
Quick Start: Resolving a Markov decision process
problem using the MDPtoolbox in Matlab

Iadine Chadès∗, Guillaume Chapron†, Marie-Josée Cros‡, Frédérick Garcia‡, Régis Sabbadin‡

January 2014

1 MDP framework

(From Wikipedia, the free encyclopedia with minor changes)

Markov decision processes (MDP) provide a mathematical framework for
modeling decision making in situations where outcomes are partly random
and partly under the control of a decision maker. MDPs are useful for study-
ing a wide range of optimization problems solved via dynamic programming
and reinforcement learning.

More precisely, a Markov Decision Process is a discrete time stochastic con-
trol process. At each time step, the process is in some state s, and the
decision maker may choose any action a that is available in state s. The
process responds at the next time step by randomly moving into a new state
s’, and giving the decision maker a corresponding reward R(s, s′, a).

The probability that the process moves into its new state s’ is influenced
by the chosen action. Specifically, it is given by the state transition function
P (s, s′, a). Thus, the next state s’ depends on the current state s and the
decision maker’s action a. But given s and a, it is conditionally independent
of all previous states and actions; in other words, the state transitions of an
MDP possess the Markov property.

Definition
In its typical definition, a Markov decision process is a 4-tuple< S,A, P,R >,
∗CSIRO Ecosystem Sciences, GPO Box 2583, Brisbane QLD 4001, Australia
†Grimsö Wildlife Research Station, Swedish University of Agricultural Sciences, 73091

Riddarhyttan, Sweden
‡INRA, UR 875 Applied Mathematics and Computer Science laboratory, F-31326 Cas-

tanet Tolosan, France.

1

where:

• S is a finite set of states,

• A is a finite set of actions,

• P (s, s′, a) = Pr(st+1 = s′ | st = s, at = a) is the probability that action
a in state s at time t will lead to state s’ at time t+1,

• R(s, s′, a) or R(s′, a) is the immediate reward (or expected) received
after transition to state s’ from state s with action a.

The core problem of MDPs is to find a "policy" for the decision maker: a
function π that specifies the action π(s) that the decision maker will choose
when in state s. The goal is to choose a policy π that will maximize some cu-
mulative function of the random rewards, typically the expected discounted
sum over a potentially infinite horizon:∑∞

t=0 γ
tR(st, st+1, π(st))

where γ is the discount factor and satisfies 0 ≤ γ < 1.

Algorithms
MDPs can be solved by linear programming or dynamic programming. In
what follows we present the latter approach. The standard family of algo-
rithms to calculate this optimal policy requires storage for two arrays indexed
by state: value V, which contains real values, and policy π which contains
actions. At the end of the algorithm, π will contain the solution and V(s)
will contain the discounted sum of the rewards to be earned (on average) by
following that solution from state s.

The algorithm has the following two kinds of steps, which are repeated in
some order for all the states until no further changes take place. They are
defined recursively as follows:

π(s) := argmaxa {
∑

s′ Pa(s, s
′) (Ra(s, s

′) + γV (s′))}

V (s) :=
∑

s′ Pπ(s)(s, s
′)
(
Rπ(s)(s, s

′) + γV (s′)
)

Their order depends on the variant of the algorithm; one can also do them
for all states at once or state by state, and more often to some states than

2

others. As long as no state is permanently excluded from either of the steps,
the algorithm will eventually arrive at the correct solution.
Notable variants: Value iteration, Policy iteration, Modified policy iteration.

2 MDPtoolbox

The MDPtoolbox (http://www7.inra.fr/mia/T/MDPtoolbox) proposes func-
tions related to the resolution of discrete-time Markov Decision Processes:
value iteration, policy iteration, linear programming algorithms with some
variants.
It is currently available on several environment: MATLAB, GNU Octave,
Scilab and R.

