
916

Globally, biodiversity is undergoing a rapid decline with
only limited resources available to undertake conserva-
tion strategies (Wilson et al. 2006). In response, we have
seen the development of cost-effective decision making
(Possingham 2001). Finding the best sequential decisions
under uncertainty is an optimisation problem consisting
in maximising the sum of future expected rewards over
time. The solution of this problem is a policy function that
indicates the action to apply for each possible state of the
system, also called state-dependent decisions. This optimisa-
tion problem is often referred to by its solution technique as
stochastic dynamic programming (SDP) or by the mathemat-
ical model as a Markov decision process (MDP). Formally,
MDPs are defined as controlled stochastic processes satis-
fying the Markov property and assigning reward values to
state transitions (Puterman 1994, Sigaud and Buffet 2010).
MDPs allow a clear and eloquent formulation of optimal
resource allocation problems. First developed in the fields
of operations research and artificial intelligence (Puterman
1994), MDPs have since been widely applied in conservation
science (Chadès et al. 2011, 2012b) and behavioural ecology
(McNamara et al. 1987, Venner et al. 2006). We have devel-
oped MDPtoolbox, an open-source set of functions that can
be used to solve a wide range of Markov decision problems
and freely downloaded at http://www7.inra.fr/mia/T/
MDPtoolbox. To the best of our knowledge MDPtoolbox
is the only toolbox that provides a variety of algorithms that
suits most optimisation criteria, freely available and multi-
platform (Marescot et al. 2013). MDPtoolbox has already
been used in applied mathematics, computer science (Zhao
et al. 2010, Munir and Gordon-Ross 2012), ecology and

agronomy (Chadès et al. 2012b, Pichancourt et al. 2012,
Grechi et al. 2014).

Theory of MDP and its implementation
in MDPtoolbox

Our toolbox consists of a set of functions related to the
resolution of discrete-time MDP (finite horizon, value
iteration, policy iteration, linear programming algorithms
with some variants) and also proposes some functions
related to a Reinforcement Learning method (Q-learning).
Simpler functions intended to generate simple MDP e.g. for
educational purposes are also available.

Using MDPtoolbox requires describing a MDP by a tuple
S,A,p,r, (T,rT)  where:
– S is the finite state space that describes the possible con-
figurations of the system;
– A is the finite set of all possible actions or decisions which
control the state dynamics;
– p denotes the state transition function and characterises
the state dynamics of the system, that is p(st  1|st,at) repre-
sents the probability of transitioning to state st  1 given the
system is in state st and action at is applied;
– r provides the reward function defined on state transitions:
r (st,at, st  1). Desirable transitions usually receive strong
rewards; and
– T is the time horizon over which decisions need
to be made, and can be either finite or infinite.
An intermediate case between finite and infinite horizons
exists: indefinite horizon. This is the case where a set of

© 2014 The Authors. Ecography © 2014 Nordic Society Oikos
Subject Editor: Thiago Rangel. Accepted 9 May 2014

Ecography 37: 916–920, 2014
doi: 10.1111/ecog.00888

MDPtoolbox: a multi-platform toolbox to solve stochastic dynamic
programming problems

Iadine Chadès, Guillaume Chapron, Marie-Josée Cros, Frédérick Garcia and Régis Sabbadin

I. Chadès (iadine.chades@csiro.au), CSIRO Ecosystem Sciences, GPO Box 2583, Brisbane, QLD 4001, Australia. – G. Chapron, Grimsö
Wildlife Research Station, Swedish Univ. of Agricultural Sciences, SE-73091 Riddarhyttan, Sweden. – M.-J. Cros, F. Garcia and R. Sabbadin,
INRA, Unité de Mathématiques et Informatique Appliquées, Toulouse, UR875, CS 52627, FR-31326 Castanet Tolosan cedex, France.

Stochastic dynamic programming (SDP) or Markov decision processes (MDP) are increasingly being used in ecology to
find the best decisions over time and under uncertainty so that the chance of achieving an objective is maximised. To date,
few programs are available to solve SDP/MDP. We present MDPtoolbox, a multi-platform set of functions to solve Markov
decision problems (MATLAB, GNU Octave, Scilab and R). MDPtoolbox provides state-of-the-art and ready to use
algorithms to solve a wide range of MDPs. MDPtoolbox is easy to use, freely available and has been continuously improved
since 2004. We illustrate how to use MDPtoolbox on a dynamic reserve design problem.

