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This paper studies reduction of a fuzzy covering and fusion of multi-fuzzy covering systems

based on the evidence theory and rough set theory. A novel pair of belief and plausibility

functions is defined by employing a method of non-classical probability model and the

approximationoperators of a fuzzy covering. Thenwe study the reductionof a fuzzy covering

based on the functionswepresented. In the case ofmultiple information sources,wepresent

a method of information fusion for multi-fuzzy covering systems, by which objects can be

well classified in a fuzzy covering decision system. Finally, by using themethod ofmaximum

flow, we discuss under what conditions, fuzzy covering approximation operators can be

induced by a fuzzy belief structure.

© 2011 Published by Elsevier Inc.

1. Introduction

The Dempster–Shafer theory of evidence is a method developed to model and manipulate uncertain, imprecise, incom-

plete, andevenvague information. ItwasoriginatedbyDempster’s concept of lower andupperprobabilities [6], andextended

by Shafer [26] as a theory. The basic representational structure in this theory is a belief structure, which consists of a family

of subsets, called focal elements, with associated individual positive weights summing to one. The fundamental numeric

measures derived from the belief structure are a dual pair of belief and plausibility functions. Since its inception, evidential

reasoning has emerged as a powerful methodology for pattern recognition, image analysis, diagnosis, knowledge discovery,

information fusion, and decision making [37,41,48].

Another important method used to deal with uncertainty in information systems is the theory of rough sets [20,21].

As a mathematical method to deal with insufficient and incomplete data, it is a set-theory-based technique to handle

data with granular structures by using two sets called the rough lower approximation and the rough upper approxima-

tion to approximate an object. By using this method, knowledge hidden in information systems may be revealed and

expressed in the form of decision rules and its main idea is using the existing knowledge to approximate uncertain con-

cepts and phenomena [21]. The theory of rough sets has obtained many achievements in both theoretical researches and

application aspects. It provides some practical solutions for certain problems in information science, such as artificial in-

telligence, data mining, pattern recognition, knowledge discovery, knowledge representation and intelligent control. The

classical definition of a Pawlak rough set is with reference to an equivalence relation. From both theoretical and practical

viewpoints, the classical equivalence relation is a very stringent condition that may limit applications of rough sets. Var-

ious theories were therefore developed from an equivalence relation to more general mathematical concepts: algebraic

∗ Corresponding author.

E-mail addresses: fengtao_new@163.com (T. Feng), shaopuzhang@hotmail.com (S.-P. Zhang), mijsh@263.net (J.-S. Mi).

0888-613X/$ - see front matter © 2011 Published by Elsevier Inc.

doi:10.1016/j.ijar.2011.10.002

http://dx.doi.org/10.1016/j.ijar.2011.10.002
http://www.sciencedirect.com/science/journal/0888613X
www.elsevier.com/locate/ijar
http://dx.doi.org/10.1016/j.ijar.2011.10.002


88 T. Feng et al. / International Journal of Approximate Reasoning 53 (2012) 87–103

methods of the theory of rough sets [2,16,46], a neighborhood system from topological space [27,28,45,54], a similarity

relation and tolerance relation or arbitrary binary relation based on rough sets [30,33,53,56] and rough set theory has

been successfully used for reducing redundant attributes, describing dependency among attributes, evaluating the sig-

nificance of attributes, and dealing with inconsistent and incomplete data in knowledge and data analysis [12,19,31]. On

the other hand, most of the knowledge in real life applications is fuzzy. Therefore, to promote Pawlak rough set model

to fuzzy environment is a very natural problem. In fact, various fuzzy kinds of generalizations have been proposed in

[5,8,9,18,22,35,47,50]. For example, Dubois and Prade firstly introduced the rough fuzzy set [8]. Alternatively, a fuzzy

similarity relation can be used to replace an equivalence relation. They proposed the definition of fuzzy rough set in [9].

