits within each metaprotein and at
the different taxonomic levels, which means finally complying
with both principles of the lowest common ancestor45 and
taxonomic consensus annotation.24 The proposed approach
enables dealing with potential broad taxonomic ranges within
metaproteomic assemblages. Remarkably, all the X!TandemPi-
peline assemblages resulted in a strong consensus even at the
lowest species level and whatever search strategy was used. It
would be very interesting to look at the results provided by
other grouping algorithms, but this is beyond the scope of this
paper.
Overall, the three search strategies provided very close

taxonomic landscapes in terms of percentages of metaproteins
distributed among the different phyla, with a clear over-
representation of metaproteins assigned to the phylum
Firmicutes (Figure 5A). However, when considering the
numbers of predicted species, iterative searches substantially
increased taxonomic resolution at all levels and more especially
at the lower species level (Figure 5B), with an additional 228
species predicted when moving from the classical to the two-
step search and another additional 200 species when moving
from the two-step to the three-step search. That said, a
common core of 2111 species belonging to 29 phyla was
predicted by all three strategies (Figure 5C). Specificities and
intersections of all three strategies are illustrated in Figure 5C.
Interestingly, looking in more detail at those 228 and 200
newly predicted species, we found a higher proportion of
species belonging to the phylum Bacteroidetes and other less
represented phyla and a lower proportion of species belonging
to the predominant phylum Firmicutes, compared to what was
observed within the intersection of the three searches or when
using the classical search (Figure S5). For instance, the
Bacteroidetes to Firmicutes species ratios in the additional
pools brought by the two-step and the three-step iterative
searches were 0.40 and 0.85, respectively, compared to 0.36
within the intersection of the three searches (Figure S5). In
other words, boosting peptide mass matching by iterative
searches added metaproteins to every phylum without
reshaping the overall taxonomic landscape, but refined our
taxonomic knowledge of the system particularly for less

Figure 4. Percentage of microbial metaproteins with a unique
annotation at the different taxonomic levels. (red square) Classical,
(blue square) two-step iterative, (green square) three-step iterative.
The remaining microbial metaproteins had either at least one
component without taxonomic annotation or components with
diverse annotations at the taxonomic level under consideration.
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represented taxa, and furthermore with a small increase in
taxonomic consensus within metaproteins.
Using the KEGG resource, we then proceeded to the

functional annotation of those 88% microbial metaproteins
whose all component proteins were assigned to the same
species. For each metaprotein, we took into account all KO
entries of all its component proteins, so that each species-
specific metaprotein was potentially assigned to several KO
entries. Overall, 147 and 126 additional KO entries were
predicted when moving from the classical to the two-step and
from the two-step to the three-step strategy, respectively, while
a core of 2198 KO entries was predicted by all three strategies
(Figure 6). The functionalities predicted from the three data
sets, as well as their differences and overlaps, are mapped in
Figure S6. Examples of enhanced functional knowledge when
moving from the classical to the two-step or the three-step
iterative strategies (light blue lines in Figure S6) are amino
acid, starch and sucrose, glycerophospholipid, and methane
metabolisms, or fatty acid elongation, and examples when
moving from the two-step to the three-step iterative strategy

Figure 5. (A) Percentages of metaproteins assigned to the different phyla with the three search strategies. (red square) Classical, (blue square) two-
step iterative, (green square) three-step iterative. Only metaproteins whose all component proteins were assigned to the same phylum were taken
into account, i.e., 98.6 to 98.7% of all microbial metaproteins (see Figure 4). (B) Number of taxonomic entities predicted with the three search
strategies. Only metaproteins whose all component proteins were consensually assigned at the taxonomic level on the x-axis were taken into
account (see Figure 4). (C) Venn diagram of microbial species predicted with each search strategy. Only metaproteins whose all component
proteins were assigned to the same species were taken into account, i.e., about 88% of all microbial metaproteins (see Figure 4).

