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Globally, biodiversity is undergoing a rapid decline with 
only limited resources available to undertake conserva-
tion strategies (Wilson et  al. 2006). In response, we have 
seen the development of cost-effective decision making 
(Possingham 2001). Finding the best sequential decisions 
under uncertainty is an optimisation problem consisting 
in maximising the sum of future expected rewards over 
time. The solution of this problem is a policy function that 
indicates the action to apply for each possible state of the 
system, also called state-dependent decisions. This optimisa-
tion problem is often referred to by its solution technique as  
stochastic dynamic programming (SDP) or by the mathemat-
ical model as a Markov decision process (MDP). Formally, 
MDPs are defined as controlled stochastic processes satis-
fying the Markov property and assigning reward values to 
state transitions (Puterman 1994, Sigaud and Buffet 2010). 
MDPs allow a clear and eloquent formulation of optimal 
resource allocation problems. First developed in the fields 
of operations research and artificial intelligence (Puterman 
1994), MDPs have since been widely applied in conservation  
science (Chadès et al. 2011, 2012b) and behavioural ecology 
(McNamara et al. 1987, Venner et al. 2006). We have devel-
oped MDPtoolbox, an open-source set of functions that can 
be used to solve a wide range of Markov decision problems 
and freely downloaded at http://www7.inra.fr/mia/T/
MDPtoolbox. To the best of our knowledge MDPtoolbox 
is the only toolbox that provides a variety of algorithms that 
suits most optimisation criteria, freely available and multi-
platform (Marescot et  al. 2013). MDPtoolbox has already 
been used in applied mathematics, computer science (Zhao 
et  al. 2010, Munir and Gordon-Ross 2012), ecology and 

agronomy (Chadès et  al. 2012b, Pichancourt et  al. 2012, 
Grechi et al. 2014).

Theory of MDP and its implementation  
in MDPtoolbox

Our toolbox consists of a set of functions related to the  
resolution of discrete-time MDP (finite horizon, value  
iteration, policy iteration, linear programming algorithms 
with some variants) and also proposes some functions 
related to a Reinforcement Learning method (Q-learning). 
Simpler functions intended to generate simple MDP e.g. for  
educational purposes are also available.

Using MDPtoolbox requires describing a MDP by a tuple 
S,A,p,r, (T,rT)  where: 
– S is the finite state space that describes the possible con-
figurations of the system; 
– A is the finite set of all possible actions or decisions which 
control the state dynamics; 
– p denotes the state transition function and characterises 
the state dynamics of the system, that is p(st  1|st,at) repre-
sents the probability of transitioning to state st  1 given the 
system is in state st and action at is applied; 
– r provides the reward function defined on state transitions: 
r (st,at, st  1). Desirable transitions usually receive strong 
rewards; and 
– T is the time horizon over which decisions need 
to be made, and can be either finite or infinite.  
An intermediate case between finite and infinite horizons 
exists: indefinite horizon. This is the case where a set of  
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terminal states (or goal states) exists and the process stops 
as soon as one of these states is encountered. T only needs 
to be defined in the finite horizon case. In the case where 
the horizon T is finite or indefinite, a terminal reward rT(sT) 
is defined, either on the whole set of states or on the set of 
terminal states only.

The probability distribution over the next state st  1 defined 
by p follows the Markov property which gives its name to 
Markov decision processes. The probability of reaching state 
st  1 consecutively to action at only depends on action at and 
the previous state of the system st. Function mdp_example_
rand() in our toolbox allows the user to become familiar  
with MDP and mdp_check() performs verifications on the 
validity of a MDP description.

Markov decision processes are used to model the state 
dynamics of a stochastic system when this system can be 
controlled by a decision maker. In our toolbox, we call a 
strategy or policy the function p: S ® A, which associates 
an action (or decision) to each state. A policy assigns a deter-
ministic action to a state configuration of the system and can 
be seen as a set of rules a decision-maker would follow to 
choose the action to perform in each state. A policy can be 
explicitly dependent on a time step t (non stationary policy) 
or independent of time (stationary policy).

Our toolbox solves a Markov decision process by  
finding the optimal policy given an optimisation criterion. 
This criterion characterises the policies which will provide 
the highest sequence of cumulated rewards, and represents 
the objective decision makers try to achieve. In our toolbox, 
we differentiate between four optimisation criteria most 
commonly used (Table 1, Puterman 1994).

The finite criterion is the expected sum of rewards over a 
finite time horizon (finite number of time steps). The under-
lying assumption of this criterion is that the decision-maker 
has T steps to manage the system. The finite criterion can 
also be discounted using a discount factor g (0 g  1). The 
discount factor g can have an economic interpretation linked 
to the inflation rate.

The g-discounted infinite criterion is the expected  
discounted sum of rewards over an infinite time horizon. The 
discount factor g is a real number: 0  g  1. The discount 
factor also guarantees the convergence of the infinite sum of 
rewards towards a finite value and offers useful mathematical 
properties.