Meanwhile, the rough fuzzy set model may be used to deal with knowledge acquisition in information systems with fuzzy

decisions [29]. Most types of the above-mentioned binary relation can be viewed as a covering or a fuzzy covering on

the universe of discourse. So we pay more attention to the development of the covering and fuzzy covering based on

rough set model. In [51], Zakowski gave covering-based rough set model. In [57], Zhu and Wang discussed the reduction

for this model, and studied the axiomatic characterization of the lower approximation operator. Whereafter, several mod-

els of covering-based rough sets and comparison already appeared in literature [1,17,24,32–34,55,58]. Recently, Chen et

al. [3] and Yang and Li [42] proposed a way to reduce the covering systems without decision attribute, which are data-

bases characterized by coverings. Li and Yin [14] gave ways to knowledge reduction of covering decision systems based

on information theory. Deng et al. [7], Feng et al. [10] and Li et al. [13] even established fuzzy rough set models based on

coverings.

There are strong connections between rough set theory and Dempster–Shafer theory of evidence. It has been demon-

strated that various belief structures are associated with various rough approximation spaces such that the different dual

pairs of lower and upper approximation operators induced by the rough approximation spaces may be used to interpret the

corresponding dual pairs of belief and plausibility functions induced by the belief structures [4,23,40,44,45]. TheDempster–

Shafer theory of evidence may be used to analyze knowledge acquisition in information systems. It is well known that

knowledge reduction is one of the hot research topics in rough set theory. Many authors studied attribute reduction based

on the theory of evidence in various information systems, for example, in complete information systems [52], in incomplete

information systems [15], in incomplete decision systems [36] and in ordered information systems [38] and if crisp set is

replaced by fuzzy set, Yao et al. [43] discussed how to reduce the reflective fuzzy decision system by the belief function

and the plausibility function. In most of the papers mentioned above, the probability assignment of various granules are

the same or every element in the universe of discourse has the same probability. The reductions studied in these litera-

tures are to maintain some approximation or probability estimate of decision classes unchanged. They did not consider

the changes of the mass function and reduce the information system maintaining the mass function unchanged. If an in-

formation system is generated by a fuzzy covering, then the basic granules are also generated by the fuzzy covering and

we think that probability assignment of a granule should be strongly related to the elements covered by the granule. It

is clear that the probability space of the universe of discourse is not a classical probability model. So we attempt to pro-

pose a new mass function by employing the ratio of the elements covered by every granule in a fuzzy covering system.

Then we use the corresponding belief function and the plausibility function to reduce the information system ensuring

the probabilities of every element and mass function unchanged. Meanwhile, though there are a lot of papers studied

the evidence theory combined with rough set theory, most of them concentrate on attribute reduction based on the ev-

idence theory or generating belief and plausibility functions by lower and upper approximation operators. They did not

discuss information fusion using the set of basic granules, or the set of all focal elements of the fusion mass function

may not be the set of basic information granules. That is, the above information fusion is not based on rough set theory.

Therefore, another motivation of this paper is how to fuse the multi-information systems based on rough set theory. If

there are more than one fuzzy coverings, we should consider the multi-information fusion combining with some feature

of multi-fuzzy covering systems to ensure the set of focal element being a normalized fuzzy covering of the universe of

discourse. By the fused mass function, the new belief function and plausibility function can be obtained by the evidence

theory and we investigate how to generate the fuzzy rough approximation operators by the new belief (plausibility) func-

tions.

In this paper, we study fuzzy evidence theory based on fuzzy coverings. In Section 2, we review the fuzzy covering

lower and upper approximations generated by a fuzzy covering in a finite universe of discourse. Section 3 gives a pair of

belief and plausibility function and homologous mass function with respect to the lower and upper approximation oper-

ators based on a fuzzy covering. Then we discuss the reduction of a fuzzy covering by using the plausibility function in

information systems and in decision tables respectively. In Section 4, we propose an information fusion method of multi-

fuzzy coverings in fuzzy covering systems. We first define a new fusion mass function, and discuss the properties and

applications of the corresponding belief and plausibility function. We then give lower and upper approximation operations

generated by the belief function and plausibility function in two special cases: (1) the number of the focal elements in

a fusion mass function is smaller than the number of the elements in U; (2) the number of the focal elements in a fu-

sion mass function is bigger than the number of the elements in U, and the mass function value of the focal elements,

assigned to the same object, in a fusion mass function are the same. Finally, in Section 5, we conclude the paper with a

summary.
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2. Basic concepts

2.1. Fuzzy covering approximation space

Let U be a finite and nonempty set called the universe of discourse. The class of all subsets (respectively, fuzzy subset) of

