GMDPtoolbox: a Matlab library for solving Graph-based Markov Decision Processes

Marie-Josée Cros, Nathalie Peyrard, Régis Sabbadin

UR MIAT, INRA Toulouse, France

JFRB, Clermont Ferrand, 27-28 juin 2016

System management in ecology and agriculture

Management is complex because several entities in interaction must be managed together with a long term objective with uncertain environment.

Integrated management:

- variety choice,
- cultural practices,
- soil management,

...

Finding an optimal (or at least a good) policy to govern these large systems is still a challenge in practice.

MDP

Markov Decision Processes (MDP) [Puterman 94, Sigaud *et al.* 10] provide a classical framework for modelling and solving problems of sequential decision under uncertainty.

A discrete-time stationary MDP is defined by a 4-tuple < S, A, p, r > :

- S is the state space,
- A is the action space
- p(s'|s, a) is the transition probability function
- r (s, a) is the reward function

For a given policy δ , defines a stationary *Markov chain* over *S*, with transitions $p_{\delta}(s'|s) = p(s'|s, \delta(s))$.

MDP - Policy design

- A policy is defined as a function $\delta : S \to A$. Let $v_{\delta}(s)$ is the value of the policy δ . For the infinite-horizon discounted reward criterion: $v_{\delta}(s) = E\left[\sum_{t=0}^{+\infty} \gamma^{t} r(s^{t}, \delta(s^{t})) | s^{0} = s\right], \forall s \in S.$
- Policies that maximizes v_{δ} can be computed in polynomial time in |S| and |A| using Dynamic Programming (Policy Iteration, Value Iteration...).

To address larger problems, several frameworks Factored MDP (FMDP) have been proposed for factored state or/and action spaces and policies [Guestrin *et al.* 01, Kim *et al.* 02]

GMDP

Graph-based MDP (GMDP) framework [Sabbadin *et al.* 12] \rightarrow states, actions spaces factorisation (sites in interaction).

For a given policy, the dynamic model is a Dynamic Bayesian Network.

Neighborhood relationship

Corresponding DBN

GMDP

Graph-based MDP (GMDP) framework [Sabbadin et al. 12]

 \rightarrow states, actions spaces factorisation (sites in interaction).

For a given policy, the dynamic model is a Dynamic Bayesian Network.

Neighborhood relationship

Corresponding DBN

GMDP

Graph-based MDP (GMDP) framework [Sabbadin et al. 12]

 \rightarrow states, actions spaces factorisation (sites in interaction).

For a given policy, the dynamic model is a Dynamic Bayesian Network.

Neighborhood relationship

Corresponding DBN

GMDP - Policy finding

A discrete-time GMDP is defined by a 5-tuple < S, A, N, p, r > :

•
$$S = S_1 \times \cdots \times S_n$$

•
$$A = A_1 \times \cdots \times A_n$$

•
$$N = \{N_i, \forall i = 1, ..., n\}$$
 with $N_i \subset \{1, ..., n\}$

•
$$p = \{p_i(s'_i|s_{N_i}, a_i) \forall i = 1, ..., n\} \rightarrow p(s'|s, a) = \prod_{i=1}^n p_i(s'_i|s_{N_i}, a_i)$$

• $\mathbf{r} = \{r_i(s_{N_i}, a_i) \forall i = 1, ..., n\} \to r(s, a) = \sum_{i=1}^n r_i(s_{N_i}, a_i)$

Only *local policies* are considered: $\delta = (\delta_1, \dots, \delta_n)$ where $\delta_i : S_{N_i} \to A_i$

Two algorithms, providing local policies by approximate resolution of a GMDP, have been defined by [Sabbadin *et al* 12].

- MF-API : Mean Field Approximate Policy Iteration Exploits the structure of the neighborhood relations of the GMDP and computes a *Mean-Field approximation* of the value function of a policy.
- ALP : Approximate Linear Programming Derived from the general class of ALP algorithms, for large size MDP.

They usually find empirically good local policies.

