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This is a quick start to learn how to use GMtoolbox (see http://inra.fr/mia/T/GMtoolbox).

For a detailed presentation of formalization and inference in a Graphical Model (GM) with the tool-
box, please refer to the user documentation of the toolbox (included in the toolbox).

1 Get GMtoolbox

From the Project Forge Files page:
https://sourcesup.renater.fr/frs/?group id=3868
download the file gmtoolbox.zip.
Unzip the file and go to the gmtoolbox directory. On Linux system execute the following system
commands:

unzip gmtoolbox.zip

cd gmtoolbox

To use the toolbox in a MATLAB session, add the gmtoolbox directory absolute paths to MATLAB
search path while being in the gmtoolbox directory. Execute the following MATLAB commands:

>> GMtoolbox_path = pwd;

>> addpath( genpath( GMtoolbox_path ) )

To access the PDF user documentation, open the file doc/ReferenceManual.pdf with an appro-
priate software.
For any question, first consult the FAQ on the GMtoolbox website:
http://inra.fr/mia/T/GMtoolbox/download.html
If there is no appropriate answer or if you wish to suggest a feature, add a request on the Bugs and
Feature request of the project:
https://sourcesup.renater.fr/tracker/?atid=6401&group id=3868&func=browse

2 A toy DBN inference ecology problem

We consider a very simplified ecological network, 4 species: plankton (P), zooplankton (Z), krill
(K), marine mammals (M) which population dynamic are interdependent. We modelize the annual
population dynamic by the following Dynamic Bayesian Network (DBN).
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That is the population of plankton at time t+1 (P t+1) is related to the population of plankton at
time t (P t) and the population of marine mammals (M t) through feces, death... The other relations
are prey-predator ones: marine mammals eat zooplankton that eat plankton.
The considering qualitative states are low (1), normal (2) and high (3) population.
The transition probabilities are simplified and are the same for all species. Considering the species V
depending of also of species v, the transition p(V t+1|V t, vt) is defined by the following array T.

T(:,:,1) = [p1 p2 p4; % $p(V^{t+1}=1|V^t, v^t)$

p2 p3 p4;

p4 p4 p4];

TT(:,:,2) = [p4 p4 p4; % $p(V^{t+1}=2|V^t, v^t)$

p2 p1 p2;

p4 p4 p3];

T(:,:,3) = [p4 p4 p4; % $p(V^{t+1}=3|V^t, v^t)$

p4 p3 p2;

p4 p2 p1];

That is p(V t+1 = 2|V t = 3, vt = 1) = T (3, 1, 2) = p4.
For example purpose, we choose p1 = 0.5, p2 = 0.2, p3 = 0.05, p4 = 0.01.
Furthermore initial states are likely normal p(V 0 = 1) = 0.25, p(V 0 = 2) = 0.5, p(V 0 = 3) = 0.25 .

We consider 3 years (2 time steps).
Lets now represent the relations for the entire graphical model with factors graph and variables.
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2.1 Representation of the problem

We define the list of variables as follows: P 1, Z1,K1,M1, P 2, Z2,K2,M2, P 3, Z3,K3,M3.
Here is the same model with the coding numbers in Matlab for variables and factors.
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>> fg = gm_example_Ecology()

fg =

struct with fields:

Name: {'P1' 'Z1' 'K1' 'M1' 'P2' 'Z2' 'K2' 'M2' 'P3' 'Z3' 'K3' 'M3'}

Card: [3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {[1×1 struct]}

>> gm_plot_fg( fg )

For demonstration purpose, lets check the validity of the description with the gm check fg function.
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>> [is_OK, msg] = gm_check_fg( fg )

is_OK =

1

msg =

{[]}

No error was detected !

2.2 Inference of beliefs

If the function gm rg JT can run (for large problem memory is not sufficient), gm infer GBP provides
exact values for beliefs because GBP algorithm acts as Junction tree with the generated region graph.

>> rg = gm_rg_JT( fg)

rg =

1×1 cell array

{1×1 struct}

>> [b, stop_by] = gm_infer_GBP ( fg , rg )

b =

1×12 cell array

Columns 1 through 4

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 5 through 8

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 9 through 12

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

stop_by =

1×1 cell array

{'epsilon'}

>> b{9}

ans =

0.2012

0.5778

0.2210

Here, gm rg JT has stopped with the ’epsilon’ criterium that means that the algorithm had converged.
If it was not the case (stopped by ’Nmax’ criterium: maximum number of iteration reached), it would
be necessary to be sure that the algorithm does not oscillate and rerun it with other values for default
arguments (see the second example of this QuickStart).