U will be denoted by P(U) (respectively, by F(U)). For any A ∈ F(U), the α-level and strong α-level of Awill be denoted by

(A)α and (A)α+, respectively, that is, (A)α = {x ∈ U : A(x) ≥ α} and (A)α+ = {x ∈ U : A(x) > α}, where α ∈ [0, 1], the
unit interval, (A)0 = U, and (A)1+ = ∅ and (A∪B)(x) = max{A(x), B(x)}, (A∩B)(x) = min{A(x), B(x)},∼ A(x) = 1−A(x),
∀A, B ∈ F(U). A class of fuzzy sets C ⊆ F(U) is called a fuzzy covering (introduced in [7]) of U, if (1) ∪{A|A ∈ C}(x) = 1,

∀x ∈ U, (2) ∅ 
∈ C. If each fuzzy set A in fuzzy covering C is normalized, i.e. A(x) = 1 for at least one x ∈ U, then C is said to

be normalized. For a fuzzy covering C, A ∈ C, if A(x) = 1, then x is covered by A.

Definition 2.1. Suppose U is a finite and nonempty universe of discourse, and C = {C1, C2, . . . , Cn} is a fuzzy covering of

U. For every x ∈ U, let Cx = ∩{Cj : Cj ∈ C, Cj(x) = 1}, then Cov(C) = {Cx : x ∈ U} is another fuzzy covering of U, which

is called the fuzzy covering of U induced by C.

For every x ∈ U, Cx is the minimal fuzzy set in Cov(C) such that Cx(x) = 1, that is, Cx is the most complete fuzzy

description of x with respect to C. For every x, y ∈ U, if Cx(y) = 1 then Cx ⊇ Cy. Thus if Cx(y) = 1 and Cy(x) = 1, then

Cx = Cy. Obviously, any element in Cov(C) cannot be written as the union of other elements in Cov(C). The core of a fuzzy

set A is all the elements of U which covered by A: (A)1 = {x ∈ U : A(x) = 1}. Obviously the cores of the fuzzy sets in a fuzzy

covering form a covering. In the crisp case, Cov(C) is a covering but may not be a partition.

Definition 2.2. ∀α ∈ [0, 1], (Cx)α = {y ∈ U : Cx(y) ≥ α}, then (Cx)α is a crisp set in U. ∀X ∈ P(U), define:

Cα(X) = {x ∈ U : (Cx)α ⊆ X};
Cα(X) = {x ∈ U : (Cx)α ∩ X 
= ∅}.

Cα(X) and Cα(X) are called α-level fuzzy covering lower and upper approximation of a crisp set X , respectively.

Definition 2.3. Suppose C is a fuzzy covering of U, Cov(C) is the fuzzy covering induced by C. ∀A ∈ F(U), define

C(A) = ∨
α∈[0,1]

(α̂ ∩ C1−α((A)α+)); C(A) = ∨
α∈[0,1]

(α̂ ∩ Cα((A)α)),

where α̂ denotes the constant fuzzy set with its membership function α̂(x) = α, ∀x ∈ U. Then C(A) and C(A) are called

fuzzy covering lower and upper approximations of a fuzzy set A, respectively. C and C are referred to fuzzy covering lower

and upper approximation operators, respectively. (U, C) is a fuzzy covering approximation space.

It is easy to verify the following conclusions:

Theorem2.1. Suppose C is a fuzzy covering of U. The fuzzy covering upper and lower approximation operators satisfy the following

properties: ∀A, B ∈ F(U), α ∈ [0, 1],
(1) C(∅) = ∅, C(U) = U;
(2) C(A) ⊆ A ⊆ C(A);
(3) C(A) =∼ C(∼ A), C(A) =∼ C(∼ A);
(4) C(A ∪ α̂) = C(A) ∨ α̂, C(A ∩ α̂) = C(A) ∧ α̂;
(5) C(A ∩ B) = C(A) ∩ C(B), C(A ∪ B) = C(A) ∪ C(B);
(6) A ⊆ B ⇒ C(A) ⊆ C(B), C(A) ⊆ C(B);
(7) C(A ∪ B) ⊇ C(A) ∪ C(B), C(A ∩ B) ⊆ C(A) ∩ C(B).