The total reward criterion is the expected sum of rewards 
over an infinite time horizon. The total reward criterion 
assumes that we know the process will terminate in a finite 
number of steps but an upper bound on this number is not 
available. This criterion is often used for optimal stopping 
problems.

The average criterion is the expected average of rewards 
over an infinite time horizon. This criterion is preferred 
when decisions have to be made frequently with a discount 
factor close to one or when it is preferable to average the 
value of the received rewards instead of considering their  
discounted sum.

The optimisation criteria define value functions 
V p: S ® R that evaluate the performance of a policy given 
an optimisation criterion in any initial state, s, of the system. 
This value function gives, for each state of the system, the 
expected performance of the policy p, applied in state s.

The goal of an MDP solver is to find an optimal  
policy p* such that its value function V p* (s) is maximised:  
s  S, V p (s)  V p* (s). Our toolbox provides solution 
methods that correspond to the different optimisation  
criteria (Table1).

Illustrative example: dynamic reserve design

The creation of conservation reserves is a primary way of 
reducing biodiversity loss. The establishment of reserves is 
a gradual, additive process, comprising a sequence of land 
acquisitions through time because funding is insufficient 
to acquire all sites at once (Costello and Polasky 2004). 
Conservation organisations must contend with the risk that 

Table 1. Summary of the different optimisation criteria that define optimisation objectives, a value function to maximise and a set of solution 
methods (algorithms) with T the time horizon, rt the instant reward, rT the terminal reward, sT the terminal state, s0 the initial state, and g the 
discount factor. To each optimisation criterion correspond one or several solution methods and MDPtoolbox functions. Interested readers can 
refer to Puterman (1994), Sutton and Barto (1998), and Marescot et al. (2013) for detailed descriptions of the algorithms.
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sites will be developed before being reserved. Markov deci-
sion processes have been proposed to solve reserve selection 
problems of this type (Costello and Polasky 2004, Sabbadin 
et al. 2007). In these models, available sites are irreversibly 
developed each year with a given probability, but only a lim-
ited number of sites can be reserved each year. The problem 
is to design a dynamic reservation policy that results in the 
maximum expected number of species conserved over time. 
We apply MDPtoolbox to the model developed by Sabbadin 
et al. (2007).

We assume that there exist J sites indexed by j  1, 2, . . ., 
J and I species indexed by i  1, 2, . . . , I, a J  I matrix M 
is given, where an element Mji equals 1 if site j is suitable for 
species i, and 0 if not. At a given time period t, any site j can 
be in one of the three following states: developed, reserved 
or available. A species i exists in site j if and only if site j is 
not developed.

States: the state st of sites can be unambiguously described 
by a vector of size J, st(j) ∈ {Av,R,D} (respectively for ‘avail-
able’, ‘reserved’ and ‘developed’).

Actions: at any time period, it is possible to select one avail-
able site at ∈A  {1,...,J } for reservation, thus changing its state 
from available (st(at)   Av) to reserved (st  1(at)   R).

Transitions: at any time period, any available site j not 
selected for reservation can become developed at the end 
of the period with a known probability pj. The develop-
ment probability of a site j which is currently undeveloped 
is: pj(st  1(j)   D|st,at). The transition probabilities between 
states are defined as

p(st  1|st, at)  Pj pj(st  1(j)|st,at)

Rewards: we define a reward function r(s,a) as the num-
ber of additional species that are protected when site a is 
reserved in state s. At time t, if at   j, r(st, at) is the number of 
species for which site j is suitable and for which no suitable 
site has been reserved so far.

The objective of a reserve selection problem is to  
minimise species losses, or equivalently to maximise the 
number of species present in reserved sites, either at the end 
of a fixed horizon or when the process has reached an absorb-
ing state, for example a state where no additional species can 
be protected.

The MDP model  S, A, p, r  of the reserve selection 
problem can be solved for undiscounted finite horizon, dis-
counted finite or infinite horizon, using MDPtoolbox (Table 2,  
Fig. 1). We first generate the species richness matrix (M), 
which provides for 7 sites the presence/absence informa-
tion of 20 species we seek to protect (lines 2a, 2b, Table 2).  
We build the transition probability (P) and reward matrices  
(R) according to the species richness matrix M and the prob-
ability of a site becoming developed (pj  0.2, lines 5a, 5–7b, 
Table 2). Note that users will have to define these functions 
when solving an MDP for a different application. We check 
the validity of the MDP (lines 8a, 10b). We solve the optimi-
sation problem assuming a discounted infinite time horizon 
with a discount factor g  0.96 and a stopping criterion of 
e  0.001 required for the value iteration algorithm (lines 
11a, 13b, Table 2). The function output provides the opti-
mal strategy (policy), the number of iterations (iter) and the 

Table 2. Implementation of the reserve design problem in (A)  
MATLAB, GNU Octave, Scilab and (B) R (attached as supplemen-
tary material). The function associated to the reserve design problem 
is not part of the MDPtoolbox. However, it can be downloaded (in 
Matlab, Octave, Scilab and R format) from a SourceForge deposit, 
directly accessible from the MDPtoolbox website (http://www7.
inra.fr/mia/T/MDPtoolbox/Install.html).