For information purpose, lets run the others available functions to generate region graphs. For both
of them, GBP algorithm provides approximate values of beliefs.
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>> rg = gm_rg_BETHE( fg)

rg =

1×1 cell array

{1×1 struct}

>> [b, stop_by] = gm_infer_GBP ( fg , rg )

b =

1×12 cell array

Columns 1 through 4

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 5 through 8

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 9 through 12

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

stop_by =

1×1 cell array

{'Nmax'}

>> b{9}

ans =

0.1516

0.6892

0.1592

>> rg = gm_rg_CVM( fg)

rg =

1×1 cell array

{1×1 struct}

>> [b, stop_by] = gm_infer_GBP ( fg , rg )

b =

1×12 cell array

Columns 1 through 4

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 5 through 8

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 9 through 12

{3×1 double} {3×1 double} {3×1 double} {3×1 double}

stop_by =

1×1 cell array

{'epsilon'}

>> b{9}

ans =

0.1517

0.6892

0.1591

We could infer that the population of plankton at time step 3 (t = 3), (P 3, variable 9 of the factor
graph) is quite likely still normal (state 2).
Note that even for this toy example, both approximations are closed but not egal to the exact values.

2.3 Taking into account observations

Suppose that states of population are observed at time step 2 in state low: P 2 = 1, Z2 = 1,K2 =
1,M2 = 1. Then, variables 5, 6, 7, 8 are observed at state 1.

5



>> evidence=zeros(1,length(fg.Card));

>> evidence([5 6 7 8])=1; % observation of states at the 2nd time step

>> fge = gm_include_evidence(fg, evidence)

fge =

struct with fields:

Name: {1×12 cell}

Card: [3 3 3 3 3 3 3 3 3 3 3 3]

sfg: {1×5 cell}

evidence: [0 0 0 0 1 1 1 1 0 0 0 0]

>> gm_plot_fg( fge )

Taking into account these observations, the initial sub factor graph is splitted in 5 sub factor graphs.

>> rge = gm_rg_JT( fge);

>> [b, stop_by] = gm_infer_GBP ( fge , rge );

b =

1×12 cell array

Columns 1 through 5

{3×1 double} {3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 6 through 10

{3×1 double} {3×1 double} {3×1 double} {3×1 double} {3×1 double}

Columns 11 through 12

{3×1 double} {3×1 double}

stop_by =

1×5 cell array

{'epsilon'} {'epsilon'} {'epsilon'} {'epsilon'} {'epsilon'}

>> b{9}

ans =

0.9615

0.0192

0.0192

Now, we could infer that the population of plankton at time step 3 (t = 3), (P 3, variable 9 of the
factor graph) is nearly for sure low (state 1).

The others ways of building region graph here provide the same values for beliefs.
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3 A toy Coupled HMM epidemics problem

A Hidden Markov Model (HMM) is a Markov model in which the system being modeled is assumed
to be a Markov process with unobserved (i.e. hidden) states. Coupled HMM (CHMM) provide in-
teraction in state-space instead of observation states as used in classical HMM that fails to model
correlation between inter-modal dependencies.

Here, a Coupled HMM is used to model the dynamics of a pest that can spread on a landscape
composed of N crop fields organized in a regular grid. The neighborhood of field i, denoted Ni, is the
set of the 4 closest fields (or 3 or 2, on the borders and corners of the grid).

Hi
t ∈ {0, 1} (1 ≤ i ≤ N, 0 ≤ t ≤ T ) is the state of crop field i at time t. State 0 (resp. 1) represents

the absence (resp. presence) of the pest in the field. Variable Hi
t depends on Hi

t−1 and of the Hj
t−1

such that j is in Ni. The conditional probabilities of survival and apparition of the pest in field i are
parameterized by 3 parameters:

• ε, the probability of contamination from outside the landscape (long-distance dispersal).

• ρ, the probability that the pest spreads from an infected field j ∈ Ni (Hj
t = 1) to field i between

time t and t+ 1.

• ν, the probability that an infected field at time t remains infected at t+ 1

We assume that contamination events from every neighbor fields are independent. Then, if Iit is the
number of infected neighbors of field i at time t (Iit =

∑
j∈Ni

Hj
t ), we have

P (Hi
t+1 = 1 | Hi

t = 0, Hj
t , j ∈ Ni) = ε+ (1− ε)(1− (1− ρ)I

i
t )

and
P (Hi

t+1 = 1 | Hi
t = 1, Hj

t , j ∈ Ni) = ν + (1− ν)
(
ε+ (1− ε)(1− (1− ρ)I

i
t )
)
.