GMDPtoolbox - An help to apprehend the framework and support studies

gmdp_see_policy_graph

gmdp_analyze_policy

gmdp_analyze_policy_neighbs

Policy evaluation

Mean-Fiel basied evaluation

gmdp_eval_policy_MF

Simulation based evaluation

gmdp_simulate_policy

gmdp_eval_policy_value

gmdp_eval_policy_value_site _contribution

gmdp_eval_policy_state_time

Evaluation of global value

gmdp_eval_policy_global_value

gmdp_eval_policy_global_value

- 1. Describe the problem
 - 3 functions available to define simple problems
- 2. Find a good policy
 - 2 functions for MF-API and ALP
 - 1 function to translate small problem in MDP format for MDPtoolbox¹[Chadès et al. 14]
- 3. Interpret the policy
 - 5 functions to apprehend and visualize policies
- 4. Analyse policies
 - 3 functions to evaluate the value function
 - 4 functions to simulate policies

¹MDP toolbox: http://inra.fr/mia/T/MDPtoolbox

Quick start - Epidemics management toy example

- 3 crop fields can be in two states: uninfected (1 3) or infected (2 3).
- Each field is susceptible to contamination by a pathogen.
- Two actions for a field: a normal (1 X) or adapted (2 ♥) cultural mode.
- When a field is contaminated, the yield decreases.
- The problem is to optimize a long-term policy in terms of expected yield.

Quick start - Computing a policy

1. Describe the problem

```
>> GMDP = gmdp_example_epidemio();
```

2. Find a good policy

```
>> policyloc = gmdp_linear_programming(GMDP, discount);
```

```
>>> actions_repartition_state_site = gmdp_analyze_policy_neighbor(GMDP, policyloc);
```


Decision rule

IF field is infected THEN apply an adapted cultural mode ELSE apply a normal cultural mode

Quick start - Evaluating a policy

3 Simulate policy application

>>> [sim_state, sim_reward] = gmdp_simulate_policy(GMDP, policyloc);

>> value_evolution1 = gmdp_eval_policy_value(discount, sim_reward);

>> state_time = gmdp_eval_policy_state_time(GMDP, sim_state);

Cumulative discounted reward

Time spent in the different site states

Evaluate pest management

- Each site is non contaminated about 65% of the time.
- This could be compared with other policies.

Management of phoma pest on canola crop

A grid of 100 fields, for each field 11 states, 8(2³) actions, 5 neighbors. Find a good strategy and simulate 4 policies from a given initial state.

Expected cumulative rewards

Mean state repartition in wheat state

Results

- Put on the spotligth a new interesting strategy.
- Put in evidence contrasted long term effect of policies.

Conclusion

GMDPtoolbox : A free library²that provides:

- a framework to set the problem,
- algorithms to find a good policy,
- tools to explore and analyze policies,

Perspectives

- A new version soon released providing more adapted analysis functions, and GNU Octave compatibility.
- An other solving algorithm [Cheng *et al.* 13] based on approximate Value Iteration which approximate the value function with a Belief Propagation algorithm.

Application

- GMDP framework yet used for: plant disease management [Peyrard *et al.* 07], human disease management [Choisy *et al.* 07], forest management [Forsell *et al.* 11] and invasive pest control [Nicol *et al.* 15].
- With current environment evolution (biodiversity decrease, climate change...), GMDPtoolbox could help adapting management in agriculture, epidemics control or ecology.

²GMDPtoolbox: http://inra.fr/mia/T/GMDPtoolbox

References I

In Proceedings of the 22th International Joint Conference on Artificial Intelligence.

References II

Nicol, S., Chadès, I., Peyrard, N., and Sabbadin, R. (2015).

An optimal approach to managing two-species competition stopping the Gambusia fish invasion of Edgbaston Mound springs.

In ICCB: 27th International Congress for Conservation Biology.

Peyrard, N., Sabbadin, R., Lo-Pelzer, E., and Aubertot, J.-N. (2007).

A graph-based Markov decision process framework applied to the optimization of strategies for integrated management of diseases.

In American Phytopathological Society and Society of Nematologist joint meeting.

Puterman, M. (1994).

Markov Decision Processes: discrete stochastic dynamic programming. Wiley.

Radoszycki, J., Peyrard, N., and Sabbadin, R. (2015).

Solving f3mdps: Collaborative multiagent markov decision processes with factored transitions, rewards and stochastic policies.

In *PRIMA 2015: Principles and Practice of Multi-Agent Systems*, pages 3–19. Springer International Publishing.

Sabbadin, R., Peyrard, N., and Forsell, N. (2012).

A framework and a mean-field algorithm for the local control of spatial processes. International Journal of Approximate Reasoning, 53(1):66–86.

Sigaud, O. and Buffet, O., editors (2010).

Markov Decision Processes in Artificial Intelligence. Wiley.