(A) MATLAB/GNU Octave Code/Scilab code
1a % Generate the species richness matrix
2a M  round(rand(7,20));
3a
4a % Generate the transition and reward matrix
5a [P, R]  mdp_example_reserve(M, 0.2);
6a
7a % Checks the validity of the MDP
8a mdp_check(P, R)
9a

10a % Solve the reserve design problem
11a [policy, iter, cpu_time]  mdp_value_iteration 

(P, R, 0.96, 0.001);
12a
13a % Explore solution with initial state all sites 

available
14a explore_solution_reserve([0 0 0 0 0 0 0], 

policy,M,P,R)
(B) R code
1b # Generate the species richness matrix
2b M - round(matrix(nrow  7, ncol  20, 

data  runif(7*20,0,1)))
3b
4b # Generate the transition and reward matrix
5b PR - mdp_example_reserve(M, 0.2)
6b P - PR$P
7b R - PR$R
8b
9b # Checks the validity of the MDP

10b mdp_check(P, R)
11b
12b # Solve the reserve design problem
13b results - mdp_value_iteration(P, R,  

0.96, 0.001);
14b policy - results$policy
15b
16b # Explore solution with initial state all sites 

available
17b explore_solution_reserve(numeric(7), policy,  

M, P, R)

CPU time required (cpu_time). From this point we have 
solved the reserve design optimisation problem and we can 
explore the solution by simulation (lines 14a, 17b, Table 2). 
Figure 1 illustrates a management simulation for our reserve 
design problem when the initial state is ‘all states available’. 
This single simulation scenario only illustrates the use of the 
MDPtoolbox. A thorough analysis of the reserve design prob-
lem would, of course, require running and analysing several 
different scenarios to provide guidance to conservation manag-
ers. Readers interested in the application can refer to (Costello 
and Polasky 2004) and (Sabbadin et  al. 2007) for more in 
depth analysis of the dynamic reserve design problem.

Conclusion

Since 2004, we have continually maintained and improved 
MDPtoolbox. Now in ver. 4.0, it is available on multiple 
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Figure 1. Simulation of the optimal strategy for the reserve design problem. The top graph (A) represents the status of 7 sites over an  
8 time-step horizon. At t 5 1, all sites are available and the optimal action is to reserve site 2, while sites 6 and 7 become developed.  
The bottom graph represents the performance achieved as the cumulative number of species protected. After the first action, 10 species are 
protected. At time horizon four, 18 species are protected out of 20. By the end of the time horizon it was not possible to protect additional 
species, therefore 2 species remained unprotected due to the development of sites.

platforms and provides an entry point to solving stochas-
tic dynamic programming problems across multiple areas 
of science. Because of the inherent computational com-
plexity, solving large state or action space MDP can be 
prohibitive even for modern computers. We encourage 
interested readers to refer to advanced SDP methods to 
avoid the so-called ‘curse of dimensionality’ as adding a 
new state variable to a model may results in an exponen-
tial increase in the state space (Nicol and Chadès 2011, 
Sabbadin et  al. 2012). While SDP algorithms provide 
one optimal strategy, several strategies might be optimal. 
Alternative strategies should be evaluated and compared 
to optimal strategies. We recommend comparing the per-
formance of different strategies so that gains or losses of 
performance are acknowledged and understood by deci-
sion makers. Our toolbox offers functions to perform such 
analyses (MDP_eval_policy functions).

MDPs have underpinned the development of recom-
mendations regarding key conservation issues, such as 
how best to manage both invasive and threatened species 
(Chadès et  al. 2011, Sabbadin et  al. 2012). In the field 
of behavioural ecology, MDPtoolbox could help testing 
whether or not species have evolved to forage and repro-
duce optimally to maximize their reproductive success or 
overall fitness over time (McNamara et al. 1987, Mangel 
and Clark 1988). MDPs are also central to solving adap-
tive management problems (Hauser and Possingham 2008, 
Williams 2009, Chadès et  al. 2012a). A future develop-
ment of our toolbox will incorporate adaptive manage-
ment solution methods (Walters and Hilborn 1978, Nicol 
et al. 2013).

To cite MDPtoolbox or acknowledge its use, cite this 
Software note as follows, substituting the version of the 
application that you used for ‘version 0’:

Chadès, I., Chapron, G., Cros, M.-J., Garcia, F. and Sabbadin, 
R. 2014. MDPtoolbox: a multi-platform toolbox to solve stochastic 
dynamic programming problems. – Ecography 37: 916–920 (ver. 0).
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