The Hi
t are hidden variables. During monitoring, a binary variable On

t is observed: it takes value
1 if the pest has been observed and 0 otherwise. But error of detection is possible: we can have
false negative observations (the pest is there but difficult to see so it was missed) or false positive
observations (the pest was mixed up with another one). We define P (Oi

t = 1 | Xi
t = 0) = fp and

P (Oi
t = 0 | Xi

t = 1) = fn.
“Expert” values for the dynamics parameters in the case of a weed species can be ε = 0.15, ρ = 0.2, ν =
0.5. For the observations distributions, we take fp = 0.05 and fn = 0.1.

We consider a square grid of N=4 fields evolving during T=2 periods.
Lets detail the problem. Here is the set of fields and the possible propagation of pest between them.

3 4

1 2

Lets now represent state and observation variables relations between 2 time steps.
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Lets represent now all the relations with factors graph and variables for the entire graphical model.
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3.1 Representation of the problem

We define the list of variables as follows :
H1

1 , H
1
2 , H

1
3 , H

1
4 , H
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2
3 , H

2
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3
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3
4

and we label them 1, · · · , 20. That is, state variables are coded 1, · · · , 12 and observation variables
are coded 13, · · · , 20.

Here is the model with the coding numbers in Matlab for variables and factors.
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>> N=4; % 4 fields

>> T=2; % 2 time steps

>> Name = {'H11','H21','H31','H41', ...

'H12','H22','H32','H42', ...

'H13','H23','H33','H43', ...

'O12','O22','O32','O42', ...

'O13','O23','O33','O43'};

>> fg = gm_example_CHMM(N, T);

>> fg.Name = Name

fg =

struct with fields:

Card: [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

sfg: {[1×1 struct]}

Name: {1×20 cell}

Each variable has 2 states: 1: infected, 2: non infected.
The list of cardinalities of variables is defined in the Card attribut.

>> fg.Card

ans =

Columns 1 through 20

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

We suppose that the initial states of fields are unknown. P (H1
i = 1) = 0.5 with i = {1, 2, 3, 4}

We then represent this a priori knowledge on initial states with factors f9, f10, f11, f12. For example,
considering factor f1, the set of associated variable is H1

1 coded 1 and the table is
P (H1

i = 1) = 0.5, P (H1
i = 2) = 0.5.

>> fg.sfg{1}.F{9}

ans =

V: 1

T: [2x1 double]

>> fg.sfg{1}.F{9}.T

ans =

0.5

0.5

We now define factors involved in time transitions: f1, · · · , f12. Considering factor f1, the implied
variables are H1

1 , H
1
2 , H

1
3 , H

2
1 which are labeled 1, 2, 3, 5.

The associated table gives P (H2
1 |H1

1 , H
1
2 , H

1
3 )
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>> fg.sfg{1}.F{1}.V

ans =

1 2 3 5

>> fg.sfg{1}.F{5}.T

ans(:,:,1,1) =

0.8500 0.6800

0.5750 0.6600

ans(:,:,2,1) =

0.6800 0.5440

0.6600 0.7280

ans(:,:,1,2) =

0.1500 0.3200

0.4250 0.3400

ans(:,:,2,2) =

0.3200 0.4560

0.3400 0.2720

Then P (H2
1 = 2|H1

1 = 1, H1
2 = 1, H1

3 = 1) is coded in T(1,1,1,2) as 0.15.

Finally, we define factors involving observation variables. Considering factor f13, it involves 2 variables
O2

1 and H2
1 coded 5 and 13. We know that P (H2

1 = 1|O2
1 = 2) = fn and

P (H2
1 = 2|O2

1 = 1) = fp. This allows to define the associated table.

>> fg.sfg{1}.F{13}.V

5 13

>> fg.sfg{1}.F{13}.T

ans =

0.9000 0.1000

0.0500 0.9500

It is possible to plot the factor graph.

gm_plot_fg(fg)

Other layouts are possible but not really better for this problem.

gm_plot_fg(fg, 1, 'circle')
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3.2 Inference of beliefs

If we want to know the probability of field 1 to be infected at time 3, we just have to infer it.
Before calling Generalized Belief Propagation (GBP), the fist step is to build a region graph needed
by GBP. The toolbox proposes 3 functions. If the problem is simple use gm rg JT, GBP that will act
as the Junction Tree algorithm, giving the exact probability. If not applicable, try gm rg BETHE. In
this last case, GBP will act as Loopy Belief Propagation. Finally try gm rg CVM that will compute
an approximate probability.