Figure 6. Venn diagram of KO entries predicted with each search
strategy. Only microbial metaproteins whose all component proteins
were assigned to the same species (i.e., about 88% of them, see Figure
4) were functionally assigned, considering all the KO entries of their
protein members.
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(green lines in Figure S6) are amino acid biosynthesis and
degradation, lipopolysaccharide biosynthesis, vitamin B6 and
B9 biosynthesis, or terpenoid backbone biosynthesis.
We found that most “species-consensual” metaproteins

(82.4, 82.6, and 82.9% for the classical, the two-step, and the
three-step strategies, respectively) were assigned to a single KO
entry (Figure S7). Importantly, the functional diversity (the
count of different KO entries per metaprotein) of the
remaining 17.0−17.6% was not related to the number of
their protein members but to the own functional diversity of
their individual members, even if reduced to one (Figure S8).
As a corollary, the functional diversity within each metaprotein
scarcely ever exceeded that of its functionally best-endowed
protein member (except in 0.08% of the metaproteins from the
classical or two-step searches and in 0.07% of the metaproteins
from the three-step search), which means that, when multiple
proteins were embedded within the same metaprotein, they
were assigned to redundant KEGG annotations.
The end result is that, using any one of the three search

strategies, we were able to say “who does what in the system”
for almost 90% of the microbial metaproteins, with an
increasing taxonomic consensus when moving from the
classical to the two-step and then the three-step search
strategy. At last, although this was not the focus of the present
study, we wanted to have a glimpse of the distribution of
microbial genes among phyla as we did for metaproteins in
Figure 5A. The gene count table of the 48 microbiomes,
obtained by read mapping on the IGC 9.9 database, was
extracted and annotated from previous data obtained by our
consortium,29,30,46 thus allowing us to compare the profiles of
gene potential and expression from a taxonomic point of view
(Figure S9). Both images proved to be close. However, a lower
proportion of genes was attributed to Firmicutes and
Actinobacteria, and a higher proportion was attributed to
Bacteroidetes and Proteobacteria, compared to the distribution
reported for metaproteins. It is uncertain whether this is a
biological reality or simply the reflection of a more efficient
lysis of Gram-positive bacteria in the metaproteomic
preparative workflow or any other technological bias in either
approach.

The Iterative Strategies Add Minor Variability to Technical
Replicates

Protein inference and clustering for a given sample can vary
somewhat depending on the other samples included in the
experiment. Thus, to properly evaluate the reproducibility of
metaproteomic profiling of technical replicates, we combined
each of the 14 replicates together with the 47 nonreplicated
samples. The 14 independent peptide and protein identi-
fication tables served to measure reproducibility in the actual
context of large-scale experiments. Peptide overlapping in pairs
of replicates (n = 91 pairs) slightly but significantly decreased
when moving from the classical to the two-step and then to the
three-step iterative strategy (all p.adj < 0.001, the Friedman
test with the post hoc paired Wilcoxon test, Figure 7A). As
metaprotein identifiers differ between groupings, assessment of
their overlapping between pairs of replicates required prior
alignment of metaproteins based on the “Description” of their
protein members. The end result was that metaprotein
overlapping followed the same pattern as peptide overlapping
(all p.adj < 0.001, the Friedman test with the post hoc paired
Wilcoxon test, Figure 7B).
In order to assess whether this variability affected the

positioning of each replicated sample relative to the other 47
samples, we computed all pairwise Spearman correlations
between metaproteomic profiles (expressed as the sum of SCs
of specific peptides per metaprotein) of the replicate and that
of every nonreplicated sample within each combination
(within-combination correlations), and this was repeated for
each search strategy. Figure 8 illustrates that all pairwise
correlations (14 × 47 for each interrogation strategy) slightly
but significantly decreased when moving from the classical to
the two-step and the three-step iterative search (all p.adj <
0.001, the Friedman test with the post hoc paired Wilcoxon
test). However, this did not affect the positioning of the
replicate relative to all other samples as exemplified by
dendrograms of Figure S10.
In order to assess both technical and biological variabilities

within each of the three search strategies, we computed all
pairwise Spearman correlations between metaproteomic
profiles of all samples from the 14 combinations taken in
pairs (between-combination correlations), and this was
repeated for each search strategy (91 pairwise comparisons