917

terminal states (or goal states) exists and the process stops
as soon as one of these states is encountered. T only needs
to be defined in the finite horizon case. In the case where
the horizon T is finite or indefinite, a terminal reward rT(sT)
is defined, either on the whole set of states or on the set of
terminal states only.

The probability distribution over the next state st  1 defined
by p follows the Markov property which gives its name to
Markov decision processes. The probability of reaching state
st  1 consecutively to action at only depends on action at and
the previous state of the system st. Function mdp_example_
rand() in our toolbox allows the user to become familiar
with MDP and mdp_check() performs verifications on the
validity of a MDP description.

Markov decision processes are used to model the state
dynamics of a stochastic system when this system can be
controlled by a decision maker. In our toolbox, we call a
strategy or policy the function p: S ® A, which associates
an action (or decision) to each state. A policy assigns a deter-
ministic action to a state configuration of the system and can
be seen as a set of rules a decision-maker would follow to
choose the action to perform in each state. A policy can be
explicitly dependent on a time step t (non stationary policy)
or independent of time (stationary policy).

Our toolbox solves a Markov decision process by
finding the optimal policy given an optimisation criterion.
This criterion characterises the policies which will provide
the highest sequence of cumulated rewards, and represents
the objective decision makers try to achieve. In our toolbox,
we differentiate between four optimisation criteria most
commonly used (Table 1, Puterman 1994).

The finite criterion is the expected sum of rewards over a
finite time horizon (finite number of time steps). The under-
lying assumption of this criterion is that the decision-maker
has T steps to manage the system. The finite criterion can
also be discounted using a discount factor g (0 g  1). The
discount factor g can have an economic interpretation linked
to the inflation rate.

The g-discounted infinite criterion is the expected
discounted sum of rewards over an infinite time horizon. The
discount factor g is a real number: 0  g  1. The discount
factor also guarantees the convergence of the infinite sum of
rewards towards a finite value and offers useful mathematical
properties.

The total reward criterion is the expected sum of rewards
over an infinite time horizon. The total reward criterion
assumes that we know the process will terminate in a finite
number of steps but an upper bound on this number is not
available. This criterion is often used for optimal stopping
problems.

The average criterion is the expected average of rewards
over an infinite time horizon. This criterion is preferred
when decisions have to be made frequently with a discount
factor close to one or when it is preferable to average the
value of the received rewards instead of considering their
discounted sum.

The optimisation criteria define value functions
V p: S ® R that evaluate the performance of a policy given
an optimisation criterion in any initial state, s, of the system.
This value function gives, for each state of the system, the
expected performance of the policy p, applied in state s.

The goal of an MDP solver is to find an optimal
policy p* such that its value function V p* (s) is maximised:
s  S, V p (s)  V p* (s). Our toolbox provides solution
methods that correspond to the different optimisation
criteria (Table1).

Illustrative example: dynamic reserve design

The creation of conservation reserves is a primary way of
reducing biodiversity loss. The establishment of reserves is
a gradual, additive process, comprising a sequence of land
acquisitions through time because funding is insufficient
to acquire all sites at once (Costello and Polasky 2004).
Conservation organisations must contend with the risk that

Table 1. Summary of the different optimisation criteria that define optimisation objectives, a value function to maximise and a set of solution
methods (algorithms) with T the time horizon, rt the instant reward, rT the terminal reward, sT the terminal state, s0 the initial state, and g the
discount factor. To each optimisation criterion correspond one or several solution methods and MDPtoolbox functions. Interested readers can
refer to Puterman (1994), Sutton and Barto (1998), and Marescot et al. (2013) for detailed descriptions of the algorithms.

