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System management in ecology and agriculture

Management is complex because several entities in interaction must be
managed together with a long term objective with uncertain environment.

Finding an optimal (or at least a good) policy to govern these large systems is
still a challenge in practice.
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MDP

Markov Decision Processes (MDP) [Puterman 94, Sigaud et al. 10] provide
a classical framework for modelling and solving problems of sequential
decision under uncertainty.

A discrete-time stationary MDP is defined by a 4-tuple < S,A, p, r > :

• S is the state space,

• A is the action space
• p (s′|s, a) is the transition probability function

• r (s, a) is the reward function

For a given policy δ, defines a stationary Markov chain over S, with
transitions pδ(s′|s) = p(s′|s, δ(s)).

s s′

a r
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MDP - Policy design

• A policy is defined as a function δ : S → A.
Let vδ(s) is the value of the policy δ.
For the infinite-horizon discounted reward criterion:

vδ(s) = E
[∑+∞

t=0 γ
t r(st , δ(st))|s0 = s

]
, ∀s ∈ S.

• Policies that maximizes vδ can be computed in polynomial time in |S|
and |A| using Dynamic Programming (Policy Iteration, Value Iteration...).

To address larger problems, several frameworks Factored MDP
(FMDP) have been proposed for factored state or/and action spaces and
policies [Guestrin et al. 01, Kim et al. 02]
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GMDP

Graph-based MDP (GMDP) framework [Sabbadin et al. 12]
→ states, actions spaces factorisation (sites in interaction).

For a given policy, the dynamic model is a Dynamic Bayesian Network.
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GMDP - Policy finding

A discrete-time GMDP is defined by a 5-tuple < S,A,N, p, r > :

• S = S1 × · · · × Sn

• A = A1 × · · · × An

• N = {Ni , ∀i = 1, . . . , n} with Ni ⊂ {1, . . . , n}
• p = {pi(s′

i |sNi , ai)∀i = 1, . . . , n} → p(s′|s, a) =
∏n

i=1 pi(s′
i |sNi , ai)

• r = {ri(sNi , ai)∀i = 1, . . . , n} → r(s, a) =
∑n

i=1 ri(sNi , ai)

Only local policies are considered: δ = (δ1, . . . , δn) where δi : SNi → Ai

Two algorithms, providing local policies by approximate resolution of a GMDP,
have been defined by [Sabbadin et al 12].

• MF-API : Mean Field Approximate Policy Iteration
Exploits the structure of the neighborhood relations of the GMDP and
computes a Mean-Field approximation of the value function of a policy.

• ALP : Approximate Linear Programming
Derived from the general class of ALP algorithms, for large size MDP.

They usually find empirically good local policies.
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GMDPtoolbox - An help to apprehend the framework and support
studies

1. Describe the problem
I 3 functions available to define simple problems

2. Find a good policy
I 2 functions for MF-API and ALP
I 1 function to translate small problem in MDP format

for MDPtoolbox1[Chadès et al. 14]

3. Interpret the policy
I 5 functions to apprehend and visualize policies

4. Analyse policies
I 3 functions to evaluate the value function
I 4 functions to simulate policies

1MDP toolbox: http://inra.fr/mia/T/MDPtoolbox
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Quick start - Epidemics management toy example

1

2

3

• 3 crop fields can be in two states: uninfected (1 ) or infected (2 ).
• Each field is susceptible to contamination by a pathogen.
• Two actions for a field: a normal (1 ) or adapted (2 ) cultural mode.
• When a field is contaminated, the yield decreases.
• The problem is to optimize a long-term policy in terms of expected yield.
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Quick start - Computing a policy
1. Describe the problem

>> GMDP = gmdp example epidemio ( ) ;

2. Find a good policy
>> p o l i c y l o c = gmdp linear programming (GMDP, d iscount ) ;
>> a c t i o n s r e p a r t i t i o n s t a t e s i t e = gmdp analyze pol icy ne ighbor (GMDP, p o l i c y l o c ) ;

Decision rule
IF field is infected THEN apply an adapted cultural mode
ELSE apply a normal cultural mode
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Quick start - Evaluating a policy
3 Simulate policy application
>> [ s im sta te , sim reward ] = gmdp s imula te po l icy (GMDP, p o l i c y l o c ) ;
>> va lue evo lu t i on1 = gmdp eva l po l i cy va lue ( d iscount , sim reward ) ;
>> s t a t e t i m e = gmdp eva l po l i c y s ta te t ime (GMDP, s im s ta te ) ;

Cumulative discounted reward Time spent in the different site states

Evaluate pest management

• Each site is non contaminated about 65% of the time.

• This could be compared with other policies.
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Management of phoma pest on canola crop

A grid of 100 fields, for each field 11 states, 8(23) actions, 5 neighbors.
Find a good strategy and simulate 4 policies from a given initial state.

Expected cumulative rewards

gmdp policy cultural policy

integrated policy systematic policy

Mean state repartition in wheat state

Results
• Put on the spotligth a new interesting strategy.

• Put in evidence contrasted long term effect of policies.
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Conclusion
GMDPtoolbox : A free library2that provides:
• a framework to set the problem,
• algorithms to find a good policy,
• tools to explore and analyze policies,

Perspectives
• A new version soon released providing more adapted analysis functions,

and GNU Octave compatibility.
• An other solving algorithm [Cheng et al. 13] based on approximate Value

Iteration which approximate the value function with a Belief Propagation
algorithm.

Application

• GMDP framework yet used for: plant disease management [Peyrard et
al. 07], human disease management [Choisy et al. 07], forest
management [Forsell et al. 11] and invasive pest control [Nicol et al. 15].

• With current environment evolution (biodiversity decrease, climate
change...), GMDPtoolbox could help adapting management in
agriculture, epidemics control or ecology.

2GMDPtoolbox: http://inra.fr/mia/T/GMDPtoolbox
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