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ABSTRACT. Systems management in ecology or agriculture is complex because several entities
in interaction must be managed together with a long term objective. Finding an optimal (or
at least a good) policy to govern these large systems is still a challenge in practice. Graph-
based Markov Decision Processes (GMDPs) form a suitable tool for modelling and solving
such structured problems of sequential decision under uncertainty. In this article we introduce
GMDPtoolbox: a Matlab library dedicated to the GMDP framework. The toolbox allows to
easily represent a problem as a GMDP, to solve it (e.g. finding a “good” local policy) and
finally to analyze a policy or compare its performance with human-built policies, like expert
ones.

RÉSUMÉ. La gestion de systèmes en écologie et agronomie est une tâche complexe du fait de la
nécessaire prise en compte simultanée de différentes entités en intéraction et d’objectifs définis
à long terme. En pratique, trouver une politique optimale (ou au moins satisfaisante) est en-
core un challenge pour ces problèmes de grande taille. Les Processus Décisionnels de Markov
sur Graphe (PDMG) fournissent un cadre adapté pour modéliser et résoudre de tels prob-
lèmes structurés de décision séquentielle sous incertitude. Dans cet aticle, nous présentons la
GMDPtoolbox : une boite à outils Matlab dédiée au cadre des PDMG. La boite à outils per-
met de représenter facilement un problème, de trouver une solution sous forme d’une politique
locale, et enfin d’analyser une politique ou de la comparer à des politiques construites par un
humain, comme les politiques expertes.
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1. Introduction

Systems management in ecology and agriculture is complex because several en-
tities must be managed together and these entities are in strong interaction. Further-
more, management actions are applied at a local level while the objective is often
defined at a larger scale. For instance, spatial dispersion of pests create spatial de-
pendencies between fields which should be taken into account when designing man-
agement policies at the scale of an agricultural landscape. Another feature of these
management problems is that the objective is a long-term one. For example, biodi-
versity and production have to be preserved in a sustainable way. Finally, sequences
of decisions are taken without a precise and deterministic knowledge of the global
delayed effects of the decisions.

Markov Decision Processes (MDPs) form a suitable tool for modelling and solving
problems of sequential decision under uncertainty Puterman (1994); Sigaud, Buffet
(2010). A MDP is defined in terms of state variables, action variables, transition prob-
ability functions and reward functions. Solving a MDP amounts to finding a policy
that optimizes the expected sum of future rewards, over a given time horizon. There
exists several freely available toolboxes for solving Markov Decision Processes1.

However, the use of the MDP framework is not straightforward in the case of a
large number of state variables: optimal policies cannot be computed or represented
efficiently. SPUDD Hoey et al. (1999) and APRICODD St-Aubin et al. (2000)2 ap-
proaches implement respectively exact and approximate solution approaches based on
Algebraic Decision Diagrams. The aGrUM C++ library3 also implement solution al-
gorithms for factored MDP. A limit of these approaches is that they handle only a flat
action space, while in the above mentionned applications, the action space is multidi-
mensional. Several algorithms have been proposed for such MDPs (FA-FMDPs) with
multidimensional state and action spaces Guestrin et al. (2001); Kim, Dean (2002).
Most approaches for solving large FA-FMDPs compute approximate policies which
are local, in the sense that the decision rule prescribes the action to apply in a particu-
lar entity based only on the current state of the few entities in direct interaction. One
such approach is the Graph-based MDP (GMDP) framework Sabbadin et al. (2012);
Cheng et al. (2013). In a GMDP, each entity is represented as the node of a graph. To
each node is associated a pair of state / action variables. The graph edges represent
local dependencies in the transition and reward functions. For a fixed policy, the dy-
namic model is a Dynamic Bayesian Network. Its graphical representation provides
an easy interpretation of the local dependencies in the GMDP model.

1. e.g. MDPtoolbox: http://www.inra.fr/mia/T/MDPtoolbox Chadès et al. (2014),
Markov Decision Process Toolbox: http://www.cs.ubc.ca/∼murphyk/Software/MDP/mdp.html,
Markov Decision Process Toolbox for Python: https://pypi.python.org/pypi/pymdptoolbox.
2. https://cs.uwaterloo.ca/∼jhoey/research/spudd.
3. https://forge.lip6.fr/projects/agrum/wiki.
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In this article, we introduce the Matlab GMDPtoolbox library, dedicated to GMDP.
We recall the framework and we briefly describe and illustrate the main functionalities
of the toolbox: representation of a structured decision problem in the GMDP frame-
work, solution algorithms to finding good policies and finally tools to analyze a policy
or compare it with human-built ones, like expert ones.

2. Problem representation

A discrete-time GMDP is defined by a 5-tuple < S,A,N, p, r > where :
– S is the state space, S = S1 × · · · × Sn. Si is the finite state space of site i.
– A is the action space, A = A1× · · · ×An. Ai is the finite action space of site i.
– N is the set of sites neighborhood relations, N = {Ni, ∀i = 1, . . . , n} where

Ni ⊆ {1, . . . , n} is the set of neighbors of site i. Note that it is possible that i ∈ Ni,
but this may not be the case.