Figure 7. Peptide (A) and metaprotein (B) overlapping in all pairs of replicates, with each interrogation strategy. All differences are significant
(p.adj < 0.001 by the Friedman test with the post hoc paired Wilcoxon test).
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for each strategy). Between-combination pairwise correlations
were invariably around 0.99 for the 47 identical nonreplicated
samples (upper lines of dots in Figure 9A). As expected,
between-combination pairwise correlations for replicated
samples, which is a measurement of the technical variability,
were substantially lower (intermediate values in Figure 9A) but
fortunately still much higher than any pairwise correlation
between biologically different samples, which is a measurement
of the biological variability (lower clouds of dots in Figure 9A).
Focusing on replicated samples only, correlation values fell into
the ranges of 0.6−0.4 when the gradient and the MS run
differed and 0.7−0.6 when only the MS run differed (Figure
9B). For all types of paired samples (identical, or replicated, or
biologically different), we observed a moderate but significant
decrease of correlation values when moving from the classical
to the two-step and the three-step strategy (all p.adj < 0.001,
the Friedman test with the post hoc paired Wilcoxon test).
Although these p-values are only indicative, given that the
correlations are not independent (since the same samples are
used several times), this means that both technical and
biological variabilities slightly increased when the iterative
searches were used instead of the classical one.
Such an extensive reproducibility study has never been tried

before in metaproteomics or even in single organism
proteomics, with the exception of a broad interlaboratory
study,47 which compared a wide range of conditions (multiple
laboratories and instruments, lab-specific protocols, or
common SOPs) on peptide and protein inventories of diverse
samples from defined protein mixtures to complex proteomes
such as yeast extract. When a peptide mixture from a single
digestion was repeatedly analyzed on the same instrument and
HPLC column, the overlapping fraction of peptides in pairs of
replicates was around 45%, whatever the complexity of the
peptide mixture.47 This figure coincides with ours, related to
pairs of LC−MS/MS injections from the same gradients,
where peptide overlapping always exceeded 40% and ranged
up to almost 55% whatever the search strategy (red dots of

Figure 7A). Yet, overlapping at the metaprotein level was much
lower in our samples (43−54%, red dots of Figure 7B, all
search strategies considered) than that reported before for
yeast extract proteins (60−70%), whose overlapping was
already lower than that in less complex defined protein
mixtures.47 This indicates that variable peptide lists from
repeated analyses may be sufficient to infer reproducible
protein identifications in low-complexity protein mixtures or at
most in simple organisms but not to infer reproducible
metaprotein assemblages, even with the most sophisticated
search strategy. However, omitting metaproteins with un-
certainty of data acquisition, i.e., metaproteins with only one
specific peptide of very low abundance (one SC) as sole proof
of evidence in one of the two replicates only, strikingly
increased metaprotein overlapping between replicates, over
82% and up to more than 90% for same-gradient paired
samples, and over 60% for the least overlaps (Figure S11).
This re-emphasizes the difficulty in obtaining highly

reproducible identifications from repeated MS analyses, even
from the same wet preparation, a statement already pointed
out by those who dared the comparison, even on much less
complex samples. This is of course inherent to the traditional
data-dependent acquisition (DDA), which is plagued by the
stochastic nature of precursor selection and low sampling
efficiency at the lower end of the dynamic range, due to the
limited speed of mass spectrometers.48 This is still more
challenging in metaproteomics where a myriad of low-
abundance precursors are embedded within each injection.
This might have been less intense with a more recent
instrumentation, but clearly, multiple-step database search
slightly increases both biological and technical variabilities,
with the first being beneficial but at the cost of the second.
However, we show that this is clearly not a major drawback for
providing a reproducible global view of similarities and
dissimilarities between tens of samples in a cohort because
biological variability between individual microbiomes largely
exceeds technical variability, even when keeping metaproteins
with low proof of presence. Indeed, the common core
throughout repeated identifications exactly preserved the
position of any replicated sample with respect to other
biological samples in the cohort. This means that questioning
the position of a metaproteome among many others is robust,
even if it is analyzed only once, and this is true for all three
search strategies. This is an important finding as replicate
analyses, feasible on a reduced number of experimental
samples, cannot be routinely extended to large cohorts.
Nonetheless, it may be advantageous to discard metaproteins
with uncertainty of data acquisition in a reasoned calibrated
strategy adapted to each study when one seeks to highlight
robust significant discriminating traits between clinical groups
or any other environmental phenotypes.
Finally, our data also documented between-combination