Optimisation criteria Value function V p (s) Algorithms MDPtoolbox functions

Finite

E r r s st
t

T
T T

T
π γ γ





() 0

0

1

 










∑

t

Backwards induction mdp_finite_horizon

g-discounted infinite

E r st
t

π
∞

γ 0

0

 










∑

t

Linear programming
Value iteration
Gauss–Seidel’s value iteration
Policy iteration
Modified policy iteration
Q-learning

mdp_LP
mdp_value_iteration
mdp_value_iterationGS
mdp_policy_iteration
mdp_policy_iteration_modified
mdp_Q_learning

Total

E r st
π

∞

0

0

 










∑

t

Value iteration
Policy iteration

mdp_value_iteration
mdp_policy_iteration

Average infinite

lim
n

tE
n

r s
→∞

 










∑π 1

0

0

1

t

n



 Relative value iteration
Modified policy iteration

mdp_relative_value_iteration
mdp_policy_iteration_modified

918

sites will be developed before being reserved. Markov deci-
sion processes have been proposed to solve reserve selection
problems of this type (Costello and Polasky 2004, Sabbadin
et al. 2007). In these models, available sites are irreversibly
developed each year with a given probability, but only a lim-
ited number of sites can be reserved each year. The problem
is to design a dynamic reservation policy that results in the
maximum expected number of species conserved over time.
We apply MDPtoolbox to the model developed by Sabbadin
et al. (2007).

We assume that there exist J sites indexed by j  1, 2, . . .,
J and I species indexed by i  1, 2, . . . , I, a J  I matrix M
is given, where an element Mji equals 1 if site j is suitable for
species i, and 0 if not. At a given time period t, any site j can
be in one of the three following states: developed, reserved
or available. A species i exists in site j if and only if site j is
not developed.

States: the state st of sites can be unambiguously described
by a vector of size J, st(j) ∈ {Av,R,D} (respectively for ‘avail-
able’, ‘reserved’ and ‘developed’).

Actions: at any time period, it is possible to select one avail-
able site at ∈A  {1,...,J } for reservation, thus changing its state
from available (st(at)   Av) to reserved (st  1(at)   R).

Transitions: at any time period, any available site j not
selected for reservation can become developed at the end
of the period with a known probability pj. The develop-
ment probability of a site j which is currently undeveloped
is: pj(st  1(j)   D|st,at). The transition probabilities between
states are defined as

p(st  1|st, at)  Pj pj(st  1(j)|st,at)

Rewards: we define a reward function r(s,a) as the num-
ber of additional species that are protected when site a is
reserved in state s. At time t, if at   j, r(st, at) is the number of
species for which site j is suitable and for which no suitable
site has been reserved so far.

The objective of a reserve selection problem is to
minimise species losses, or equivalently to maximise the
number of species present in reserved sites, either at the end
of a fixed horizon or when the process has reached an absorb-
ing state, for example a state where no additional species can
be protected.

The MDP model  S, A, p, r  of the reserve selection
problem can be solved for undiscounted finite horizon, dis-
counted finite or infinite horizon, using MDPtoolbox (Table 2,
Fig. 1). We first generate the species richness matrix (M),
which provides for 7 sites the presence/absence informa-
tion of 20 species we seek to protect (lines 2a, 2b, Table 2).
We build the transition probability (P) and reward matrices
(R) according to the species richness matrix M and the prob-
ability of a site becoming developed (pj  0.2, lines 5a, 5–7b,
Table 2). Note that users will have to define these functions
when solving an MDP for a different application. We check
the validity of the MDP (lines 8a, 10b). We solve the optimi-
sation problem assuming a discounted infinite time horizon
with a discount factor g  0.96 and a stopping criterion of
e  0.001 required for the value iteration algorithm (lines
11a, 13b, Table 2). The function output provides the opti-
mal strategy (policy), the number of iterations (iter) and the

Table 2. Implementation of the reserve design problem in (A)
MATLAB, GNU Octave, Scilab and (B) R (attached as supplemen-
tary material). The function associated to the reserve design problem
is not part of the MDPtoolbox. However, it can be downloaded (in
Matlab, Octave, Scilab and R format) from a SourceForge deposit,
directly accessible from the MDPtoolbox website (http://www7.
inra.fr/mia/T/MDPtoolbox/Install.html).