Theorem 2.2. Let U be a finite and nonempty universe, C be a fuzzy covering of U. The fuzzy covering upper and lower approxi-

mations satisfy the following equations: ∀A, B ∈ F(U), x ∈ U,

C(A)(x) = ∧
y∈U

{[1 − Cx(y)] ∨ A(y)}; C(A)(x) = ∨
y∈U

{Cx(y) ∧ A(y)}.

Assume 1{y} denotes the fuzzy singleton with value 1 at y and 0 elsewhere; 1X denotes the characteristic function of X ,

X ⊆ U.
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Proposition 2.3. Suppose C is a fuzzy covering of U, then

(1) C(1y)(x) = Cx(y), ∀x, y ∈ U.

(2) C(1U\{y})(x) = 1 − Cx(y), ∀x, y ∈ U.

(3) C(1X)(x) = max{Cx(y) | y ∈ X}, ∀x ∈ U, X ∈ P(U).

(4) C(1X)(x) = min{1 − Cx(y) | y 
∈ X}, ∀x ∈ U, X ∈ P(U).

(5) C(α̂) = C(α̂) = α̂, ∀α ∈ [0, 1].
Proposition 2.4. Suppose C is a fuzzy covering of U. B ⊆ C is also a fuzzy covering of U, then ∀X ∈ F(U), ∀x ∈ U,

(1) Bx ⊇ Cx;
(2) B(X)(x) ≤ C(X)(x) and B(X)(x) ≥ C(X)(x).

2.2. Belief and plausibility functions

Basing on the concept of information granularity and the theory of possibility, Zadeh first generalized the Dempster–

Shafer theory to fuzzy situation [49,50]. First of all, the belief structure should be generalized to fuzzy environment.

Definition 2.4 [37]. Let U be a nonempty finite set. A set function m : F(U) → [0, 1] is referred to a basic probability

assignment (also called mass function) if it satisfies axioms (M1) and (M2):

(M1) m(∅) = 0; (M2)
∑

A∈F(U)

m(A) = 1.

A fuzzy set X ∈ F(U)withm(X) > 0 is referred to a focal element ofm. We denote byM the family of all focal elements

of m. The pair (M,m) is called a fuzzy belief structure. In the following discussions, all the focal elements are supposed to

be normalized, i.e., for any A ∈ M, there exists an x ∈ U such that A(x) = 1.

Based on a fuzzy belief structure (M,m) on a finite universe of discourse U, Zadeh [48] defined the expected certainty,

denoted by Bel(X), and the expected possibility, denoted by Pl(X), as a dual pair of generalization of Dempster–Shafer belief

and plausibility functions: for all X ∈ F(U),

Bel(X) = ∑
A∈M

m(A)inf (A ⇒ X); Pl(X) = ∑
A∈M

m(A)sup(X ∩ A),

where inf (A ⇒ X)measures the degree towhichA is included inX and sup(X∩A)measures the degree thatX intersectswith

A. It is easy to verify that the expected certainty and the expected possibility degenerate into the crisp belief and plausibility

functions when the belief structure (M,m) and X are crisp.

In what follows, let (U,P(U)) be a measurable space, P(A) = ∑
x∈U

A(x)P(x), ∀A ∈ F(U), where P(x) = P({x}) and

(U,P(U), P) is a probability space.Wu et al. [37] studied the fuzzy belief and fuzzy plausibility functions in infinite universe

of discourse.

Definition 2.5 [37]. Let U be a nonempty universe of discourse which may be infinite, and I an implicator on [0, 1]. For
A, B ∈ F(U), we define I(A ⊆ B) = ∧x∈UI(A(x), B(x)) = ∧x∈U(A ⇒I B)(x), where I(A ⊆ B)measures the degree to which

A is included in X .