– p is the set of local sites transition probability functions,
p = {pi(s′i|sNi

, ai), ∀i = 1, . . . , n, ∀s′i, sNi
, ai}, where pi(s′i|sNi

, ai) is the (sta-
tionary) probability for site i of transitioning to s′i at time t+1 given that at time t the
neighborhood of the site is in state sNi and action ai is performed.

– r is the set of local sites reward functions
r = {ri(sNi

, ai), ∀i = 1, . . . , n, ∀sNi
, ∀ai}, with ri(sNi

, ai) the reward obtained
from site i at time t when the neighborhood of site i is in state sNi

and action ai is
performed.

In a GMDP transitions are local : if s = (s1 . . . sn), s
′ = (s′1 . . . s

′
n) and a =

(a1 . . . an) are the global state and action vectors, and denoting sI = {si}i∈I ,∀I ⊆
{1 . . . n},

p(s′|s, a) =
n∏
i=1

pi(s
′
i|sNi

, ai),∀s ∈ S, ∀s′ ∈ S, a ∈ A

Rewards are also local, with respect to the same neighbourhood relation:

r(s, a) =

n∑
i=1

ri(sNi
, ai),∀s ∈ S, ∀a ∈ A.

GMDPtoolbox allows to represent any GMDP problem in a Matlab structure,
whose attributes4 represent the 5 elements defining a GMDP. GMDPtoolbox also pro-
vides a set of functions5 that encode ready-to-use GMDP examples into this structure.

4. See the Reference manual: http://www.inra.fr/mia/T/GMDPtoolbox/ReferenceManual.pdf
5. See GMDPtoolbox list of functions: http://www.inra.fr/mia/T/GMDPtoolbox/documentation.html
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3. Policy design

In a classical MDP, a function δ : S → A assigning an action to each state is
called a stationary decision rule or policy. Once a policy δ is fixed, it defines a sta-
tionary Markov chain over S, with transitions pδ(s′|s) = p(s′|s, δ(s)). The problem
of finding the optimal policy for a stationary MDP, or solving the MDP, is then

Find δ∗, S → A, s.t. vδ∗(s) ≥ vδ(s),∀s ∈ S, ∀δ ∈ AS .

Where vδ(s) is the infinite horizon discounted value of a policy δ, applied to an
MDP with initial state s, defined as: vδ(s) = E

[∑+∞
t=0 γ

tr(st, δ(st))|s0 = s
]
,∀s ∈

S.

Because the GMDP framework is for larger problems than the ones tackled by
MDP, only approximate solution policies are usually looked for, in GMDP problems.
In a GMDP, the search space is limited to a subset of policies that exploit the notion
of neighborhood, namely the set of local policies. A policy δ : S → A is said to be
local if and only if δ = (δ1, . . . , δn) where δi : SNi

→ Ai (instead of δi : S → Ai).

Currently, two algorithms Sabbadin et al. (2012), providing local policies by ap-
proximate resolution of a GMDP, are implented in GMDPtoolbox. They usually find
empirically good local policies Cheng et al. (2013). The first one, referred to as MF-
API, exploits the structure of the neighborhood relations of the GMDP and computes
a mean-field approximation of the value function of a policy. This algorithm belongs
to the family of Approximate Policy Iteration (API) algorithms. The second one is a
specific Approximate Linear Programming algorithm derived from the general class of
ALP algorithms and adapted to the GMDP framework. We will referred to it as ALP.
Previous experimental comparisons have shown that the two algorithms provide lo-
cal policies of similar quality, outperforming naive policies such as greedy or random
policies. However, the MF-API algorithm usually provides a higher-quality approxi-
mation of the expected value of the returned policy than the ALP algorithm, which is
faster. Thus the two methods can be seen as complementary. We refer the reader to
Sabbadin et al. (2012) for a full description of these two algorithms.

The function implementing the ALP algorithm uses one function of the Matlab
Optimization toolbox. Furthermore the implemented algorithms are speeded up by
using a function of the Matlab Parallel Computing toolbox.

4. Policy analysis

A given local GMDP policy is in general not easy to interpret or analyze. GMDP-
toolbox provides a set of functions (see footnote 5) to help understanding what are the
actions prescribed by the policy, site by site or globally, either in a synthetic format
or graphically. From these statistics, it can be easier to extract a general decision rule
from the local policy.
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Furthermore, in order to evaluate the consequences on the rewards of applying a
policy, the toolbox provides functions to compute the value of a policy, and to generate
spatio-temporal simulations of the system under its application. This could also be
useful to compare several policies, for example the one found by optimization with
human-designed ones like experts ones. Note that some graphical representations rely
on graphViz4Matlab toolbox6.

5. Epidemics management toy example

In order to illustrate the use of the toolbox, a quick start guide7 has been written to
detail the main steps of a classical study on a toy epidemics management problem on
3 crop fields.