(A) MATLAB/GNU Octave Code/Scilab code
1a % Generate the species richness matrix
2a M  round(rand(7,20));
3a
4a % Generate the transition and reward matrix
5a [P, R]  mdp_example_reserve(M, 0.2);
6a
7a % Checks the validity of the MDP
8a mdp_check(P, R)
9a

10a % Solve the reserve design problem
11a [policy, iter, cpu_time]  mdp_value_iteration

(P, R, 0.96, 0.001);
12a
13a % Explore solution with initial state all sites

available
14a explore_solution_reserve([0 0 0 0 0 0 0],

policy,M,P,R)
(B) R code
1b # Generate the species richness matrix
2b M - round(matrix(nrow  7, ncol  20,

data  runif(7*20,0,1)))
3b
4b # Generate the transition and reward matrix
5b PR - mdp_example_reserve(M, 0.2)
6b P - PR$P
7b R - PR$R
8b
9b # Checks the validity of the MDP

10b mdp_check(P, R)
11b
12b # Solve the reserve design problem
13b results - mdp_value_iteration(P, R,

0.96, 0.001);
14b policy - results$policy
15b
16b # Explore solution with initial state all sites

available
17b explore_solution_reserve(numeric(7), policy,

M, P, R)

CPU time required (cpu_time). From this point we have
solved the reserve design optimisation problem and we can
explore the solution by simulation (lines 14a, 17b, Table 2).
Figure 1 illustrates a management simulation for our reserve
design problem when the initial state is ‘all states available’.
This single simulation scenario only illustrates the use of the
MDPtoolbox. A thorough analysis of the reserve design prob-
lem would, of course, require running and analysing several
different scenarios to provide guidance to conservation manag-
ers. Readers interested in the application can refer to (Costello
and Polasky 2004) and (Sabbadin et al. 2007) for more in
depth analysis of the dynamic reserve design problem.

Conclusion

Since 2004, we have continually maintained and improved
MDPtoolbox. Now in ver. 4.0, it is available on multiple

919

Time horizon

Si
te

s

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7
Available

Reserved

Developed

1 2 3 4 5 6 7 8 9
0

5

10

15

20

N
um

be
r o

f s
pe

ci
es

pr

ot
ec

te
d

Time horizon

(B)

(A)

Figure 1. Simulation of the optimal strategy for the reserve design problem. The top graph (A) represents the status of 7 sites over an
8 time-step horizon. At t 5 1, all sites are available and the optimal action is to reserve site 2, while sites 6 and 7 become developed.
The bottom graph represents the performance achieved as the cumulative number of species protected. After the first action, 10 species are
protected. At time horizon four, 18 species are protected out of 20. By the end of the time horizon it was not possible to protect additional
species, therefore 2 species remained unprotected due to the development of sites.

platforms and provides an entry point to solving stochas-
tic dynamic programming problems across multiple areas
of science. Because of the inherent computational com-
plexity, solving large state or action space MDP can be
prohibitive even for modern computers. We encourage
interested readers to refer to advanced SDP methods to
avoid the so-called ‘curse of dimensionality’ as adding a
new state variable to a model may results in an exponen-
tial increase in the state space (Nicol and Chadès 2011,
Sabbadin et al. 2012). While SDP algorithms provide
one optimal strategy, several strategies might be optimal.
Alternative strategies should be evaluated and compared
to optimal strategies. We recommend comparing the per-
formance of different strategies so that gains or losses of
performance are acknowledged and understood by deci-
sion makers. Our toolbox offers functions to perform such
analyses (MDP_eval_policy functions).

MDPs have underpinned the development of recom-
mendations regarding key conservation issues, such as
how best to manage both invasive and threatened species
(Chadès et al. 2011, Sabbadin et al. 2012). In the field
of behavioural ecology, MDPtoolbox could help testing
whether or not species have evolved to forage and repro-
duce optimally to maximize their reproductive success or
overall fitness over time (McNamara et al. 1987, Mangel
and Clark 1988). MDPs are also central to solving adap-
tive management problems (Hauser and Possingham 2008,
Williams 2009, Chadès et al. 2012a). A future develop-
ment of our toolbox will incorporate adaptive manage-
ment solution methods (Walters and Hilborn 1978, Nicol
et al. 2013).

To cite MDPtoolbox or acknowledge its use, cite this
Software note as follows, substituting the version of the
application that you used for ‘version 0’:

Chadès, I., Chapron, G., Cros, M.-J., Garcia, F. and Sabbadin,
R. 2014. MDPtoolbox: a multi-platform toolbox to solve stochastic
dynamic programming problems. – Ecography 37: 916–920 (ver. 0).