Definition 2.6 [37]. Let U be a nonempty universe of discourse which may be infinite, (M,m) a fuzzy belief structure on U,

and I an implicator on [0, 1]. A fuzzy set function Bel : F(U) → [0, 1] is referred to a generalized fuzzy belief function on

U if for all X ∈ F(U),

Bel(X) = ∑
A∈F(U)

m(A)I(A ⊆ X) = ∑
A∈F(U)

m(A) ∧x∈U I(A(x), X(x)).

The fuzzy set function Pl : F(U) → [0, 1] is referred to a generalized fuzzy plausibility function on U:

Pl(X) = 1 − Bel(∼ X), X ∈ F(U).

Definition 2.7 [37]. If U is a countable set, P is a probability measure on U,W is a nonempty set which may be infinite, R is

a serial fuzzy binary relation from U toW , then we call ((U, P),W, R) a fuzzy belief space.
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Theorem2.5 [37]. Let ((U, P),W, R)be a fuzzy belief space, andI an left and rightmonotonic, semicontinuous, border implicator

on [0,1]. RI and RI are the I-fuzzy rough approximation operators defined as the following: ∀X ∈ F(W), x ∈ U

RI(A)(x) = ∧y∈UI(R(x, y), A(y)); RI(A)(x) =∼ RI(∼ A).

Denote Bel(X) = P(RI(X)), X ∈ F(W), Pl(X) = P(RI(X)), X ∈ F(W). Then Bel : F(W) → [0, 1] and Pl : F(W) → [0, 1]
are a dual pair of fuzzy belief and plausibility functions.

3. Reduction of a fuzzy covering based on the evidence theory

Reduction of an information system is an important issue in rough set theory. In this section, we discuss the reduction of

a fuzzy covering based on the evidence theory.

3.1. Belief and plausibility functions induced by general fuzzy covering rough sets

Suppose C is a fuzzy covering onU. In the following, we assume∩∅ = U, where ∅ denotes the set which does not contain

any element ofF(U). (Since (F(U), ⊆) is a complete latticewith∅ being the least element andU themaximumelement). In

most cases, the probability of various granules is not always the same. Especially in a fuzzy covering space (U, C), {Cx : x ∈ U}
is the basic granule. Every covering class can cover many elements in U and every element in U maybe covered by more

than one covering classes, every covering class must be used many times for approximating an object. So we should use a

method of non-classical probability model to define the probability of granules. It is well know that {Bx : x ∈ U, B ⊆ F(U)}
is a fuzzy covering of U if and only if {(Bx)1 : x ∈ U} is a covering of U. Since {(Cx)1 : x ∈ U} is a covering of U, we can use

{(Cx)1 : x ∈ U} to define mass function.

Theorem 3.1. Let U = {x1, x2, . . . , xn} be a nonempty and finite universe of discourse, C a fuzzy covering of U. ∀X ∈ F(U),
define

mC(X) =
⎧⎨
⎩

|(X)1|∑
Y∈Cov(C)|(Y)1| , X ∈ Cov(C) = {Cx1 , . . . , Cxn};

0, otherwise.

Then mC is a mass function. Denote

BelC(X) = ∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C)|(Y)1|

∧
y∈U

((1− A(y))∨ X(y)), PlC(X) = ∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C)|(Y)1|

∨
y∈U

(A(y)∧ X(y)).

BelC and PlC are belief and plausibility functions on U respectively.

Proof. Since
∑

X∈F(U) mC(X) = ∑
X∈Cov(C)

|(X)1|∑
Y∈Cov(C)|(Y)1| = 1 and mC(∅) = 0, then we know mC is a mass function.

ByDefinition2.6, ifI beanS-implicatorbasedona t-conormS ,T a t-normdual toS , andI(A(x), X(x)) = (1−A(x))∨X(x),
T (A(x), X(x)) = A(x) ∧ X(x), ∀A, X ∈ F(U), x ∈ U, then we have

BelC(X) = ∑
A∈M

mC(A) ∧x∈U I(A(x), X(x))

= ∑
A∈M

mC(A)
∧
y∈U

((1 − A(y)) ∨ X(y))

= ∑
A∈Cov(C)

mC(A)
∧
y∈U

((1 − A(y)) ∨ X(y))

= ∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C)|(Y)1|

∧
y∈U

((1 − A(y)) ∨ X(y)).