Each crop field can be in two states (|Si| = 2,∀i = 1, 2, 3): uninfected (coded
1) or infected (coded 2). Each field is susceptible to contamination by a pathogen.
Contamination can either be long range, or over a short distance between neigh-
boring fields. When a field is contaminated, the yield decreases. Decisions about
crop field management are taken each year and two actions can be applied to each
field (|Ai| = 2,∀i = 1, 2, 3): a normal cultural mode is applied (coded 1) or the
field is left fallow and treated (coded 2). The problem is to optimize the choice of
a long-term policy in terms of expected yield. The topology of the area is repre-
sented by a graph (see Figure 1, left). There is one node per crop field. A directed
edge between two nodes represents potential contamination. The neighborhood re-
lationship is symmetric since we assume that infection can spread in any direction:
N1 = {1, 2}, N2 = {1, 2, 3}, N3 = {2, 3}.

Transition probabilities are parametrized by the following variables: the probabil-
ity pd that a field infected becomes uninfected when it is left fallow and treated, the
probability pε of long-distance contamination, the probability pc that a field be con-
taminated by an infected neighboring field. The probability p(mi) that a field with mi

infected neighboring fields moves from state uninfected to infected under a normal
cultural mode is then defined by p(mi) = pε+ (1− pε)(1− (1− pc)mi).

Harvest is affected by the state of the crop field and the chosen action. The maxi-
mal yield (noted r) can be achieved for an uninfected field with normal treatment. If
the field is contaminated, the reward is only r/2. Otherwise, a field left fallow and
treated produces no reward. On Figure 1, right, is given the Dynamic Bayesian Net-
work representation of this GMDP, illustrating interactions between state variables,
action variables, and rewards.

On this toy example the MF-API and the ALP resolution algorithms lead to the
same local policy (experiments were run with a discount factor equal to 0.95). This

6. graphViz4Matlab toolbox on MatlabCentral: http://www.mathworks.com/matlabcentral/fileexchange/21652-
graphviz4matlab
7. GMDPtoolbox Quick start: http://www.inra.fr/mia/T/GMDPtoolbox/QuickStart.pdf
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Figure 1. Epidemics management problem. Left: Graphical representation of the
neighborhood relationships. Right: Corresponding Dynamic Bayesian Network

(black edges) and reward function structure (red edges).

Figure 2. Epidemics management problem: proportions of neighborhood
configurations for which the GMDP policy prescribes action 1 and action 2, at each

of the three sites.

policy can be difficult to interpret since it corresponds to a set of local functions δi
from SNi

to Ai. In GMDPtoolbox, one of the proposed visualizations allows to show
the repartition of each action depending of the site state, and for each site (see Figure
2). From these graphics we can see that in this very simple example the policy amounts
to the following simple rules, that depend only on the site status and not on the status
of the neighboring fields: if field i is uninfected (site state 1) then choose a normal
cultural mode (action 1); if field i is infected (site state 2) then leave the field fallow
and treat (action 2).

Furthermore with GMDPtoolbox, it is possible to evaluate and plot the average
value, over initial states, of the discounted finite horizon value of a policy, for increas-
ing horizon (Figure 3, left). Evaluation is computed using Monte Carlo simulations.
GMDPtoolbox also provides a graphical representation of the expectation of the sum
of the discounted rewards at a given time step, over all sites (Figure 3, right).
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Figure 3. Epidemics management problem: expected cumulative and instantaneous
global reward of the GMDP policy, estimated by Monte Carlo.

Other functions allow to quantify the contribution of each site to the cumulated
global value, and the time spent by each site in the different states.

Conclusion

A complete description of GMDPtoolbox and the source code of the toolbox are
available at http://www.inra.fr/mia/T/GMDPtoolbox and on MatlabCentral8. The tool-
box provides a complete environment to easily perform first steps with the GMDP
framework or to represent and solve a structured decision problem. A new version of
GMDPtoolbox will soon be released to offer more analysis tools.

At a longer term, we intend to extend the toolbox with the resolution algorithm
proposed in Cheng et al. (2013). This algorithm belongs to a family of approaches
called Planning as Inference that exploit the proximity between Factored MDPs and
DBNs. Kumar et al. (2011) has first established that the evaluation of stochastic poli-
cies in MDP amounts to computing marginal probabilities in a Bayesian Network.
Cheng et al. (2013) have applied inference methods to solve GMDPs, and Radoszycki
et al. (2015) have proposed a policy iteration algorithm based on DBN inference to
solve general Factored MDPs. So, even if this is not the mainstream approach to solve
factored MDPs, Bayesian Network inference approaches have already been success-
fully applied to approximately solve Factored MDPs, including GMDPs.

Regarding the application domain of the GMDP framework, it has already been
used to model management problems and to derive policies in various fields: plant
disease management Peyrard et al. (2007), human disease management Choisy et al.
(2007), forest management Forsell et al. (2011), and invasive species control Nicol
et al. (2015). Considering the progresses of graph modelling for complex problems,

8. GMDPtoolbox on MatlabCentral: http://www.mathworks.com/matlabcentral/fileexchange/49101-
graph-based-markov-decision-processes–gmdp–toolbox
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GMDPtoolbox could be a powerful tool to help to address complex problems of man-
agement in agriculture, epidemiology or ecology, among other domains.
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