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1 General description

The goal of GMtoolbox is to provide probability estimation by inference in probabilistic Graphical
Models (GM) [1] for non computer science specialists.

The toolbox allows to:

• represent a graphical model as a factor graph,

• infer marginals based on apriori knowledge or observation.

The inference relies on the Generalized Belief Propagation algorithm parent-to-child [3].
To be sure of pertinence, we checked that problems of reasonable size were tractable and that execu-
tion time was not too long comparing with libDAI [2].

For functions gm plot fg, gm plot rg, gm separate fg and util/setCountingNumbers a version of Mat-
lab higher than R2015b is required (because they use the graph and digraph classes).
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2 Graphical model representation

2.1 Mathematical definition of a graphical model

Definition from [3].
Let X = {X1, . . . , XN} be a set of N random variables taking value in a finite set. We denote
by xi a realization of variable Xi and by x a realization of the random vector X. The joint law
p(x) =def P (X = x) is that of a graphical model if can be factorized as a product of functions, each
involving only a subset of all the variables:

p(x) =
1

Z

∏
a∈{A,B,...,M}

fa(xa), (2.1)

where a is an index labeling M functions fA, fB . . . , fM and the scope of function fa is xa, a subset
of of {x1, . . . , xN}. We will often identify a with the indices of the variables in xa.
We suppose that fa(xa) is a non negative and finite function. Z is the normalizing constant of p. If
the graphical model is a Bayesian network, Z = 1 and the functions fa are conditional probabilities.

A classical example of Bayesian network is the Sprinkler model. It models the relations between state
of grass: wet/not (variable W), use of sprinkler: on/off (variable S), rain : yes/no (variable R) and
cloudy sky : yes/no (variable C). The joint law is p(C, S,R,W ) = p(C)p(S | C)p(R | C)p(W | S,R).

W

S R

C

p(C)
C=true 0.5
C=false 0.5

p(R|C) R=true R=false
C=true 0.8 0.2
C=false 0.2 0.8

p(S|C) S=true) S=false
C=true 0.5 0.5
C=false 0.9 0.1

p(W|S,R) W=true W=false
S=true, R=true 1 0
S=true, R=false 0.9 0.1
S=false, R=true 0.9 0.1
S=false, R=false 0.01 0.99

The GMtoolbox provides tools to compute marginals of the distribution p (also called beliefs). For
instance, we can use it to compute the probability distribution of variable Xi, defined by (taking
i = 1)

p1(X1 = x∗1) =
∑
x2

∑
x3

. . .
∑
xn

p(x∗1, x2, . . . , xn).

More generally, we can also use the toolbox to compute the joint law of a subset of variables XS =
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{xi}i∈S , with S ⊂ {1, . . . , n}:
p(XS = x∗S) =

∑
xS̄

p(xS̄ , x
∗
S),

with S̄ = {1, . . . , n} \ S The algorithm for computing these marginals relies on the factor graph
representation of a graphical model, and on the notion of region graph.

2.2 Description of a factor graph

2.2.1 Definition

Definition from [3].
It is possible to associate to the factorized expression (2.1) a factor graph which represents graphically
which variables are in the scope of which function. It is a bipartite graph, composed of variable nodes
and factor nodes. There is one variable node per variable Xi and one factor node per function fa.
Edges are only between a variable and a factor node. There exists an edge between variable node i
and factor node a if and only if xi is in the scope of fa.

For example (see figure 13 of [3]), here is a joint law of N = 7 random variables, factorized into M = 9
factors.

p(x) =
1

Z

(
7∏

i=1

fi(xi)

)
fA(x1, x2, x3, x5)fB(x1, x2, x4, x6)fC(x1, x3, x4, x7) (2.2)

Here is the associated factor graph.

f1 f2 f3 f4 f5 f6 f7

1 2 3 4 5 6 7

fA fB fC

And the factor graph of the Sprinkler Bayesian network is composed of 4 factors f1(C), f2(C,S),
f3(C,R), f4(S,R,W).

f1 C

f3 R

f4 W

f2 S

2.2.2 Matlab representation

A factor graph may be composed of more than one connex component, or can become disconnected
when evidences are taken into account. Each connex component is seen a a sub factor graph of the
main one, and the Matlab structure stores all the sub factor graphs in a meta structure. More pre-
cisely,a factor graph is represented in a structure, called fg.
Let nv be the number of variables, then the element of the structure are the followings:
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fg.Card Cardinality of variables
array (1 x nv) of integer upper than or equal to 2

fg.Name Names of variables (optional)
cell array (1 x nv) of string

fg.sfg All sub factor graphs
cell array (1 x ...) of sub factor graph structure

fg.evidence observation (optional)
array (1 x nv) of integer

If variable 1 is of cardinality 2, possible states are 1 and 2. That is first possible state of variable is 1.

Note that is the field evidence exists, the field sfg defining sub factor graphs must be compatible with
evidences. The function gm include evidence has this role to update sub factor graphs (and related
factors) to take into account evidences.

The factor graph fg is composed of several sub factor graphs represented in a structure called sfg.
Let nv′ (nv′ < nv) be the number of variables and nf the number of factors of a sub factor graph.
The element of the structure are the followings:

sfg.Vcode Labels of variables in fg
vector (1 x nv′) of integer

sfg.F Factors
cell array (1 x nf) of factors

sfg.BG Utilitary and redundant field: compact format to express variables of each factor
logical matrix (nf x nv′)
BG(i,j) = true when factor i includes variable j

A factor with nq (nq ≤ nv′) variables is represented in a structure, called factor:

factor.V variables
array (1 x nq) of integer

factor.T table of a factor , two possible types
- an array of nq dimensions: dimension d has the cardinality
of the corresponding variable;
- a function handler

Example
Here is the factor graph of the classic toy example Sprinkler (see 3.1 for a description).
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function fg = gm_example_Sprinkler()

% Define sprinkler toy example factor graph.

% Variable state: true/wet (coded 1) or false/dry (coded 2).

fg.Card = [2 2 2 2]; % cardinalities of variables

fg.Name = {’Cloudy’, ’Sprinkler’, ’Rain’, ’Wet’}; % names of variables

% The model is composed on a single sub-graph fg

sfg.Vcode = [1 2 3 4];

F1.V = [1]; % factor 1

F1.T = @() [ 0.5; 0.5 ]; % function handler

F2.V = [1 2]; % factor 2

F2.T = @() [ 0.5, 0.5; 0.9, 0.1]; % function handler

F3.V = [1 3]; % factor 3

F3.T = @() [ 0.8, 0.2; 0.2 0.8]; % function handler

F4.V = [2 3 4]; % factor 4

F4.T = @f4; % function handler

sfg.F ={F1, F2, F3, F4}; % four factors

sfg.BG = setBG(4, sfg.F); % matrix factors x variables

fg.sfg{1}=sfg;

The function setBG computes automatically the element sfg.BG from the number of factors and their
definition. It is defined in the toolbox (util/setBG.m).

Tables of factors are defined using function handlers. For factor F4, the function is defined explicitly
in a function called cpt.

function cpt = f4()

cpt(1,1,:) = [ 1 0]; % Sprinkler, Rain

cpt(1,2,:) = [ 0.9 0.1]; % Sprinkler, no Rain

cpt(2,1,:) = [ 0.9 0.1]; % no Sprinkler, Rain

cpt(2,2,:) = [ 0.01 0.99]; % no Sprinkler, no Rain

end

Using function handler can be useful for factor graph with several factors sharing the same table, as
it can be the case in Dynamic Bayesian Networks (DBN) or in Markov Random Fields (MRF).

Since tables of factors may be defined either directly in an array or using a function handler, to see a
table, it is necessary to know its type. This can be done as follow.

>> fg = gm_example_Sprinkler()

fg =

struct with fields:

Card: [2 2 2 2]

Name: {’Cloudy’ ’Sprinkler’ ’Rain’ ’Wet’}

sfg: {[1×1 struct]}

>> if isa(fg.sfg{1}.F{4}.T, ’function_handle’)

fg.sfg{1}.F{4}.T()

else

fg.sfg{1}.F{4}.T

end

ans(:,:,1) =

1.0000 0.9000

0.9000 0.0100

ans(:,:,2) =

0 0.1000

0.1000 0.9900

Suppose now that it is observed that there is no rain and no use of sprinkler that is the state of
variables 2 and 3 is 1. Evidence is then coded [0 1 1 0]. Unknown state of variable 1 and 4 is coded 0.
When this evidence is included, the obtained factor graph is composed of 2 disconnected sub factor
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graphs, each composed of one variable.

>> fg=gm_example_Sprinkler;

>> evidence = [0 1 1 0];

>> fge= gm_include_evidence(fg, evidence)

fge =

struct with fields:

Card: [2 2 2 2]

Name: {’Cloudy’ ’Sprinkler’ ’Rain’ ’Wet’}

sfg: {[1×1 struct] [1×1 struct]}

evidence: [0 1 1 0]

% explore the second sub factor graph

>> fge.sfg{2}

ans =

struct with fields:

Vcode: 4

F: {[1×1 struct]}

BG: 1

% explore its factor

>> fge.sfg{2}.F{1}

ans =

struct with fields:

V: 1

T: @()T

>> fge.sfg{2}.F{1}.T()

ans =

1

0

The second sub factor graph concerns variable 4 (see fge.sfg2.Vcode ).
Looking at its factor, it concerns the first variable of the sub factor graph (see fge.sfg2.F1.V) . The
associated table indicates that for sure grass is dry (see T(1) with T=fge.sfg2.F1.T() ).

2.3 Description of a region graph

2.3.1 Definition

Definition from [3].