Thus BelC is a belief function on U. PlC being a plausibility function can be proved similarly. �

If C is a fuzzy covering of U, then {Cx, x ∈ U} = M.

Theorem 3.2. Let U be a nonempty and finite universe of discourse, C a fuzzy covering of U. BelC and PlC satisfy the following

statements: ∀A ∈ F(U),

1. BelC(∅) = PlC(∅) = 0, BelC(U) = PlC(U) = 1;

2. BelC(A) ≤ PlC(A);
3. BelC(A) + BelC(∼ A) ≤ 1;
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4. BelC and PlC are all monotone about A;

5. BelC(A) + PlC(∼ A) = 1;

6. BelC(A) = PlC(A) if and only if C(A) = A = C(A).

Proof. It is trivial by Wu et al. [37]. �

Proposition 3.3. Let U = {x1, x2, . . . , xn} be a nonempty and finite universe of discourse, C a fuzzy covering of U. Then

∀X ∈ F(U),

BelC(X) = ∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C)|(Y)1|

∧
y∈U

((1 − A(y)) ∨ X(y)) = ∑
x∈U

C(X)(x)PC(x),

PlC(X) = ∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C)|(Y)1|

∨
y∈U

(A(y) ∧ X(y)) = ∑
x∈U

C(X)(x)PC(x),

where PC(x) = |(Cx)1|∑
Y∈Cov(C)|(Y)1||{y∈U:Cy=Cx}| .

Proof. ∀X ∈ F(U), x ∈ U,

∑
x∈U C(X)(x)PC(x) = ∑

x∈U

( ∧
y∈U

{[1 − Cx(y)] ∨ X(y)}
)

|(Cx)1|∑
Y∈Cov(C)|(Y)1||{y∈U:Cy=Cx}|

= ∑
A∈Cov(C) |{y ∈ U : Cy = A}}|

( ∧
y∈U

{[1 − A(y)] ∨ X(y)}
)

|(A)1|∑
Y∈Cov(C)|(Y)1||{y∈U:Cy=A}|

= ∑
A∈Cov(C)

( ∧
y∈U

{[1 − A(y)] ∨ X(y)}
)

|(Cx)1|∑
Y∈Cov(C) |(Y)1|

= BelC(X).

Similarly, we can prove that PlC(X) = ∑
x∈U C(X)(x)PC(x).

Thus, we can find that the probability of every element of the domain is not necessarily the same. �

3.2. Reduction of a fuzzy covering

In this subsection, by using the plausibility function, we discuss the reduction of a fuzzy covering to maintain the mass

function unchanged.

3.2.1. Reduction of a fuzzy covering without decision attribute

Firstly, we study the reduction of a fuzzy covering without decision attribute.

Definition 3.1. Suppose U is a finite and non-empty universe of discourse, Cov(C) is an induced fuzzy covering of U by C.
B ⊆ C is a subcovering of U, and Bx = Cx , ∀x ∈ U, then B is called a consistent set of C. Furthermore, if ∀B′ ⊂ B, B

′
is not a

subcovering of U or ∃x ∈ U such that B
′
x 
= Cx , then B is a reduction of C.

Theorem 3.4. Let (U, C) be a fuzzy covering information space and B ⊆ C a subcovering. Then the following conditions are

equivalent:

(1) B is a consistent set of C.

(2) B(1x) = C(1x), ∀x ∈ U.

(3) B(∼ 1x) = C(∼ 1x), ∀x ∈ U.

Proof. It is easy to prove by Definition 3.1. �

Proposition 3.5. Let (U, C) be a fuzzy covering information space and B ⊆ C. B is a consistent set of C then

(1)mB(X) = mC(X), ∀X ∈ F(U).
(2) PB(x) = PC(x), ∀x ∈ U.

(3) PlB(X) = PlC(X) andBelB(X) = BelC(X), ∀X ∈ F(U).
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Proof. (1) Since B is a consistent set of C, we know that Bx = Cx , ∀x ∈ U. Then mC(X) = mB(X), ∀X ∈ F(U) (see

Theorem 3.1).

(2) By Bx = Cx , ∀x ∈ U, we have PC(x) = PB(x), ∀x ∈ U. So (2) holds.