Download Matlab version
To download the toolbox for Matlab, follow the toolbox instructions given
on the toolbox website: http://www7.inra.fr/mia/T/MDPtoolbox/Install.html

To use the toolbox, just call Matlab and add the MDPtoolbox directory
to search path.
For example, go to the MDPtoolbox directory, call Matlab and execute:

>> MDPtoolbox_path = pwd;
>> addpath(MDPtoolbox_path)

In this Matlab session, it is then possible to use all the MDPtoolbox func-
tions. To acces the HTML documentation, open with a browser the local
file: MDPtoolbox/documentation/DOCUMENTATION.html .

3 Description of a tiny forest management problem

The considered problem is to manage a forest stand with first the objective
to maintain an old forest for wildlife and second to make money selling cut
wood. The forest stand is managed by two possible actions: Wait or Cut. An
action is decided and applied each time period of 20 years at the beginning
of the period.
Three states are defined, corresponding to 3 age-class of trees: age-class 0-20
years (state 1), 21-40 years (state 2), more than 40 years (state 3). The
state 3 correspond to the oldest age-class. At the end of a period t, if the
state was s at t and action Wait is choosen, the state at the next time period
will be min(s + 1, 3) if no fire occured. But there is a probability p that a
fire burns the forest after the application of the action, living the stand at

3

the youngest age-class (state 1). Let p = 0.1 be the probability of wildfire
occurence during a time period.
The problem is howto manage this stand in a long term vision to maximize
the γ-discounted reward with γ = 0.95.

Here is a modelisation of this problem in the MDP framework.
Let Wait be action 1 and Cut action 2.
The transition matrix P(s,s’,a) of the problem can then be defined as follows:

P(.,.,1) =

p 1− p 0
p 0 1− p
p 0 1− p

P(.,.,2) =

1 0 0
1 0 0
1 0 0

The reward matrix R(s’,a) is defined as follows.

R(.,1) =

00
4

R(.,2) =

01
2

For example, the probability to be in state 3 at time t+1 (s’ = 3), being in
state 3 (s = 3) and choosing action Wait (a = 1) at time t, is P(3,3,1) = 1 -
p = 0.9 and the associated reward is R(3,1) = 4.

Let define the MDP problem in Matlab.
First, define the matrices P for the transition function and R for the reward
function.

>> P(:,:,1) = [0.1 0.9 0; ...
0.1 0 0.9; ...
0.1 0 0.9]; ...

>> P(:,:,2) = [1 0 0; 1 0 0; 1 0 0];
>> R(:,1) = [0 0 4]’;
>> R(:,2) = [0 1 2]’;

or use the forest example function of the MDP toolbox:

>> [P, R] = mdp_example_forest();

It is important to check the validity of the description.
For this, use the mdp_check function.

>> mdp_check(P, R)
ans =
’’

4

When the output is empty, no error was detected.

Finally, define the discount.

>> discount = 0.95;

4 Resolution of this tiny problem

The problem is now expressed, lets solve it.
For a discounted criterium, several algorithms and their related functions
are available in the toolbox (see Functions by category page documenta-
tion). For the very simple considered problem, their are quite equivallent.
Let call the notable algorithms.

>> [V, policy] = mdp_policy_iteration(P, R, discount)
V =

58.4820
61.9020
65.9020

policy =
1
1
1

>>[policy] = mdp_value_iteration(P, R, discount)
policy =

1
1
1

>>[V, policy] = mdp_LP(P, R, discount)
Optimization terminated.
V =

58.4820
61.9020
65.9020

policy =
1
1
1

>> [~, V, policy] = mdp_Q_learning(P, R, discount)
V =

56.3507
59.8762
63.8072

policy =
1
1
1

The optimal policy found is to choose action Wait(1) in the 3 defined states,
that is in a more understandable way ’never cut’.
Note that mdp_LP function provides the exact expected value function. For

5

instance, V(2) = 61.9020 is the expected reward value when in state 2 (age-
class 21-40 years for trees). For the other algorithms, to better apprehend
V, some functions are available in the toolbox. Let call them. Note that
mdp_eval_policy_matrix provides also the exact expected value function.