A region R is a set of variable nodes VR and a set of factor nodes FR such that if a factor node fa
belongs to FR, all variable nodes linked to fa by an edge in the factor graph must belong to VR. On
contrary, if all the variables nodes linked to a factor are in VR, that factor do not need to be in FR.
FR can be empty.
A region graph is a labeled directed (acyclic) graph G =< V,E,L > which nodes are regions, and
whose edges satisfy some properties. If I is the set of indices of the factor graph (variable nodes and
factor nodes together), then a node v ∈ V is labeled with a subset of I corresponding to the indices
of variable and factor nodes in the region attached to v. We denote by l(v) the label of node v. Then
the set of edges E of a region graph satisfies the following condition: A directed edge (or arc) e may
exist pointing from vertex vp to vertex vc if l(vc) is a subset of l(vp). All other arcs are forbidden.
Therefore, by construction the region graph is acyclic.

In practice, in order to use the region graph concept to build approximate inference method, it is
required that every factor and variable node of the factor graph is contained in at least one region
of the region graph. Another condition is also required to ensure consistency of the beliefs computed
by GBP: the regions containing a particular variable node i form a connected sub-graph of the region
graph. This ensures that we can compute p(xi) by marginalizing the belief of any region that contains
i and we will obtain the same result.
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Several methods exist to build a valid region graph for GBP. The toolbox proposes three methods
called: JT, BETHE, Cluster Variation Method (CVM).

To complete the definition of a region graph we defined the associated counting numbers, even if the
Parent-to-Child algorithm does not use these numbers to build the message passing rules. however
this numbers are used to check the validity of a region graph: they must sum to 1 (used in gm check rg
function).

2.3.2 Matlab representation

A region graph, called rg is a set of sub region graphs, one for each sub factor graph of the graphical
model. It is represented as a cell array (1 x ...), each cell containing the structure of a sub region
graph, called srg. Let nr be the number of regions of the sub region graph, the structure has the
following elements:

srg.Vr variables in each region
logical array (nr x nv)
Vr(i,j) = true when region i includes variable j

srg.Fr factors in each region
logical array (nr x nf)
Fr(i,j) = true when region i includes factor j

srg.Gr adjacency matrix of regions
logical array (nr x nr)
Gr(i,j) = true when region i→ region j

srg.cr counting numbers of regions
vector (1 x nr) of integer

Example

>> fg=gm_example_Sprinkler();

>> rg = gm_rg_CVM( fg)

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [6×4 logical]

Fr: [6×4 logical]

Gr: [6×6 logical]

cr: [1 1 1 -1 -1 -1]

>> rg{1}.Vr

ans =

6×4 logical array

1 1 0 0

1 0 1 0

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

>> rg{1}.Fr
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ans =

6×4 logical array

1 1 0 0

1 0 1 0

0 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

>> rg{1}.Gr

ans =

6×6 logical array

0 0 0 1 1 0

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

The region graph created by the Cluster Variation Method(CVM) is the following:

f1, f2, C, S f1, f3, C,R f4, S,R,W

f1, C S R

2.4 Description of marginals

2.4.1 Definition

The marginal of a variable Xi is the probability distribution of this the variable, i.e. {p(xi),∀xi}. It
is also often called the belief of variable Xi, and denoted bi(xi).
Similarly, we define the belief of a region R as the marginal probability distribution of the variables of
that region, bR(xVR

). Since beliefs are probability distribution they satisfy the normalization property:∑
xVR

bR(xVR
) = 1,

and they are consistent with the marginals computed on subsets of the variables XVR
In particular,

the belief of Xi can be obtained by marginalizing the belief of any region implying Xi:

bi(xi) =
∑

xVR\{i}

bR(xVR
),∀R s.t. i ∈ VR.

2.4.2 Matlab representation

The beliefs of all the variables of a factor graph fg are represented in a cell array called b.

b cell array (1 x nv)
b{i} is a vector (1 x fg.Card(i)) of double

Example

>> fg=gm_example_Sprinkler();

>> rg = gm_rg_CVM( fg);

>> b = gm_infer_GBP(fg, rg)

b =

9



1×4 cell array

{2×1 double} {2×1 double} {2×1 double} {2×1 double}

>> fg.Name

ans =

1×4 cell array

{’Cloudy’} {’Sprinkler’} {’Rain’} {’Wet’}

>> b{4}

ans =

0.8015

0.1985

Then the probability of variable ’Wet’ (coded 4) to be true (coded 1) is estimated to 0.8015.

2.5 Description of beliefs on regions

2.5.1 Definition

We define the belief of a region R as the marginal probability distribution of the variables of that
region, bR(xVR

).

2.5.2 Matlab representation

The beliefs of all the regions of a factor graph fg are represented in a cell array called br.
This cell array is structured as fg in sub factor graphs.

br cell array (1 x n), n is the total number of regions in the factor graph
br{i} is a cell array (1 x nri), nri is the number of regions in the sub factor graph i
br{i}{j} is an array of double of size fg.Card(VRj )), VRj is the set of variables in region Rj

Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_CVM( fg);

>> [~, ~, br] = gm_infer_GBP(fg, rg)

br =

1×1 cell array

{1×6 cell}

>> fg.Name

ans =

1×4 cell array

{’Cloudy’} {’Sprinkler’} {’Rain’} {’Wet’}

>> rg{1}.Vr

ans =

6×4 logical array

1 1 0 0

1 0 1 0

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

>> % The region 1 contains 2 variables ’Cloudy’ and ’Sprinkler’.

>> br{1}{1}

ans =

0.2500 0.2500

0.4500 0.0500

Looking at the beliefs of region 1 (containing 2 variables ’Cloudy’ and ’Sprinkler’), the probability of
’Cloudy’ set to yes (coded 1) and ’Sprinkler’ set to on (coded 1) is estimated to 0.25.
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2.6 Description of evidence

2.6.1 Definition

Evidence are observation (knowledge) of the state of some variables.

2.6.2 Matlab representation

The observations are represented in a vector called evidence.

evidence observation value of variables, 0 for unknown
vector (1 x nv) of integer

Example
In the Sprinkler example, assume that we know that variables Sprinkler and Rain are in state 1 (no
sprinkler, no rain) and that the state of variables Cloudy and Wet.

>> evidence = [0 1 1 0]; % no sprinkler and no rain !
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3 Factor graph generation functions

3.1 gm example Sprinkler

Description

A classical example of Bayesian network is the Sprinkler model. It models the relations between state
of grass: wet/not (variable W), use of sprinkler: on/off (variable S), rain : yes/no (variable R) and
cloudy sky : yes/no (variable C). The joint law is p(C, S,R,W ) = p(C)p(S | C)p(R | C)p(W | S,R).

W

S R

C

p(C)
C=true 0.5
C=false 0.5

p(R|C) R=true R=false
C=true 0.8 0.2
C=false 0.2 0.8

p(S|C) S=true) S=false
C=true 0.5 0.5
C=false 0.9 0.1

p(W|S,R) W=true W=false
S=true, R=true 1 0
S=true, R=false 0.9 0.1
S=false, R=true 0.9 0.1
S=false, R=false 0.01 0.99

The factor graph of the sprinkler model has the following structure, with 4factors f1(C), f2(C,S),
f3(C,R), f4(S,R,W).

f1 C

f3 R

f4 W

f2 S

To express the factor graph (Matlab structure fg) in the toolbox, we first define an ordering of the
variables (C, S, R, W) that defines the coding of variables: 1 for C, 2 for S, 3 for R, 4 for W.
Then the cardinality of each variable is set in the Card attribut: fg.Card = [2 2 2 2]. Here all variable
are boolean. We fix that 1 code false and 2 code true.
Then we express each factor.
Factor f1, only involves variable C: f1.V=1; f1.T=[0.5;0.5]; fg.F{1}=f1;
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Factor f2, involves variables C,S : f2.V=[1,2]; f2.T=[0.5 0.5; 0.9 0.1]; fg.F{2}=f2;
Factor f3, involves variables C,S : f2.V=[1,3]; f2.T=[0.8 0.2; 0.2 0.8]; fg.F{3}=f3;
Factor f4, involves variables S,R,W : f2.V=[2,3,4]; f2.T(1,1,:)=[1 0];
f2.T(1,2,:)=[0.9 0.1]; f2.T(2,1,:)=[0.9 0.1]; f2.T(2,2,:)=[0.01 0.99]; fg.F{4}=f4;

Syntax

fg = gmdp_example_Sprinkler()

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph

Example

>> fg = gm_example_Sprinkler()

fg =

struct with fields:

Card: [2 2 2 2]

Name: {’Cloudy’ ’Sprinkler’ ’Rain’ ’Wet’}

sfg: {[1×1 struct]}

>> sfg = fg.sfg{1}

sfg =

struct with fields:

Vcode: [1 2 3 4]

F: {[1×1 struct] [1×1 struct] [1×1 struct] [1×1 struct]}

BG: [4×4 logical]

>> sfg.F{1}

ans =

struct with fields:

V: 1

T: @()[0.5;0.5]

>> sfg.F{2}

ans =

struct with fields:

V: [1 2]

T: @()[0.5,0.5;0.9,0.1]

>> sfg.F{3}

ans =

struct with fields:

V: [1 3]

T: @()[0.8,0.2;0.2,0.8]

>> sfg.F{4}

ans =

struct with fields:

V: [2 3 4]

T: @f4

>> sfg.F{4}.T()

ans(:,:,1) =

1.0000 0.9000

0.9000 0.0100

ans(:,:,2) =

0 0.1000

0.1000 0.9900
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It is possible to visualize the structure of the unique sub factor graph associated to the Sprinkler
model:

>> gm_plot_fg(fg)

3.2 gm example Ecology

Description

We consider a very simplified ecological network, 4 species: plankton (P), zooplankton (Z), krill
(K), marine mammals (M) which population dynamic are interdependent. We modelize the annual
population dynamic by the following Dynamic Bayesian Network (DBN).