(3) UsingBx = Cx ,∀x ∈ U and the definition of fuzzy covering upper and lower approximation, we have PlB(X) = PlC(X)
and BelB(X) = BelC(X), ∀X ∈ F(U).

Thus we know that a consistent set of C ensures not only the basic granules but also the probabilities of every element in

U unchanged. �

Obviously, we can use the dependency degree to reduce the fuzzy covering. But the dependency degree does not reflect

the probability distribution of the basic granules. So we define another measure using plausibility function to reduce the

fuzzy covering. This measure should be closely related to basic granules and probability distribution of the universe of

discourse.

Definition 3.2. Let U = {x1, x2, . . . , xn} be a nonempty and finite universe of discourse, C a fuzzy covering of U. B ⊆ C,
then define

γ (B, C) =
n∏

i=1

∑
x∈U

(
|(Bx)1|∑

Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|
)
B(1xi)(x)

PlC(1xi)

as the closeness degree of B to C.

Proposition 3.6. Let U = {x1, x2, . . . , xn} be a nonempty and finite universe of discourse, C a fuzzy covering of U. B ⊆ C is a

subcovering of U, then B is a reduction of the fuzzy covering C iff γ (B, C) = 1, and for any non-empty proper subset B
′ ⊂ B,

γ (B
′
, C) > 1 or B

′
is not a subcovering of U.

Proof. If B ⊆ C is a subcovering, then

n∏
i=1

∑
x∈U

|(Bx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(1xi)(x)

PlC(1xi)
= 1 (by Proposition 3.3)

⇔
n∏

i=1

∑
x∈U

|(Bx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(1xi)(x)∑

x∈U
|(Cx)1|∑

Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|Cx(xi)
= 1 (by Proposition 2.4)

⇔
∑

x∈U
|(Bx)1|∑

Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(1xi)(x)∑
x∈U

|(Cx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|Cx(xi)

= 1, ∀xi ∈ U

⇔ ∑
x∈U

|(Bx)1|Bx(xi)∑
Y∈Cov(C) |(Y)1||{y ∈ U : Cy = Cx}| = ∑

x∈U

|(Cx)1|Cx(xi)∑
Y∈Cov(C) |(Y)1||{y ∈ U : Cy = Cx}| , ∀xi ∈ U

⇔ |(Bx)1| = |(Cx)1| and Bx(xi) = Cx(xi), ∀x, xi ∈ U (by Proposition 2.4)

⇔ Bx = Cx, ∀x ∈ U.

Thus B is a fuzzy covering of U and a reduction of C iff γ (B, C) = 1 and for any B
′ ⊂ B, γ (B

′
, C) > 1 or B

′
is not a

subcovering of U. �

Example 3.1. Let U = {a, b, c}, C = {C1 = 1/a + 0/b + 0/c, C2 = 0/a + 1/b + o.7/c, C3 = 0/a + 0/b + 1/c, C4 =
1/a + 0.3/b + 1/c}.

Ca = 1/a + 0/b + 0/c, Cb = 0/a + 1/b + 0.7/c, Cc = 0/a + 0/b + 1/c.

PlC(1a) = 1

3
, PlC(1b) = 1

3
, PlC(1c) = 1.7

3
.

Let B = C − {C4}, Ba = 1/a + 0/b + 0/c, Bb = 0/a + 1/b + 0.7/c, Bc = 0/a + 0/b + 1/c. γ (B, C) = 1, and for every

proper subset B
′
of B, γ (B

′
, C) 
= 1. Thus B is a reduction of C.
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Theorem 3.7. Let (U, C) be a fuzzy covering information system and B ⊆ C a subcovering of U.

(1) If PC(x) ≤ PB(x), ∀x ∈ U, then B is a consistent set of C if and only if PlB(X) = PlC(X), ∀X ∈ F(U).

(2) If ∀x, y ∈ U, Cx = Cy ⇔ Bx = By and ∀x ∈ U, (Bx)1 = (Cx)1, then B is a consistentset of C if and only if

PlB(X) = PlC(X), ∀X ∈ F(U).

Proof. It is obvious that (1) hold, we only prove (2).