In each case, check that GBP was stopped by the ’epsilon’ condition, not by ’Nmax’ (the maxi-
mum number of iteration was reached). If it is the case, play with otional arguments of GBP function
as in the next paragraph.
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>> rg = gm_rg_JT(fg);

>> [b, stop_by] = gm_infer_GBP ( fg , rg );

>> stop_by

stop_by =

1×1 cell array

{'epsilon'}

>> b{9}(1)

ans =

0.7062

>> rg = gm_rg_BETHE(fg);

>> [b, stop_by] = gm_infer_GBP ( fg , rg );

>> stop_by

stop_by =

1×1 cell array

{'epsilon'}

>> b{9}(1)

ans =

0.7050

>> rg = gm_rg_CVM( fg );

>> [b, stop_by] = gm_infer_GBP ( fg , rg );

>> stop_by

stop_by =

1×1 cell array

{'epsilon'}

>> b{9}(1)

ans =

0.7050

The probability of field 1 at time 3 (variable H3
1 coded 9) to be infected (coded 1) is computed with

gm rg JT) to 0.7062. This probability is estimated to 0.7050 using gm rg BETHE or gm rg CVM.

3.3 Taking observations into account

If we only observe fields at time t=3, with just field 1 infected : O3
1 = 1, O3

2 = 2, O3
3 = 2, O3

4 = 2. The
considered variables are coded 17, 18, 19, 20.

We just have to enter this evidence in the factor graph and infer probabilities on the new factor
graph.

>> evidence = zeros(1, length(fg.Card));

>> evidence(17:20)=[1 2 2 2];

>> fge = gm_include_evidence(fg, evidence)

fge =

struct with fields:

Card: [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

sfg: {[1×1 struct]}

Name: {1x20 cell}

evidence: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 2]

>> rge = gm_rg_JT(fge);

>> [be, stop_by] = gm_infer_GBP ( fge , rge );

>> stop_by

stop_by =

1×1 cell array

{'epsilon'}

>> be{1}(1)

ans =

0.4924
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The probability of field 1 at time 1 (variable H1
1 coded 1) to be infected (coded 1) is computed with

gm rg JT) to 0.4924.
For example purpose, lets approximate this probability with gm rg BETHE and gm rg CVM.

>> rge = gm_rg_BETHE(fge);

>> [be, stop_by] = gm_infer_GBP ( fge , rge );

>> stop_by

stop_by =

1×1 cell array

{'epsilon'}

>> be{1}(1)

ans =

0.4947

>> rge = gm_rg_CVM(fge);

>> [be, stop_by] = gm_infer_GBP ( fge , rge );

>> stop_by

stop_by =

1×1 cell array

{'Nmax'}

The probability is well estimated using gm rg BETHE but using gm rg CVM the inference algorithm
is stopped by the ’Nmax’ criterium (maximum number of iteration reached, by default set to 100).
In this case, it is worth to evaluate the evolution of the estimation of probabilities at each iteration.
For example, lets look the evolution for the probability of field 1 at time 1 (variable H1

1 coded 1) to
be infected (coded 1) for iteration from 1 to 100.

% We plot belief evolution

>> bt = gm_plot_belief_evolution ( 1, 1, 1, 100, fge, rge, 0.0001, 0.0 )

The estimation of the probability clearly oscillates. So lets try to use damping, that is make a
compromize at each iteration between old and new values of messages. There is still oscillation with
damp at 0.1, so we try damp at 0.2.
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[be, stop_by] = gm_infer_GBP ( fge , rge, 100, 0.0001, 0.2, true);

n=1 delta=0.70833

n=2 delta=0.14757

n=3 delta=0.11976

n=4 delta=0.048225

n=5 delta=0.023318

n=6 delta=0.0097561

n=7 delta=0.0043376

n=8 delta=0.0020174

n=9 delta=0.00098648

n=10 delta=0.00050221

n=11 delta=0.00024589

n=12 delta=9.1312e-05

>> stop_by

stop_by =

'epsilon'

>> be{1}(1)

ans =

0.4950

Using verbose execution (6th argument of the function gm infer GBP, only 12 iterations are done for
a quite good estimation of belief (0.4950 instead of 0.4924). Note that damping do not often works
so well.
So, giving the observations at time 3 (with only field 1 infected), the probability of being infected at
time 1 for field 1 is a little inferior at 0.5 (that is i.e. unknown).
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