P t

Zt

Kt

M t

P t+1

Zt+1

Kt+1

M t+1

That is the population of plankton at time t+1 (P t+1) is related to the population of plankton at
time t (P t) and the population of marine mammals (M t) through feces, death... The other relations
are prey-predator ones: marine mammals eat zooplankton that eat plankton.
The considering qualitative states are low (1), normal (2) and high (3) population.
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The transition probabilities are simplified and are the same for all species. Considering the species V
depending of also of species v, the transition p(V t+1|V t, vt) is defined by the following array T.

T(:,:,1) = [p1 p2 p4; % $p(V^{t+1}=1|V^t, v^t)$

p2 p3 p4;

p4 p4 p4];

TT(:,:,2) = [p4 p4 p4; % $p(V^{t+1}=2|V^t, v^t)$

p2 p1 p2;

p4 p4 p3];

T(:,:,3) = [p4 p4 p4; % $p(V^{t+1}=3|V^t, v^t)$

p4 p3 p2;

p4 p2 p1];

For example purpose, we choose p1 = 0.5, p2 = 0.2, p3 = 0.05, p4 = 0.01.
Furthermore initial states are estimated quite normal p(V 0 = 1) = 0.25, p(V 0 = 2) = 0.5, p(V 0 = 3) =
0.25 .

We consider 3 years (2 time steps).
Lets now represent the relations for the entire graphical model with factors graph and variables.

P1

Z1

K1

M1

P2

Z2

K2

M2

P3

Z3

K3

M3

f9

f10

f11

f12

f1

f2

f3

f4

f5

f6

f7

f8

Representation of the problem
We define the list of variables as follows: P 1, Z1,K1,M1, P 2, Z2,K2,M2, P 3, Z3,K3,M3.
Here is the same model with the coding numbers in Matlab for variables and factors.

1

2

3

4

5

6

7

8

9

10

11

12

9

10

11

12

1

2

3

4

5

6

7

8
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Syntax

fg = gm_example_Ecology()

Arguments

No argument.

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph

Example

>> fg = gm_example_Ecology()

fg =

struct with fields:

Name: {1×12 cell}

Card: [3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct]}

>> sfg = fg.sfg{1}

sfg =

struct with fields:

Vcode: [1 2 3 4 5 6 7 8 9 10 11 12]

F: {1×12 cell}

BG: [12×12 logical]

>> sfg.F{1}

ans =

struct with fields:

V: [1 2 5]

T: @()setTransition

>> sfg.F{1}.T()

ans(:,:,1) =

0.5000 0.2000 0.0100

0.2000 0.0500 0.0100

0.0100 0.0100 0.0100

ans(:,:,2) =

0.0100 0.0100 0.0100

0.2000 0.5000 0.2000

0.0100 0.0100 0.0500

ans(:,:,3) =

0.0100 0.0100 0.0100

0.0100 0.0500 0.2000

0.0100 0.2000 0.5000

Plot of the factor graph.

>> gm_plot_fg(fg)
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3.3 gm example CHMM

Description

A Hidden Markov Model (HMM) is composed of two variables: a sequence of hidden variables, which
are never observed, and a sequence of observed variables (one per hidden variable) which state are
known. The sequence of hidden variable is a Markov chain. HMM have been extended to Coupled
HMM, where the hidden variables are multidimensional and whose dependencies can be represented
as in a DBN.

The Coupled HMM example used in the toolbox model the dynamics of a pest that can spread on a
landscape composed of N crop fields organized in a regular grid. The neighborhood of field i, denoted
Ni, is the set of the 4 closest fields (or 3 or 2, on the borders and corners of the grid). Hi

t ∈ {0, 1}
(1 ≤ i ≤ N, 0 ≤ t ≤ T ) is the state of crop field i at time t. State 0 (resp. 1) represents the absence
(resp. presence) of the pest in the field. Variable Hi

t depends on Hi
t−1 and of the Hj

t−1 such that j is
in Ni. The conditional probabilities of survival and apparition of the pest in field i are parameterized
by 3 parameters:

• ε, the probability of contamination from outside the landscape (long-distance dispersal).

• ρ, the probability that the pest spreads from an infected field j ∈ Ni (Hj
t = 1) to field i between

time t and t+ 1.

• ν, the probability that an infected field at time t remains infected at t+ 1

We assume that contamination events from every neighbor fields are independent. Then, if Iit is the
number of infected neighbors of field i at time t (Iit =

∑
j∈Ni

Hj
t ), we have

P (Xi
t+1 = 1 | Xi

t = 0, Xj
t , j ∈ Ni) = ε+ (1− ε)(1− (1− ρ)I

i
t )

and
P (Xi

t+1 = 1 | Xi
t = 1, Xj

t , j ∈ Ni) = ν + (1− ν)
(
ε+ (1− ε)(1− (1− ρ)I

i
t )
)
.

The Hi
t are hidden variables. During monitoring, a binary variable On

t is observed: it takes value
1 if the pest has been observed and 0 otherwise. But error of detection is possible: we can have
false negative observations (the pest is there but difficult to see so it was missed) or false positive
observations (the pest was mixed up with another one). We define P (Oi

t = 1 | Xi
t = 0) = fp and

P (Oi
t = 0 | Xi

t = 1) = fn.
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“Expert” values for the dynamics parameters in the case of a weed species can be ε = 0.15, ρ = 0.2, ν =
0.5. For the observations distributions, we take fp = 0.05 and fn = 0.1.

Syntax

fm = gmdp_example_CHMM()

fm = gmdp_example_CHMM(N)

fm = gmdp_example_CHMM(N, T)

Arguments

• N : number of fields in the square grid (default value: 9)

• T : number of time periods (default value: 3)

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph

Example

3.4 gm example DBN

Description

A Dynamic Bayesian Network (DBN) is a particular Bayesian network where the same set of variables
evolve through (discrete) time and the state of a variable in a given time period depends only on
variables in the previous time period and the current one.

The function allows to create a simple Dynamic Bayesian Network with the following transition
structure:

• no relation between variables into a time period,

• a variable V t+1
i has two parents: V t

i and V t
i−1, expected V t+1

1 which as a unique parent V t
1 .

The following graph shows the relations between the variables of two consecutive time steps.

V t
1

V t
2

· · ·

V t
nv

V t+1
1

V t+1
2

· · ·

V t+1
nv
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Syntax

global NS; fg = gm_example_DBN(nv, t)

Arguments

• NS : global variable, cardinality of each variable

• nv : number of variables in a time period

• t : number of time steps

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph

Example

>> global NS; NS=2; fg = gm_example_DBN(3,2)

fg =

struct with fields:

Card: [2 2 2 2 2 2 2 2 2]

sfg: {[1×1 struct]}

>> sfg = fg.sfg{1}

sfg =

struct with fields:

Vcode: [1 2 3 4 5 6 7 8 9]

F: {1×9 cell}

BG: [9×9 logical]

>> sfg.F{1}

ans =

struct with fields:

V: [1 2 4]

T: [2×2×2 double]

Plot of the unique sub factor graph corresponding to the DBN, giving names to variables.

>> fg.Name = {’V11’,’V21’,’V31’,’V12’,’V22’,’V32’,’V13’,’V23’,’V33’};

>> gm_plot_fg(fg)
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3.5 gm example CHMM

Description

A Hidden Markov Model (HMM) is composed of two variables: a sequence of hidden variables, which
are never observed, and a sequence of observed variables (one per hidden variable) which state are
known. The sequence of hidden variable is a Markov chain. HMM have been extended to Coupled
HMM, where the hidden variables are multidimensional and whose dependencies can be represented
as in a DBN.

The Coupled HMM example used in the toolbox model the dynamics of a pest that can spread on a
landscape composed of N crop fields organized in a regular grid. The neighborhood of field i, denoted
Ni, is the set of the 4 closest fields (or 3 or 2, on the borders and corners of the grid). Hi

t ∈ {0, 1}
(1 ≤ i ≤ N, 0 ≤ t ≤ T ) is the state of crop field i at time t. State 0 (resp. 1) represents the absence
(resp. presence) of the pest in the field. Variable Hi

t depends on Hi
t−1 and of the Hj

t−1 such that j is
in Ni. The conditional probabilities of survival and apparition of the pest in field i are parameterized
by 3 parameters:

• ε, the probability of contamination from outside the landscape (long-distance dispersal).

• ρ, the probability that the pest spreads from an infected field j ∈ Ni (Hj
t = 1) to field i between

time t and t+ 1.

• ν, the probability that an infected field at time t remains infected at t+ 1

We assume that contamination events from every neighbor fields are independent. Then, if Iit is the
number of infected neighbors of field i at time t (Iit =

∑
j∈Ni

Hj
t ), we have

P (Xi
t+1 = 1 | Xi

t = 0, Xj
t , j ∈ Ni) = ε+ (1− ε)(1− (1− ρ)I

i
t )

and
P (Xi

t+1 = 1 | Xi
t = 1, Xj

t , j ∈ Ni) = ν + (1− ν)
(
ε+ (1− ε)(1− (1− ρ)I

i
t )
)
.

The Hi
t are hidden variables. During monitoring, a binary variable On

t is observed: it takes value
1 if the pest has been observed and 0 otherwise. But error of detection is possible: we can have
false negative observations (the pest is there but difficult to see so it was missed) or false positive
observations (the pest was mixed up with another one). We define P (Oi

t = 1 | Xi
t = 0) = fp and

P (Oi
t = 0 | Xi

t = 1) = fn.
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“Expert” values for the dynamics parameters in the case of a weed species can be ε = 0.15, ρ = 0.2, ν =
0.5. For the observations distributions, we take fp = 0.05 and fn = 0.1.