Acknowledgements – We are grateful to J. Carwardine, A. I. T.
Tulloch, T. G. Martin and S. Nicol for commenting on earlier
versions of this manuscript.

References

Chadès, I. et al. 2011. General rules for managing and surveying
networks of pests, diseases, and endangered species. – Proc.
Natl Acad. Sci. USA 108: 8323–8328.

Chadès, I. et al. 2012a. MOMDPs: a solution for modelling
adaptive management problems. – The Twenty-sixth
AAAI Conference on Artificial Intelligence (AAAI-12),
pp. 267–273.

Chadès, I. et al. 2012b. Setting realistic recovery targets for
interacting endangered species. – Conserv. Biol. 26:
1016–1025.

Costello, C. and Polasky, S. 2004. Dynamic reserve site selection.
– Resour. Energy Econ. 26: 157–174.

Grechi, I. et al. 2014. A decision framework for management
of conflicting production and biodiversity goals for a com-
mercially valuable invasive species. – Agric. Syst. 125: 1–11.

Hauser, C. E. and Possingham, H. P. 2008. Experimental or
precautionary? Adaptive management over a range of time
horizons. – J. Appl. Ecol. 45: 72–81.

Mangel, M. and Clark, T. W. 1988. Dynamic modeling in
behavioural ecology. – Princeton Univ. Press.

920

Sabbadin, R. et al. 2007. Dynamic reserve site selection under
contagion risk of deforestation. – Ecol. Model. 201: 75–81.

Sabbadin, R. et al. 2012. A framework and a mean-field algorithm
for the local control of spatial processes. – Int. J. Approx.
Reason 53: 66–86.

Sigaud, O. and Buffet, O. 2010. Markov decision processes in
artificial intelligence: MDPs, beyond MDPs and applications.
– ISTE/Wiley.

Sutton, R. S. and Barto, A. G. 1998. Reinforcement learning: an
introduction. – MIT Press.

Venner, S. et al. 2006. Dynamic optimization over infinite-time
horizon: web-building strategy in an orb-weaving spider as a
case study. – J. Theor. Biol. 241: 725–733.

Walters, C. J. and Hilborn, R. 1978. Ecological optimization
and adaptive management. – Annu. Rev. Ecol. Syst. 9:
157–188.

Williams, B. K. 2009. Markov decision processes in natural
resources management: observability and uncertainty. – Ecol.
Model. 220: 830–840.

Wilson, K. A. et al. 2006. Prioritizing global conservation efforts.
– Nature 440: 337–340.

Zhao, Q. H. et al. 2010. A variable neighborhood search based
algorithm for finite-horizon Markov decision processes. – Appl.
Math. Comput. 217: 3480–3492.

Marescot, L. et al. 2013. Complex decisions made simple: a primer
on stochastic dynamic programming. – Methods Ecol. Evol. 4:
872–884.

McNamara, J. M. et al. 1987. Optimal daily routines of singing
and foraging in a bird singing to attract a mate. – Behav. Ecol.
Sociobiol. 20: 399–405.

Munir, A. and Gordon-Ross, A. 2012. An MDP-based dynamic
optimization methodology for wireless sensor networks.
– IEEE Trans. Parallel Distrib. Syst. 23: 616–625.

Nicol, S. and Chadès, I. 2011. Beyond stochastic dynamic
programming: a heuristic sampling method for optimizing
conservation decisions in very large state spaces. – Methods
Ecol. Evol. 2: 221–228.

Nicol, S. et al. 2013. Adaptive management of migratory
birds under sea level rise. – International Joint Conference on
Artificial Intelligence (IJCAI2013).

Pichancourt, J. B. et al. 2012. Simple rules to contain an invasive
species with a complex life cycle and high dispersal capacity.
– J. Appl. Ecol. 49: 52–62.

Possingham, H. P. 2001. The business of biodiversity: applying
decision theory principles to nature conservation. – Environ.
Econ. Soc. 9: 1–37.

Puterman, M. L. 1994. Markov decision processes: discrete
stochastic dynamic programming. – Wiley.

Supplementary material (Appendix ECOG-00888 at
www.ecography.org/readers/appendix).