correlations, which were invariably close to 0.99 for all
identical samples and all search strategies. This means that the
grouping algorithm of X!TandemPipeline is highly stable even
if the input peptide list differs due to one nonidentical sample.
Moreover, between-combination correlations for replicates
well reflected the bimodal distribution already observed for
overlapping metaproteins, with the highest values correspond-
ing to the same sample preparation repeatedly analyzed and
the lowest ones corresponding to different sample prepara-
tions.

Figure 8.Within-combination Spearman correlations of each replicate
with every nonreplicated sample. Each box contains 14 × 47 pairwise
Spearman correlation values based on metaproteomic profiling (sum
of SCs of specific peptides per metaprotein). Pairwise correlations of
the same pair of samples through the three methods are joined by
dotted lines. All differences are significant (p.adj < 0.001 by the
Friedman test with the post hoc paired Wilcoxon test).
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■ CONCLUSIONS

Although MS acquisition was on an instrumentation that has
now been exceeded, this study clearly proves the advantage of
iterative searches of huge databases to which one refers to
interpret several tens of thousands of mass spectra acquired
from multiorganism communities, typically gut microbiomes.
Although the iterative search strategy has already been proven
to be very efficient on a limited number of oral or gut samples
and is now implemented in automatic identification software,
the present study was on a whole new dimension regarding
sample size, database size, the overwhelming predominance of
microbial peptides, interpretation of mass data not only in
terms of the numbers of peptides and metaproteins identified
but also of added knowledge of taxonomies and functionalities,
and extended analysis of reproducibility of repeated analyses.
This should encourage the newly emerging metaproteomic
scientific community to systematically integrate this multistep
search strategy as part of the challenging interpretation
workflow of huge metaproteomic data sets. We further
demonstrate an interest in adding to the two-step reference
method an intermediate compilation stage consisting of a
refined individual subdatabase interrogation before gathering
the results into a concatenated final database. This three-step
iterative search gave the highest numbers of peptides and

metaproteins identified or taxa and functions predicted,
providing the best understanding and knowledge of the system
from the available mass spectral data sets, even if somewhat
decreasing reproducibility of peptide and metaprotein
identifications but, importantly, without modifying the relative
positioning of replicated samples within a cohort of almost 50
individual microbiomes. Finally, the presence of those
additional peptides that are specifically identified in such
complex environments with the three-step method could be
confirmed by a targeted spectrometry method, like parallel
reaction monitoring (PRM).
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Figure 9. (A) All between-combination Spearman correlations for each of the three interrogation strategies. Identical nonreplicated samples (green
markers) are closely correlated. Biologically different samples (red markers) are poorly correlated. Replicated samples (black markers) have
intermediate correlation values. For each sample type, mean ± sd is superimposed onto the figure (all between-method means are significant, p.adj
< 0.001, the Friedman test with the post hoc paired Wilcoxon test). (B) Detailed between-grouping Spearman correlations of replicates only (all
p.adj < 0.001, the Friedman test with the post hoc paired Wilcoxon test).
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three methods. Figure S5. Species distribution among
phyla in the intersection of the three searches (A) or in
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three-step strategies (C). Figure S6. iPath projection of
KO entries highlighted with the three approaches. Figure
S7 Distribution of metaproteins as a function of KO
entries embedded. Figure S8. If present, the functional
diversity of metaproteins is related to the own functional
diversity of their component proteins, not to their
number. Figure S9. Percentages of genes (A) and
metaproteins (B, recall of Figure 4A) assigned to the
different phyla within the 48 microbiomes. Figure S10.
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