Syntax

fm = gmdp_example_CHMM()

fm = gmdp_example_CHMM(N)

fm = gmdp_example_CHMM(N, T)

Arguments

• N : number of fields in the square grid (default value: 9)

• T : number of time periods (default value: 3)

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph

Example

We consider a square grid of N=4 fields evolving during T=2 periods.
Here is the set of fields and the possible propagation of pest between them.

3 4

1 2

Let us now represent state and observation variables dependencies between 2 time steps.

Ht
1

Ht
2

Ht
3

Ht
4

H
t+1
1

H
t+1
2

H
t+1
3

H
t+1
4

Ot
1

Ot
2

Ot
3

Ot
4

O
t+1
1

O
t+1
2

O
t+1
3

O
t+1
4

Here is the corresponding factor graph including the factors on the initial time step (f1 to f4) and two
transitions.
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H1
1

H1
2

H1
3

H1
4

H2
1

H2
2

H2
3

H2
4

H3
1

H3
2

H3
3

H3
4

O2
1

O2
2

O2
3

O2
4

O3
1

O3
2

O3
3

O3
4

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

>> fg = gm_example_CHMM(4,2)

fg =

struct with fields:

Card: [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

sfg: {[1×1 struct]}

>> sfg = fg.sfg{1}

sfg =

struct with fields:

F: {1×20 cell}

Vcode: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

BG: [20×20 logical]

>> sfg.F{1}

ans =

struct with fields:

V: 1

T: [2×1 double]

Plot of the unique sub factor graph, giving names to variables.

>> fg.Name = {’H11’,’H21’,’H31’,’H41’, ...

’H12’,’H22’,’H32’,’H42’, ...

’H13’,’H23’,’H33’,’H43’, ...

’O12’,’O22’,’O32’,’O42’, ...

’O13’,’O23’,’O33’,’O43’};

>> gm_plot_fg(fg, 1, ’circle’)
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3.6 gm create fg

Description

Create a factor graph structure, giving cardinalities of variables and a set of factors.
A factor graph is first created with 1 sub factor graph containing all factors. If this factor graph is
not valid, an error is returned. If it is valid, and disconnected, the sub factor graph is separated. So
this function may return a factor graph with several sub factor graphs.

Syntax

fg = gm_create_fg( Card, F, Name)

Arguments

• Card : cardinality of variables, vector ( 1 x nv)of integer higher than 1

• F : set of factors, cell array of factor structure

• Name : set of variable names, cell array of char array (optional)

Evaluation

• fg : structure (see paragraph 2.2) defining the factor graph
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Example

% Creation of a factor graph with a single sub factor graph,

% which is composed of 2 connex components

>> Card = [2 2 2 2]; % 4 variables

>> F1.V = [1 2];

>> F1.T = 0.5*ones(2);

>> F2.V = [3 4];

>> F2.T = 0.5*ones(2);

>> F = {F1, F2};

>> fg = gm_create_fg( Card, F, {’A’,’B’,’C’,’D’})

fg =

struct with fields:

Card: [2 2 2 2]

Name: {’A’ ’B’ ’C’ ’D’}

sfg: {[1×1 struct] [1×1 struct]}

>> fg.sfg{1}

ans =

struct with fields:

Vcode: [1 2]

F: {[1×1 struct]}

BG: [1 1]

gm_plot_fg( fg )

Here is an example of not coherent arguments.

>> fg = gm_example_Sprinkler();

>> fg_pb = gm_create_fg([2 2], fg.sfg{1}.F, ’’)

ERROR: F is not valid

ERROR: sfg{1}.BG not correct

fg_pb =

[]
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3.7 gm separate fg

Description

Separate a factor graph in disconnected sub factor graphs, with each sub factor graph having a single
connex component.

Syntax

fg = gm_separate_fg( fg )

Argument

• fg : structure (see paragraph 2.2) defining a factor graph

Evaluation

• fg : structure (see paragraph 2.2) defining a factor graph

Example

% Create by hand a simple disconnected factor graph

>> fg.Card = [2 2 2 2];

>> F1.V = [1 2]; % factor 1 on variable 1 and 2

>> F1.T = [ 0.5 0.5; 0.5 0.5];

>> F2.V = [3 4]; % factor 2 on variable 3 and 4

>> F2.T = [ 0.5 0.5; 0.5 0.5];

>> sfg.Vcode = [1 2 3 4];

>> sfg.F = {F1, F2};

>> sfg.BG = setBG( length(sfg.Vcode), sfg.F);

>> fg.sfg{1} = sfg;

>> [is_OK, is_disconnected, msg] = gm_check_fg( fg )

WARNING: sfg{1} is disconnected

is_OK =

logical

1

is_disconnected =

logical

1

msg =

0×0 empty char array

>> gm_plot_fg(fg)
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>> fg = gm_separate_fg( fg )

fg =

struct with fields:

Card: [2 2 2 2]

sfg: {[1×1 struct] [1×1 struct]}

>> gm_plot_fg(fg)
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4 Generalized Belief Propagation

The toolbox implements a Generalized Belief Propagation (GBP) algorithm. There is a variety of al-
gorithms, the Parent-to-Child algorithm is chosen. A main advantage of it is that the message-passing
rules make no reference to region counting numbers, just as the standard Belief Propagation (BP)
algorithm.

The GBP algorithm takes a factor graph and a region graph as inputs. Using the different func-
tions we provide in the toolbox to compute a region graph for a given factor graph, one can either
perform exact or approximate inference. If a Junction Tree Region Graph is computed, the GBP
algorithm performs exact inference.
If, instead, a Bethe Region Graph is computed, the GBP algorithm becomes a standard Belief Propa-
gation algorithm, which computes a Bethe approximation of the marginals on pairs of variables and
on singletons.
Finally, if the Cluster Variation Method Algorithm is applied, flexibility is offered to the user, who
can choose the ’large regions’ of the region graph (those without parents), each choice leading to a
different trade-off between accuracy and complexity.
These three region graph computation functions provide a gradient of approximation quality inversely
proportional to their time/space complexity. Note that other Region Graph construction algorithms
could be implemented in the toolbox, offering the possibility to develop and test new approximation
approaches within the GBP algorithm.

Note also that the toolbox could be enriched by the addition of the Child-to-Parent and Two-ways
algorithms described in [3].

4.1 gm infer GBP

Description

The parent-to-child algorithm generalizes the principles at the basis of the standard (exact) message
passing algorithm on a tree structured factor graph. Messages are spread through regions instead
of through factor nodes and variable nodes, and at convergence, beliefs on region are obtained as
products of messages. More precisely the belief at any region R is the product of all the local factors
in that region, multiplied by all the messages coming into region R from outside regions. There is one
complication, however: to ensure that the algorithm is equivalent to minimizing the region graph free
energy, we need to include additional messages into regions which are descendants of R from other
parent regions that are not themselves descendants of region R.

There is just one kind of message, mP→R(xR), from a parent region P to a child region R. Each
region R has a belief bR(xR) given by:

bR(xR) =
∏

a∈FR

fa(xa).(
∏

P∈Pa(R)

mP→R(xR)).(
∏

D∈De(R)

∏
P ′∈Pa(D)\E(R)

mP ′→D(xD))

where:

• Pa(R) is the set of regions that are parents to region R,

• De(R) is the set of all regions that are descendants of region R,
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• E(R) = {R} ∪ De(R) is the set of all regions that are descendants of R and also region R itself,

• Pa(D)\E(R) is the set of all regions that are parents of region D except for region R itself or
those those regions that are also descendants of region R.

The message-update rule is:

mP→R =

∑
xP\R

(
∏

a∈FP\R
fa(xa)).

∏
(I,J)∈N (P,R)mI→J(xJ)∏

(I,J)∈D(P,R)mI→J(xJ)

where:

• N (P,R) is the set of all connected pairs of regions (I, J) such that I /∈ E(P ), J ∈ E(P )\E(R).

• D(P,R) is the set of all connected pairs of regions (I, J) such that I ∈ De(P )\E(R), J ∈ E(R).

Nota : The definition of D(P,R), in [3], is wrong. Replace definition of I by: I ∈ E(P ).

Note that in the original article, updated messages are used as soon as they are computed, in the
message update rule. Indeed, our coding implements:

mupdated
P→R =

∑
xP\R

(
∏

a∈FP\R
fa(xa)).

∏
(I,J)∈N (P,R)m

old
I→J(xJ)∏

(I,J)∈D(P,R)m
updated
I→J (xJ)

where mupdated
P→R is the updated version of the message, while mold

P→R is the old version. But, for

this update rule to be operational, whenever we want to update a message mupdated
P→R , every messages

mupdated
I→J with (I, J) ∈ D(P,R) must have already been computed. This constrains the order of

messages computation: we start by updating messages to the leaves of the region graph and continu
by going up until the root. Several orders satisfy this rule, the same order is set and used all along
the algorithm.