>> Vpolicy = mdp_eval_policy_matrix (P, R, discount, policy)
Vpolicy =

58.4820
61.9020
65.9020

>> Vpolicy = mdp_eval_policy_iterative(P, R, discount, policy)
Vpolicy =

58.4819
61.9019
65.9019

>> Vpolicy = mdp_eval_policy_TD_0 (P, R, discount, policy)
Vpolicy =

54.2553
58.1873
62.7556

It is often necessary to express and visualise policies in more understand-
able expressions: decision rules, graphs ... An example of graph, pertinent
for this problem, is the representation of the percentage spend in each state
(age-class), that is the stationary distribution of state.

In order to compute it, define the get_stationary_distribution as follow
and save it in a get_stationary_distribution.m file.

function mu = get_stationary_distribution(p)
% Computes the stationary distribution mu of a Markov chain
% described by p (stochastic matrix, ie sum(p,2)=1).
% Input
% p : transition matrix associated with a policy, p(s,s’)
% Output
% mu : stationary distribution for each state s (p*mu’=mu’)
% is_OK_mu : false if p is not a stochatic matrix, else true

s=size(p,1);
mu=zeros(1,s);
if any(abs(sum(p,2)-1)>10^-4) || (size(p,2)~=s)

disp ’ERROR in get_stationary_distribution: argument p must be a stochastic matrix’
else

% mu satisfies p*mu’=mu’ and mu sums to one
A=transpose(p)-eye(s);
A(s,:)=ones(1,s);
b=zeros(s,1);
b(s)=1;
mu=transpose(A\b);
is_OK_mu = ~isempty(mu) && all(mu>-10^-4) && (sum(mu)-1<10^-4);
if ~is_OK_mu; mu=[]; end

end

Then call this function and plot (Figure 1) the stationary distribution in
age-classes.

6

>> mu = get_stationary_distribution(mdp_computePpolicyPRpolicy(P, R, policy))
mu =

0.1000 0.0900 0.8100
>> bar(mu,0.4); ylim([0 1]);
>> xlabel(’age-class’); ylabel(’percentage of time in age-class’);

Beware that in the Matlab code the caracter ’ must be replace by a '.

Figure 1: Percentage of time spend in age-classes for the
mdp_example_forest() problem, with the optimal policy: never cut

5 Exploration of variant problems

Furthermore, it is also possible to evaluate the impact of model parameters
change.

First, what about a lower incitation of conserving the oldest age-class (0.4
instead of 4).

>> [P, R] = mdp_example_forest (3, 0.4, 2,.1);
>> [V, policy] = mdp_LP(P, R, discount)
Optimization terminated.
V =

11.3073
11.9686
12.7419

policy =
1
1
2

7

The policy found ask now to cut the oldest-age class.
Lets compute the state stationary distribution and plot it (Figure 2).

>> mu = get_stationary_distribution(mdp_computePpolicyPRpolicy(P, R, policy))
mu =

0.3690 0.3321 0.2989
>> bar(mu,0.4); ylim([0 1]);
>> xlabel(’age-class’); ylabel(’percentage of time in age-class’);

Beware that in the Matlab code the caracter ’ must be replace by a '.

Figure 2: Percentage of time spend in age-classes for the
mdp_example_forest(3, 0.4, 2,.1) problem, with the optimal policy:
cut the oldest-age class

Second, what about if the probability of wildfire is very high (p = 0.8).

>>[P, R] = mdp_example_forest (3, 4, 2,.8);
>>[V, policy] = mdp_LP(P, R, discount)
Optimization terminated.
V =

3.1933
4.0336
7.9344

policy =
1
2
1

As expected, the policy found changes and requires to cut at the 2nd age-
class with lower expected values.
Lets compute the state stationary distribution and plot it (Figure 3).

>> mu = get_stationary_distribution(mdp_computePpolicyPRpolicy(P, R, policy))
mu =

8

0.8333 0.1667 0
>> bar(mu,0.4); ylim([0 1]);
>> xlabel(’age-class’); ylabel(’percentage of time in age-class’);

Beware that in the Matlab code the caracter ’ must be replace by a '.

Figure 3: Percentage of time spend in age-classes for the
mdp_example_forest(3, 4, 2,.8) problem, with the optimal policy:
cut the second age-class

9

