GMDPtoolbox: a Matlab library for solving
Graph-based Markov Decision Processes

Marie-Josée Cros, Nathalie Peyrard, Régis Sabbadin

UR MIAT, INRA Toulouse, France

== INRA

—=" SCIENCE & IMPACT

JFRB, Clermont Ferrand, 27-28 juin 2016

17



System management in ecology and agriculture

Management is complex because several entities in interaction must be
managed together with a long term objective with uncertain environment.

Integrated management:
- variety choice,
- cultural practices,

- soil management,

Finding an optimal (or at least a good) policy to govern these large systems is
still a challenge in practice.
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MDP

Markov Decision Processes (MDP) [Puterman 94, Sigaud et al. 10] provide
a classical framework for modelling and solving problems of sequential
decision under uncertainty.

A discrete-time stationary MDP is defined by a 4-tuple < S, A, p, r > :
e S is the state space,

e A is the action space
e p (s'|s, a) is the transition probability function

e r (s, a)is the reward function

For a given policy J, defines a stationary Markov chain over S, with

transitions ps(s’|s) = p(s'|s, §(s)).
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MDP - Policy design

e A policy is defined as a function § : S — A.
Let vs(s) is the value of the policy 4.
For the infinite-horizon discounted reward criterion:
vs(s) = E[ F (st 6(sh))|s® = s] VseS.

¢ Policies that maximizes vs can be computed in polynomial time in | S|
and |A| using Dynamic Programming (Policy lteration, Value lteration...).

To address larger problems, several frameworks Factored MDP
(FMDP) have been proposed for factored state or/and action spaces and
policies [Guestrin et al. 01, Kim et al. 02]
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GMDP

Graph-based MDP (GMDP) framework [Sabbadin et al. 12]
— states, actions spaces factorisation (sites in interaction).

For a given policy, the dynamic model is a Dynamic Bayesian Network.
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GMDP - Policy finding

A discrete-time GMDP is defined by a 5-tuple < S, A,N,p,r > :

e S =5 x---x8,;

e A=A x---xA

e N ={N,Vi=1,... . nywithN;Cc{1,...,n}
p = {pi(silsn,a)vi=1,...,n} — p(s'|s, a) = [T\ pi(si|sn;, &)
o r ={r(sn,a)vi=1,...,n} = r(s,a)=> 1, ri(sn;a)

Only local policies are considered: 6 = (d1,...,0n) where §; : Sy, — A;

Two algorithms, providing local policies by approximate resolution of a GMDP,
have been defined by [Sabbadin et al 12].

e MF-API : Mean Field Approximate Policy Iteration
Exploits the structure of the neighborhood relations of the GMDP and
computes a Mean-Field approximation of the value function of a policy.

e ALP : Approximate Linear Programming
Derived from the general class of ALP algorithms, for large size MDP.

They usually find empirically good local policies.
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GMDPtoolbox - An help to apprehend the framework and support
studies

1. Describe the problem
» 3 functions available to define simple problems

2. Find a good policy
» 2 functions for MF-API and ALP
» 1 function to translate small problem in MDP format
for MDPtoolbox![Chades et al. 14]

3. Interpret the policy
» 5 functions to apprehend and visualize policies

S 4. Analyse policies

» 3 functions to evaluate the value function
> 4 functions to simulate policies

Sp——

"MDP toolbox: http://inra.fr/mia/T/MDPtoolbox
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Quick start - Epidemics management toy example

3 crop fields can be in two states: uninfected (1 @) or infected (2 @).

Each field is susceptible to contamination by a pathogen.
Two actions for a field: a normal (1 X) or adapted (2 V) cultural mode.

When a field is contaminated, the yield decreases.
The problem is to optimize a long-term policy in terms of expected yield.
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Quick start - Computing a policy
1. Describe the problem
>> GMDP = gmdp_example_epidemio ();

2. Find a good policy
>> policyloc = gmdp.linear_programming (GMDP, discount);
>> actions_repartition_state_.site = gmdp.analyze_policy_-neighbor (GMDP, policyloc);
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Quick start - Evaluating a policy
3 Simulate policy application

>> [sim_state, sim_reward]

>> value_evolution1t = gmdp_.eval_policy_value(discount,

= gmdp_simulate_policy (GMDP, policyloc);

sim_reward);

>> state_time = gmdp_.eval_policy_state_time (GMDP, sim_state);
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Evaluate pest management

Time spent in the different site states

e Each site is non contaminated about 65% of the time.
e This could be compared with other policies.



Management of phoma pest on canola crop

A grid of 100 fields, for each field 11 states, 8(23) actions, 5 neighbors.
Find a good strategy and simulate 4 policies from a given initial state.
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e Put on the spotligth a new interesting strategy.

e Put in evidence contrasted long term effect of policies.
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Conclusion
GMDPtoolbox : A free library?that provides:
¢ a framework to set the problem,
e algorithms to find a good policy,
e tools to explore and analyze policies,

Perspectives
¢ A new version soon released providing more adapted analysis functions,
and GNU Octave compatibility.
e An other solving algorithm [Cheng et al. 13] based on approximate Value
Iteration which approximate the value function with a Belief Propagation
algorithm.

Application

o GMDP framework yet used for: plant disease management [Peyrard et
al. 07], human disease management [Choisy et al. 07], forest
management [Forsell et al. 11] and invasive pest control [Nicol et al. 15].

e With current environment evolution (biodiversity decrease, climate
change...), GMDPtoolbox could help adapting management in
agriculture, epidemics control or ecology.

2GMDPtoolbox: http://inra.fr/mia/T/GMDPtoolbox
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