Syntax

[b, stop_by, br] = gm_infer_GBP ( fg , rg )

[b, stop_by, br] = gm_infer_GBP ( fg , rg, Nmax )

[b, stop_by, br] = gm_infer_GBP ( fg , rg, Nmax, epsilon )

[b, stop_by, br] = gm_infer_GBP ( fg , rg, Nmax, epsilon, damp )

[b, stop_by, br] = gm_infer_GBP ( fg , rg, Nmax, epsilon, damp, is_verbose )

Arguments

• fg : structure (see paragraph 2.2) defining the factor graph

• rg : structure (see paragraph 2.3) defining the region graph

• Nmax : maximum number of iterations, integer in [1 1000] (optional, default value: 100)

• epsilon : stop iteration when the maximal difference between messages between 2 iterations is
less than epsilon, positive double, (optional, default 0.0001)

• damp : damp factor to update messages, damp = 0 means ’take new message, damp = 1 would
mean ’take message from previous iteration’, double in [0 1[ (optional, default 0)

• is verbose : if true, display additional information when running (optional, default false)

Evaluation

• b : cell array (1 x nv), beliefs of variables

• stop by : string, stop criterion in {”Nmax”, ”epsilon”} (empty when fg.sfg if empty)

• br : cell array (1 x nr), beliefs of regions
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Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_CVM(fg);

>> [b, stop_by, br] = gm_infer_GBP ( fg , rg )

b =

1×4 cell array

{2×1 double} {2×1 double} {2×1 double} {2×1 double}

stop_by =

1×1 cell array

{["epsilon"]}

br =

1×1 cell array

{1×6 cell}

>> b{4}(1) % probability of grass (variable ’Wet’ coded 4) to be wet (coded 1)

ans =

0.8015

>> br{1}{3}(1,1,1) % 3 variables in region 3: ’Sprinkler’, ’Rain’, ’Wet’

% probability of sprinkler to be on, rain to be yes and grass to be wet

ans =

0.3500

% In verbose mode, number of iteration are given

>> [b, stop_by] = gm_infer_GBP ( fg, rg, 10, 0.0001, 0, true );

n=1 delta=0.57143

n=2 delta=0

Coding

The GBP algorithm can be expressed using two functions :

• Prod : computes the product of the tables of the functions Fi, taking into account the variables
Vi of of each function Fi.

[h, v] = Prod(H,V )

with H = {Fi}, list of function Fi’s tables,
W = {Vi}, list of indices of the variables of functions Fi.
h =

∏
i Fi, the product of functions Fi,

V = ∪iVi, the indices of the variables of h.

• Marg : computes the marginals of a function f defined on the set vf of variables, by
eliminating the set of variables ve.

[h, v] = Marg(f, vf , ve)

with v = vf\ve.

An other function, extend message, is used in the gm infer GBP function. The function, if necessary,
extends the result h of Prod function such that the scope of h is equal to the set of variables of region
receiving the message computed using h.
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Algorithm 1: Generalized Belief Propagation (GBP) algorithm

Input: fg : a factor graph
rg : a region graph
Nmax : maximum number of iterations (optional, default 100)
ε : stop iteration when all the differences between messages of two successive
iterations are less than ε (optional, default 0.0001)
damp : damping factor ∈ [0, 1[ (optional, default 0)

Output: b : beliefs on variables (marginals)
stop by : criterium that stopped message iteration
br : beliefs on regions

begin
δ ← +∞, n← 0
Init Pa, De, E , N , D for all regions
Init message order considering regions from leaves to root
Init messages mupdated /* with uniform distribution */
oscillation ← 0;

while δ > ε and n < Nmax do
δ ← 0, n← n+ 1, mold = mupdated

/* Compute messages */
foreach (P,R) of message order do

/* update messages */
foreach fa ∈ FP\R do

H ← H ∪ {fa},W ←W ∪ {Va}
foreach (I, J) ∈ N (P,R) do

H ← H ∪ {mold
I→J},W ←W ∪ {VJ}

[h, V ] = Prod(H,W )
[h, V ] = Marg(h, V, V \ VR)
H ← h,W ← V
foreach (I, J) ∈ D(P,R) do

H ← H ∪ {1/mupdated
I→J },W ←W ∪ {VJ}

/* (1/mI→J)(xJ) =def 1/(mI→J(xJ)) */

mupdated
P→R ← extend message(Prod(H,W ))

/* Normalize messages with max and damping */
foreach (P,R) of message order do

mupdated
P→R ← normalize(mupdated

P→R )

mupdated
P→R = (1− damp).mupdated

P→R + damp.mold
P→R

/* Compute stop condition */

δ′ ← max(P,R)∈message order maxx∈xR
| mold

P→R(x)−mupdated
P→R (x) |

/* Compute marginals */
foreach variable xi ∈ X do

R← a region with variable xi and as few variables as possible
b(xi) = Marg(br(R), R,R \ {i})

Normalization with maximum
A message can be seen as a table. We normalize each message by dividing by the maximum of the
message’s table. Then the maximum value is 1 in this table.

When iterating, dividing by a very small value may give NaN. To avoid this, values less than 0.0001,
are set to 0.0001. This is not a problem with a normalization by maximum but it would be a problem
with a normalization by the sum.

We evaluated that execution time are near for normalization by maximization and by sum (time for
sum is just a little lower).
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Considering the estimation of belief in examples run for comparison with libDAI (see 6.1), with sum
the difference is about 10−15 for sum instead of 0.0017 when maximization.

Detection of oscillation
We try to automatically detect oscillations with a compromize in costs CPU time and memory. Neither
criterion was satisfying, so we do not anymore try to detect oscillations but provide a function to
visualize belief evolution all along iterations (function gm plot belief evolution).
We have 2 examples of oscillation: (i) CHMM generated with gm example CHMM(4,2) with obser-
vations at time step 2 (variables 13, 14, 15, 16). It is to note that oscillations are different if observed
states are 1 or 2; (ii) problem called Figure13 in TEST directory.

Order of messages
We first consider the leaf regions in the region graph.
Then we iteratively consider parents regions. Be careful that only parent regions that have all children
yet considered are inserted in the order list. In other words, the insertion in the list order of those
regions has to be delayed until all successors are in the list order.
Then messages mP→R are updated starting from messages arriving to leaves of the region graph and
then going backward until the root. This ensure that when updating mP→R all messages mI→J such
that (I, J) ∈ D(P,R) have already been updated.

Improve convergence
In [3], under equation (153), there is the following sentence: ”In practice, it often helps convergence to
only step the messages part-way to their newly computed values. This simple heuristic can eliminate
’over-shooting’ problems...” That is mupdate is replaced by mupdate ← damp.mold+(1−damp).mupdate.

4.2 gm rg JT

Description

If gm infer GBP is applied with the region graph computed by the gm rgJT function, then the infer-
ence algorithm is equivalent to the Junction Tree (JT) algorithm.

The region graph construction for the JT method is based on the classical variable elimination algo-
rithm for graphical models. The resulting region graph is a bipartite graph containing large regions
and small regions. The large regions are constructed using variable elimination with respect to an
elimination ordering of variables, o, either given by the user or using the default one (variable 1, then
2, ... until n are eliminated): Whenever a variable o(i) is eliminated, a new large region is created,
containing variable o(i), as well as every factor containing variable o(i) and the variables of this factor
and no variables already eliminated (so doing, each factor is included in exactly one region). Once
done, we eliminate all regions which variables are all included in another region (and add the factors
of the eliminated region to the one which is kept).
Then, in the JT region graph construction, the small regions are obtained by computing intersections
between large regions and keeping only those that do not correspond to an already created region.
However, in order to perform an exact inference, the region graph should be a tree. Therefore, a
Maximum Spanning Tree (MST) is computed, for the graph which vertices are the large regions and
weighted edges are added between every pairs of large regions sharing at least one variable. The
weight of an edge is precisely the number of variables shared by the two regions. Once the MST has
been computed, the bipartite region graph is obtained by replacing each edge Ri−Rj of the MST by
two oriented edges Ri → Sij and Rj → Sij with Sij the intersection of Ri and Rj .

Syntax

rg = gm_rg_JT( fg )

rg = gm_rg_JT( fg, var_order )
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Arguments

• fg : structure (see paragraph 2.2) defining the model

• var order : a vector (1 x n), which is a reodering of the variables

Evaluation

• rg : structure (see paragraph 2.3 for a description of the region graph)

Example

>> rg = gm_rg_JT( gm_example_Sprinkler() )

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [3×4 logical]

Fr: [3×4 logical]

Gr: [3×3 logical]

cr: [1 1 -1]

>> rg{1}.Vr

ans =

3×4 logical array

1 1 1 0

0 1 1 1

0 1 1 0

>> rg{1}.Fr

ans =

3×4 logical array

1 1 1 0

0 0 0 1

0 0 0 0

>> gm_plot_rg( rg)
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>> rg = gm_rg_JT( gm_example_Sprinkler(), [4 3 2 1] )

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [3×4 logical]

Fr: [3×4 logical]

Gr: [3×3 logical]

cr: [1 1 -1]

>> rg{1}.Vr

ans =

3×4 logical array

0 1 1 1

1 1 1 0

0 1 1 0

>> rg{1}.Fr

ans =

3×4 logical array

0 0 0 1

1 1 1 0

0 0 0 0

>> gm_plot_rg( rg)

with this simple example, the region graph has also 3 regions with the same connections but regions
are not similar: regions 1 and 2 exchanged.

Coding

Algorithm 2: gm rg JT Compute a region graph corresponding to a junction tree for a
given variable ordering.

Input: fg : a factor graph
o : an ordering of the variables (optional)

Output: rg : a region graph with has the structure of a junction tree

begin
/* Use variable elimination to compute large regions */

rg.regions ← Compute Large Regions(fg, o) ;
/* Use Kruskal’s Maximum Spanning Tree algorithm to compute small regions

*/

rg ← Compute Small Regions(rg) ;
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Algorithm 3: Compute Large Regions, Compute large regions (variables, factors) for
JT, for a given elimination order (illustrated on a factor graph with only one sub factor
graph)

Input: fg: a factor graph
o: an ordering of the variables

Output: LR: a set of regions, a region is a couple (S, F ) with S (resp. (F )
a set of variables (resp. factors)

begin
for k = 1 . . . n do

/* Fk is the set of factors which scope contains xo(k) and no variable

already eliminated */

Fk ← {f ∈ fg.sgf1.F, xo(k) ∈ Scope(f)} ;

Fk ← Fk ∩ (∪j<kFj) ;
/* Sk contains the variables not yet eliminated and contained together

with xk in the scope of a factor already encountered */

Sk ←
{
j ∈ 1, . . . , n, ∃f ∈ F1 ∪ . . . ∪ Fk, (xo(k), xj) ⊆ Scope(f)

}
;

Sk ← Sk ∩ (o(1), . . . , o(k − 1)) ;

/* The large regions are built from the maximal elements of {Sk}k */

for k = 1 . . . n do
if ∃Sj s.t. Sk ⊆ Sj then

Fj ← Fj ∪ Fk ;
Sk ← ∅, Fk ← ∅ ;

LR← {(Sk, Fk), (Sk, Fk) 6= (∅, ∅)}

Algorithm 4: Compute Small Regions: Compute small regions from large regions for
JT and build the JT region graph (illustrated on a factor graph with only one sub factor
graph)

/* Compute small regions corresponding to intersections between large regions

and compute the region graph edges linking two large regions nodes to the

small small region containing the intersection nodes */

Input: LR: a set of regions, a region is a couple (S, F ) with S (resp. (F )
a set of variables (resp. factors)

Output: rg: a region graph

/* First step: building of a weighted clique over the regions in LR */

V = {1, . . . ,K} ; /* |LR| = K */

/* The weights of the edges are the cardinal of the regions intersections */

w(vk, vj) = |LR(j) ∩ LR(k)|,∀1 ≤ j, k ≤ K ;
/* Second step: compute a maximum spanning tree of (V,w) */

T ←Maximum Spanning Tree(V,w) ; /* Uses classical Kruskall’s algorithm */

/* Third step: a small region of the JT region graph is created for each edge

of maximum spanning tree of (V,w) */

for e = (j, k) ∈ T do
SR(e)← LR(j)∩ LR(k)

Regions = LR ∪ SR ;
rg.srg{1}.Vr = logical array, cell(i, j) true if variable j is in region i;
rg.srg{1}.F = logical array, cell(i, j) true if factor j is in region i;
rg.sfg{1}.cr = count numbers associate to regions;
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4.3 gm rg BETHE

Description

The region graph corresponding to the Bethe approximation is a simple graph with two levels of
regions, respectively large regions and small regions:

• There is one large region rf per factor node f of the factor graph. rf contains factor f as well
as every variables i which are in the scope of f .

• There is one small region ri per variable i of the factor graph.

Then, we build one directed edge from every large region nodes to the small region corresponding to
the variables of the unique factor contained in the large region.

Syntax

rg = gm_rg_BETHE( fg )

Arguments

• fg : structure (see paragraph 2.2) defining the model

Evaluation

• rg : structure (see paragraph 2.3 for a description of the region graph)

Example

>> rg = gm_rg_BETHE( gm_example_Sprinkler() )

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [8×4 logical]

Fr: [8×4 logical]

Gr: [8×8 logical]

cr: [1 1 1 1 -2 -1 -1 0]

>> rg{1}.Vr

ans =

8×4 logical array

1 0 0 0

1 1 0 0

1 0 1 0

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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>> rg{1}.Fr

ans =

8×4 logical array

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

>> gm_plot_rg( rg )

Coding

Algorithm 5: gm rg BETHE: Compute the BETHE region graph (illustration for a
factor graph with a single sub factor graph)

Input: fg : a factor graph
Output: rg : the region graph corresponding to the Bethe method
begin

/* Each large region corresponds to a factor and its variables */

LR ← ∪f∈fg.sgf{1}{f, Scope(f)} ;
/* Each small region corresponds to a single variable */

SR ← ∪f∈fgScope(f) ;
rg.regions ← LR ∪ SR ;
/* Now, compute the graph edges linking large to small regions */

for f ∈ LR do
for g ∈ SR do

rg.srg{1}.Gr(f, g) = true if variable in g is in the scope of factor in LR ;
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4.4 gm rg CVM

Description

The function builds a region graph with the Cluster Variation Method (CVM). It begins with a set
of large regions R0 such that:

• every factor node f and every variable node i of the considered factor graph is included in at
least one region R ∈ R0,

• no region R ∈ R0 is a subregion of any other region in R0.

Then the set of regions R1 is constructed by forming all possible intersections between regions in R0,
but discarding fromR1 any intersection regions that are sub-regions of other intersection regions inR1.

If possible, the set of regions R2 is constructed the same way from the intersection between regions in
R0 ∪R1, but discarding any sub-regions that already appeared in R1 or that are sub-regions of other
intersection regions in R2.

The procedure continues as long as there are new intersection regions. Finally the CVM set of regions
is R0 ∪R1 ∪ . . . ∪RK .

To form a region graph, connections between regions are constructed in the following way. For regions
in R1, connect them to regions of R0 that are super regions. For a region R in R2, connect it to all
regions in R0 and R1 that are super-regions of R, except for those regions in R0 that do not need a
direct connection, because they are super-regions of regions in R1 that are also super-regions of R.
Similar rules are followed for regions in R3 and so on.

Syntax

[rg, kR] = gm_rg_CVM( fg )

[rg, kR] = gm_rg_CVM( fg, regions)

Arguments

• fg : structure (see paragraph 2.2) defining the model

• regions : a matrix (nr x (nv + nf)), specifying regions for fg (optional)

Evaluation

• rg : structure (see paragraph 2.3 for a description of the region graph)

• kr : vector (1 x nr), a level for each region

Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_CVM( fg )

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [6×4 logical]

Fr: [6×4 logical]

Gr: [6×6 logical]

cr: [1 1 1 -1 -1 -1]
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>> rg{1}.Vr

ans =

6×4 logical array

1 1 0 0

1 0 1 0

0 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

>> rg{1}.Fr

ans =

6×4 logical array

1 1 0 0

1 0 1 0

0 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

>> gm_plot_rg( rg )

To illustrate, specifying second argument regions, we require just 1 region with all variables and
factors.

>> regions{1} = [1 1 1 1 1 1 1 1];

>> rg = gm_rg_CVM( fg , regions )

rg =

1×1 cell array

{1×1 struct}

>> rg{1}

ans =

struct with fields:

Vr: [1 1 1 1]

Fr: [1 1 1 1]

Gr: 0

cr: 1
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Coding

Algorithm 6: gm rg CVM Compute a region graph with Cluster Variation Method

Input: fg : a factor graph
regions : initial set of regions (level k=0) (optional)

Output: rg : a region graph
rk : ranks of regions in the region graph

begin
/* Check arguments validity and define an initial set of regions */
if regions provided then
R0 ← regions

else
R0 ← extract regions from fg

(i) one region rf per factor f

(ii) remove regions rf′ whose variables are included in another region rf and add factor f ′ of the deleted

region to regions rf

/* Remove regions of R0 which are strict subregions of another region */

R0 ← Purge subregions(R0) ;
/* Initialize Region graph G = (V,E) */

G← (V = R0, E = ∅) ;
/* Compute intersection regions */

R′ ← Intersections(R0) ;
R′ ← Purge subregions(R′) ;
/* Remove every regions R ∈ R′ which belong to R0 */

R′ ← Purge equal(R′,R0) ;
k ← 0 ;
/* Main loop */

while R′ 6= ∅ do
k ← k + 1;
/* Update regions */

Rk ← Rk−1 ∪R′;
/* Update graph */

E ← E ∪ {(R,R′) ∈ V ×R′, R′ ⊆ R} ;
V ← V ∪R′;
/* Update rk */

rk ← [kr, k, . . . , k︸ ︷︷ ︸
|R′|

] ;

/* Next step: Compute intersection regions */

R′ ← Intersections(Rk) ;
R′ ← Purge subregions(R′) ;
R′ ← Purge equal(R′,Rk) ;

rg.Vr ← Rk ∩ variables ;
rg.Fr ← Rk ∩ factors;
rg.Gr ← (V,E) ;

4.5 gm include evidence

Description

The function allows to take into account the known states (observations) of some variables. Th ouput
factor graph corresponds to the joint distribution of the variables conditionally to the evidence.
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Syntax

fg = gm_include_evidence( fg, evidence)

Argument

• fg : structure (see paragraph 2.2) defining a factor graph

• evidence : observations, vector (1 x nv) of integer (see paragraph 2.6), 0 for unknown state

Evaluation

• fg : structure (see paragraph 2.2) defining a factor graph

Example

>> evidence = [1 0 0 0]; % Weather is cloudy
>> fg = gm_include_evidence( gm_example_Sprinkler(), evidence)
fg =

struct with fields:
Card: [2 2 2 2]
Name: {’Cloudy’ ’Sprinkler’ ’Rain’ ’Wet’}
sfg: {[1×1 struct]}

evidence: [1 0 0 0]

>> rg = gm_rg_JT( fg )
rg =

1×1 cell array
{1×1 struct}

>> [b, stop_by] = gm_infer_GBP ( fg , rg )
b =

1×4 cell array
{2×1 double} {2×1 double} {2×1 double} {2×1 double}

stop_by =
1×1 cell array

{["epsilon"]}

>> b{4}(1) % Probability that grass is wet if weather is cloudy
ans =

0.8510

Note that evidence can disconnect a sub factor graph in several sub factor graphs.

>> evidence = [ 0 1 1 0]; % Rain and Sprinkler !
>> fg = gm_include_evidence( gm_example_Sprinkler(), evidence)
fg =

struct with fields:
Card: [2 2 2 2]
Name: {’Cloudy’ ’Sprinkler’ ’Rain’ ’Wet’}
sfg: {[1×1 struct] [1×1 struct]}

evidence: [0 1 1 0]

>> rg = gm_rg_JT( fg )
rg =

1×2 cell array
{1×1 struct} {1×1 struct}

>> [b, stop_by] = gm_infer_GBP ( fg , rg )
b =

1×4 cell array
{2×1 double} {2×1 double} {2×1 double} {2×1 double}

stop_by =
1×2 cell array

{["epsilon"]} {["epsilon"]}

>> b{4}(1) % Probability that grass is wet if rain and sprinkler
ans =

1
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Coding

Algorithm 7: gm incmude evidence: Include evidence in a factor graph

Input: fg : a factor graph
evidence : evidences, cell array 1xnv

Output: fg : a factor graph

begin
Vobs ←set of variables with evidence
Reduce factors
foreach factor a ∈ F do

if Va \ Vobs not empty then
Va ← Va \ Vobs
Ta ← reduction of Ta

else
a ← empty

Remove empty factors
Add observed factors
foreach variable v ∈ Vobs do

add new factor with V=v, T=0, except T(v)=evidence{v}

4.6 gm plot belief evolution

Description

Plot the evolution of belief for a set of pair (variable, state) during a range of maximum number of
iteration (argument Nmax of gm infer GBP) of GBP.

Syntax

bt = gm_plot_belief_evolution ( V, S, i_start, i_end, fg, rg, epsilon, damp )

Argument

• V : vector of variable

• S : vector of state

• i start : first Nmax considered

• i end : last Nmax considered

• fg : structure (see paragraph 2.2) defining a factor graph

• rg : structure (see paragraph 2.3) defining a region graph

• epsilon : see epsilon argument of gm infer GBP

• damp : see damp argument of gm infer GBP

Evaluation

• bt : bt is a matrix such that bt(i, j) is p ( V(j)=S(i) ) at iteration istart-1+j
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Example

>> fg = gm_example_CHMM(4,2);

% observation at time step 2

>> evidence=zeros(1, length(fg.Card)); evidence(13:16)=2;

>> fge = gm_include_evidence( fg, evidence);

>> rge = gm_rg_CVM( fge);

>> bt = gm_plot_belief_evolution ( 1, 1, 1, 100, fge, rge, 0.0001, 0.0 );
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5 Utilities

5.1 gm check fg

Description

Check that:

• variables appear in sub factor graphs

• sub factor graphs are disconnected

• each sub factor graph is valid

Syntax

[is_OK, msg] = gm_check_fg( fg )

Argument

• fg : structure (see paragraph 2.2) defining a factor graph

Evaluation

• is OK : true if fg is valid, false otherwise

• msg : cell vector of error message(s)

Example

>> fg=gm_example_Sprinkler();

>> [is_OK, msg] = gm_check_fg( fg )

is_OK =

logical

1

msg =

[]

5.2 gm check rg

Description

Check that:

• each sub factor graph has an associated sub region graph,

• each sub region graph is valid (types of fields, each variable in a region, each factor in a region,
sum of counting numbers equals to 1).
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Syntax

[is_OK, msg] = gm_check_rg( rg, fg )

Argument

• fg : structure (see paragraph 2.2) defining a factor graph

• rg : structure (see paragraph 2.3) defining a region graph

Evaluation

• is OK : true if rg is valid, false otherwise

• msg : cell vector of error message(s)

Example

>> rg = gm_rg_CVM( gm_example_Sprinkler() );

>> [is_OK, msg] = gm_check_rg( rg, fg )

is_OK =

logical

1

msg =

[]

5.3 gm check rg JT

Description

Check if:

• rg is a junction graph (GBP acts as Loopy Belief Propagation algorithm),

• rg is a junction tree (GBP acts as Junction Tree algorithm).

For validity of rg, call gm check rg function.

Syntax

[is_JT, is_JG, msg] = gm_check_rg_JT( rg )

Argument

• rg : structure (see paragraph 2.3) defining a region graph

Evaluation

• is JT : true if all sub region graphs are junction trees, false otherwise

• is JG : true if all sub region graphs are junction graphs, false otherwise

• msg : cell vector of error message(s)
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Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_BETHE( fg)

rg =

1×1 cell array

{1×1 struct}

>> [is_JT, is_JG, msg] = gm_check_rg_JT( rg )

is_JT =

logical

0

is_JG =

logical

1

msg =

0×0 empty char array>> [is_OK, msg] = gm_check_rg( rg, fg )

is_OK =

logical

1

msg =

[]

>> fge=gm_include_evidence(fg,[0 1 1 0]);

>> rge = gm_rg_BETHE( fge )

rge =

1×2 cell array

{1×1 struct} {1×1 struct}

>> [is_JT, is_JG, msg] = gm_check_rg_JT( rge )

is_JT =

logical

1

is_JG =

logical

1

msg =

0×0 empty char array

5.4 gm plot fg

Description

Plot sub factor graph(s). Variables are represented by large blue circles. Factors are represented by
small red squares.
If variables have no Names they are called ’1’, ’2’ ... Factors of a sub factor graph are called ’f1’, ’f2’ ...

Syntax

gm_plot_fg( fg )

gm_plot_fg( fg , vsfg )

gm_plot_fg( fg , vsfg, layout )

Argument

• fg : structure (see paragraph 2.2) defining a factor graph

• vsfg : set of sub factor graph, a vector of integer
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• layout : a layout [default ’auto’], possible value: ’auto’, ’circle’, ’force’, ’layered’, ’subspace’,
’force3’, ’subspace3’

Example

>> global NS; NS=3; fg = gm_example_DBN(4,5)

fg =

struct with fields:

Card: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct]}

>> fg.Name = {’V11’,’V21’,’V31’,’V41’, ...

’V12’,’V22’,’V32’,’V42’, ...

’V13’,’V23’,’V33’,’V43’, ...

’V14’,’V24’,’V34’,’V44’, ...

’V15’,’V25’,’V35’,’V45’, ...

’V16’,’V26’,’V36’,’V46’}

>> gm_plot_fg(fg)

% States at period 2 are observed, the graph is cut in two

>> evidence=zeros(1,length(fg.Card)); evidence(5:8)=1;

>> fge=gm_include_evidence(fg, evidence)

fge =

struct with fields:

Card: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct] [1×1 struct]}

evidence: [0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

>> gm_plot_fg(fge)

Evidence: 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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% Improve visualisation of sub factor graph 1, changing layout

>> gm_plot_fg(fge, 1, ’circle’)

Evidence: 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.5 gm plot rg

Description

Plot sub region graph(s).
Regions are represented by large black squares.
Regions of a sub factor graph are called ’1’, ’2’ ...
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Syntax

gm_plot_rg( fg )

gm_plot_rg( rg , vsfg )

gm_plot_rg( rg , vsfg, layout )

Argument

• rg : structure (see paragraph 2.3) defining a region graph

• vsfg : set of sub region graph, a vector of integer

• layout : a layout [default ’auto’], possible value: ’auto’, ’circle’, ’force’, ’layered’, ’subspace’,
’force3’, ’subspace3’

Example

>> global NS; NS=3; fg = gm_example_DBN(4,5)

fg =

struct with fields:

Card: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct]}

>> rg = gm_rg_CVM( fg )

rg =

1×1 cell array

{1×1 struct}

>> gm_plot_rg(rg)
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% States at period 2 are observed, the graph is cut in two

>> evidence = zeros(1,length(fg.Card)); evidence(5:8)=1;

>> fge = gm_include_evidence(fg, evidence)

fge =

struct with fields:

Card: [3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct] [1×1 struct]}

evidence: [0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

>> rge = gm_rg_CVM( fge )

rge =

1×2 cell array

{1×1 struct} {1×1 struct}

>> gm_plot_rg(rge)

5.6 gm read fg

Description

Read an UAI file containing a factor graph. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#model .

Syntax

fg = gm_read_rg( file_name )

Argument

• file name : file name to read.

Evaluation

• fg : structure (see paragraph 2.2) defining a factor graph.
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Example

>> gm_write_fg( gm_example_Sprinkler(), ’Sprinkler.uai’)

>> fg = gm_read_fg( ’Sprinkler.uai’ )

fg =

struct with fields:

Card: [2 2 2 2]

sfg: {[1×1 struct]}

Here is the file ’Sprinkler.uai’.

MARKOV

4

2 2 2 2

4

1 0

2 0 1

2 0 2

3 1 2 3

2 0.5000 0.5000

4 0.5000 0.5000 0.9000 0.1000

4 0.8000 0.2000 0.2000 0.8000

8 1.0000 0.0000 0.9000 0.1000 0.9000 0.1000 0.0100 0.9900

5.7 gm read evidence

Description

Read an UAI file containing evidences. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#evidence .

Syntax

evidence = gm_read_evidence( file_name, nb_vars )

Argument

• file name : file name to read.

• nb vars : number of variables (just to check validity).

Evaluation

• evidence : observation of the state of some variables (see paragraph 2.6).

Example

>> gm_write_evidence( [0 1 0 1], ’Sprinkler.uai.evid’)

>> evidence = gm_read_evidence( ’Sprinkler.uai.evid’, 4)

evidence =

0 1 0 1

Here is the file ’Sprinkler.uai.evid’.

1

2 1 1.0000 3 1.0000
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5.8 gm read MAR

Description

Read an UAI file containing marginals. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#res .

Syntax

b = gm_read_MAR( file_name )

Argument

• file name : file name to read.

Evaluation

• b : marginals (belief of variables) (see paragraph 2.4).

Example

>> for v=1:4; MAR{v}=[1; 0]; end

>> gm_write_MAR( MAR, ’Sprinkler.uai.MAR’)

>> b = gm_read_MAR( ’Sprinkler.uai.MAR’ )

b =

1×4 cell array

{2×1 double} {2×1 double} {2×1 double} {2×1 double}

Here is the file ’Sprinkler.uai.MAR’.

MAR

1

4 2 1.0000 0.0000 2 1.0000 0.0000 2 1.0000 0.0000 2 1.0000 0.0000

5.9 gm read BEL

Description

Read an UAI file containing beliefs of regions. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#res .

Syntax

br = gm_read_BEL( file_name, fg, rg)

Argument

• file name : file name to read.

• fg : structure (see paragraph 2.2) defining a factor graph.

• rg : structure (see paragraph 2.3) defining a region graph.

Evaluation

• br : beliefs of regions (see paragraph 2.5).
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Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_CVM(fg);

>> [~, ~, BEL] = gm_infer_GBP( fg, rg);

>> gm_write_BEL( BEL, ’Sprinkler.uai.BEL’)

>> br = gm_read_BEL( ’Sprinkler.uai.BEL’, fg, rg )

br =

1×1 cell array

{1×6 cell}

Here is the file ’Sprinkler.uai.BEL’.

BEL

1

6 4 0.2500 0.2500 0.4500 0.0500 4 0.4000 0.1000 0.1000 0.4000 8 0.3500 0.0000 0.3150 ...

... 0.0350 0.1350 0.0150 0.0015 0.1485 2 0.5000 0.5000 2 0.7000 0.3000 2 0.5000 0.5000

5.10 gm write fg

Description

Write an UAI file containing a factor graph. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#model .

Syntax

gm_write_rg( fg, file_name )

Argument

• fg : structure (see paragraph 2.2) defining a factor graph.

• file name : file name to write.

Example

>> gm_write_fg( gm_example_Sprinkler(), ’Sprinkler.uai’)

Here is the file ’Sprinkler.uai’.

MARKOV

4

2 2 2 2

4

1 0

2 0 1

2 0 2

3 1 2 3

2 0.5000 0.5000

4 0.5000 0.5000 0.9000 0.1000

4 0.8000 0.2000 0.2000 0.8000

8 1.0000 0.0000 0.9000 0.1000 0.9000 0.1000 0.0100 0.9900
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5.11 gm write evidence

Description

Write an UAI file containing evidences. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#evidence .

Syntax

gm_read_evidence( evidence, file_name )

Argument

• evidence : observation of the state of some variables (see paragraph 2.6).

• file name : file name to write.

Example

>> gm_write_evidence( [0 1 0 1], ’Sprinkler.uai.evid’)

Here is the file ’Sprinkler.uai.evid’.

1

2 1 1.0000 3 1.0000

5.12 gm write MAR

Description

Write an UAI file containing marginals. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#res .

Syntax

gm_write_MAR( b, file_name )

Argument

• b : marginals (belief of variables) (see paragraph 2.4).

• file name : file name to write.

Example

>> for v=1:4; MAR{v}=[1; 0]; end

>> gm_write_MAR( MAR, ’Sprinkler.uai.MAR’)

Here is the file ’Sprinkler.uai.MAR’.

MAR

1

4 2 1.0000 0.0000 2 1.0000 0.0000 2 1.0000 0.0000 2 1.0000 0.0000
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5.13 gm write BEL

Description

Write an UAI file containing beliefs of regions. For a complete UAI format description,
see: http://www.cs.huji.ac.il/project/PASCAL/fileFormat.php#res .

Syntax

gm_write_BEL( br, file_name)

Argument

• br : beliefs of regions (see paragraph 2.5).

• file name : file name to write.

Example

>> fg = gm_example_Sprinkler();

>> rg = gm_rg_CVM(fg);

>> [~, ~, BEL] = gm_infer_GBP( fg, rg);

>> gm_write_BEL( BEL, ’Sprinkler.uai.BEL’)

>> br = gm_read_BEL( ’Sprinkler.uai.BEL’, fg, rg )

br =

1×1 cell array

{1×6 cell}

Here is the file ’Sprinkler.uai.BEL’.

BEL

1

6 4 0.2500 0.2500 0.4500 0.0500 4 0.4000 0.1000 0.1000 0.4000 8 0.3500 0.0000 0.3150 ...

... 0.0350 0.1350 0.0150 0.0015 0.1485 2 0.5000 0.5000 2 0.7000 0.3000 2 0.5000 0.5000
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6 Development

6.1 Tests

In gmtoolbox/TEST directory, Matlab functions allows to test the toolbox functions. They are non
regression tests, exploring limit cases, example problems of the toolbox, and some interesting for de-
velopment (see [3]).

A script TEST.m launches all tests.
A script Test < function >.m allows to test functions related to inference.
Some local functions generate specific problems for test.

The following table summarizes defined tests.

Factor graph Tiny Trivial Lattice Fig11 Fig4 Fig13 CHMM DBN Sprinkler

Test rg CVM.m
gm rg CVM x x x x x
(regions) x x

Test rg BETHE.m
gm rg BETHE x x x x x

Test rg JT.m
gm rg JT x x x x x

Test include evidence.m
gm include evidence x x x

Test infer GBP.m
gm infer GBP CVM CVM+ CVM CVM CVM CVM CVM CVM CVM

rg CVM+(x2) JT JT BETHE JT JT CVM+
BETHE BETHE BETHE BETHE rg

JT rg
rg(x2)

CVM+ stands for CVM with regions given in argument.
rg stands for regions graph given directly (not the output of a toolbox function).

Note that the script Test infer GBP MAP.m checks the same tests as Test infer GBP.m but uses
infer GBP.m (other coding of GBP) instead of gm infer GBP.m.

6.2 Comparison with libDAI

6.2.1 Problems to test

We chose to use a function of the toolbox to generate a problem: gm example DBN. This function
allows to create Dynamic Bayesian Networks, fixing the following parameters:

• v : number of variables in one time period,
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• s : number of states of each variable,

• h : number of time period.

We call problems DBN-< v > − < s > − < h >.

6.2.2 Parametrization of libDAI

libDAI is launched with the command line.

We used the pre-defined parametrization, written in the file libDAI-0.3.2/tests/aliases.conf

GBP_MIN: HAK[doubleloop=0,clusters=MIN,init=UNIFORM,tol=1e-9,maxiter=10000]

GBP_BETHE: HAK[doubleloop=0,clusters=BETHE,init=UNIFORM,tol=1e-9,maxiter=10000]

GBP_DELTA: HAK[doubleloop=0,clusters=DELTA,init=UNIFORM,tol=1e-9,maxiter=10000]

GBP_LOOP3: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=3,tol=1e-9,maxiter=10000]

GBP_LOOP4: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=4,tol=1e-9,maxiter=10000]

GBP_LOOP5: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=5,tol=1e-9,maxiter=10000]

GBP_LOOP6: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=6,tol=1e-9,maxiter=10000]

GBP_LOOP7: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=7,tol=1e-9,maxiter=10000]

GBP_LOOP8: HAK[doubleloop=0,clusters=LOOP,init=UNIFORM,loopdepth=8,tol=1e-9,maxiter=10000]

Documentation was find in:

• libDAI-0.3.2/doc/html/structdai 1 1HAK 1 1Properties.html

• source code libDAI-0.3.2/src/Hak.cpp et regiongraph.cpp (for constructCVM)

booldai :: HAK :: Properties :: doubleloop
Use single-loop (GBP) or double-loop (HAK)
The following cluster choices are defined:

• MIN minimal clusters, i.e., one outer region for each maximal factor

• DELTA one outer region for each variable and its Markov blanket

• LOOP one cluster for each loop of length at most Properties::loopdepth, and in addition one
cluster for each maximal factor

• BETHE Bethe approximation (one outer region for each maximal factor, inner regions are single
variables)

With BETHE, constructCVM is not called but is called with others.
dai :: HAK :: Properties :: DAIENUM ( InitType, UNIFORM, RANDOM )

sizetdai :: HAK :: Properties :: loopdepth

Depth of loops (only relevant for clusters == ClustersType::LOOP)
Realdai :: HAK :: Properties :: tol

Tolerance for convergence test.
sizetdai :: HAK :: Properties :: maxiter

Maximum number of iterations.

6.2.3 Compare execution time and beliefs

The execution time was measured on perdu PC.

In the following table, the time used to build region graph with gm rg CVM is not taken into account.
To have an idea, it requires 0.3s for DBN-10-10-10 and 6s for DBN-10-10-40.
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Execution time can vary. For example, when the program is launched consecutively, or if the C library
version is changed (with an update of Ubuntu and a recompilation of libDAI). Several measures allow
to check that the following times were representatives.
We used the script TEST/Test DBN libDAI.m which itself launches sh TEST/Test DBN libDAI.sh.

Problem Execution time in s Execution time in s max(abs(difference)
DBN < v > < s > < h > of GBP MIN libDAI of GBP Matlab on beliefs

(version May 17, 2018)

DBN-10-10-10 0.14 0.39 0.0016
DBN-20-10-10 0.30 0.76 0.0029
DBN-10-10-40 0.57 1.67 0.0018
DBN-10-10-60 0.79 2.80 0.0018
DBN-140-10-8 1.78 7.18 0.0019
DBN-144-10-10 2.06 10.31 0.0019
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GMtoolbox functions

GM generation

gm example Sprinkler Generate a Bayesian Network toy example

gm example Ecology Generate a toy example related to ecology

gm example CHMM Generate a Dynamic Bayesian Network

gm example DBN Generate a Coupled Hidden Markov Model

gm create fg Generate a factor graph

gm separate fg Separate connected sub factor graphs

GMDP inference

gm infer GBP Generalized Belief Propagation (parent-to-child)

gm rg CVM Generate a region graph with Cluster Variation Method (CVM)

gm rg BETHE Generate a region graph with BETHE approximation

gm rg JT Generate a region graph such that GBP corresponds to Junction Tree (JT)

gm include evidence Take into account observations

gm plot belief evolution Plot the evolution of belief for a range of GBP iteration

Utilities

gm check fg Check the validity of a factor graph

gm check rg Check the validity of a region graph

gm check rg JT Check if a region graph is of the type given by gm rg JT function

gm plot fg Plot a factor graph

gm plot rg Plot a region graph

gm read fg Read a factor graph in UAI format

gm read evidence Read evidences in UAI format

gm read MAR Read marginals in UAI format

gm read BEL Read beliefs of regions in UAI format

gm write fg Write a factor graph in UAI format

gm write evidence Write evidences in UAI format

gm write MAR Write marginals in UAI format

gm write BEL Write beliefs of regions in UAI format
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