(2) Since PlB(X) = PlC(X), ∀X ∈ F(U), we have PlB(1x) = PlC(1x), ∀x ∈ U.

Thus, ∀x ∈ U,

∑
A∈Cov(C)

|(A)1|∑
Y∈Cov(C) |(Y)1|

∨
y∈U

(A(y) ∧ 1x(y)) = ∑
A∈Cov(B)

|(A)1|∑
Y∈Cov(B) |(Y)1|

∨
y∈U

(A(y) ∧ 1x(y)).

If ∀x, y ∈ U, Cx = Cy ⇔ Bx = By, and ∀x ∈ U, (Bx)1 = (Cx)1, then |(Cx)1|∑
Y∈Cov(C) |(Y)1| = |(Bx)1|∑

Y∈Cov(B) |(Y)1| , ∀x ∈ U. Hence

B(1x) = C(1x), that is, B is a consistent set of C. The proof of the converse is obvious. �

Example 3.2 (Following Example 3.1). Ba = 1/a + 0/b + 0/c, Bb = 0/a + 1/b + 0.7/c, Bc = 0/a + 0/b + 1/c.

PlB(1a) = 1
3

= PlC(1a), PlB(1b) = 1
3

= PlC(1b), PlB(1c) = 1.7
3

= PlC(1b), then B is a consistent set of C.

3.2.2. Reduction of a fuzzy covering decision system

Let U be a non-empty and finite universe, C a fuzzy covering of U, and D a set of decision attributes, then (U, C,D)will be

called a fuzzy coveringdecision system. It is discussed that the reductionof a reflexive fuzzydecision systemonlymaintaining

the upper approximation of every decision class unchanged in [43], and the probability assignment of every focal element

is the same. In the following, we study attribute reduction of a fuzzy covering decision system in probability space keeping

the upper approximation of every decision class and mass function of every basic information granule unchanged.

Definition 3.3. Let (U, C,D) be a fuzzy covering decision system, U = {x1, . . . , xn}. U/D = {D1,D2, . . . ,Dr} is a set of

decision equivalence classes, B ⊆ C. If for every Di ∈ U/D, B(Di) = C(Di) and |(Bx)1| = |(Cx)1|, ∀x ∈ U, then B is called a

relative consistent set of C about D. Furthermore, for any proper subset B
′ ⊂ B, ∃Di ∈ U/D, B′

(Di) 
= C(Di) or ∃x ∈ U such

that |(B′
x)1| 
= |(Cx)1|, then we call B a relative reduction of C.

We can obtain directly the following property.

Proposition 3.8. Let (U, C,D) be a fuzzy covering decision system, U = {x1, . . . , xn}, U/D = {D1,D2, . . . ,Dr}, B ⊆ C. If B is

a relative consistent set of C, then

(1) mC(X) = mB(X), ∀X ∈ F(U).
(2) PC(x) = PB(x), ∀x ∈ U, when Cx = Cy ⇔ Bx = By, ∀x, y ∈ U.

Definition 3.4. Let (U, C,D) be a fuzzy covering decision system,U = {x1, . . . , xn},U/D = {D1,D2, . . . ,Dr},B ⊆ C, define

γ (B,D) =
r∏

i=1

(∑
x∈U

|(Bx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(Di)

)
(x)∑r

i=1 PlC(Di)
.

Then γ (B,D) is called the closeness degree of B to D.

Theorem 3.9. Let (U, C,D) be a fuzzy covering decision system, U = {x1, . . . , xn}, U/D = {D1,D2, . . . ,Dr}, then B ⊆ C is a

relative reduction of C iff γ (B,D) = 1, and for any nonempty proper subset B
′ ⊂ B, we have γ (B

′
,D) > 1.

Proof

r∏
i=1

(∑
x∈U

|(Bx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(Di)

)
(x)∑r

i=1 PlC(Di)
= 1

⇔
r∏

i=1

(∑
x∈U

|(Bx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|B(Di)

)
(x)

∑
x∈U

|(Cx)1|∑
Y∈Cov(C) |(Y)1||{y∈U:Cy=Cx}|C(Di)(x)

= 1 (by Proposition 2.4)
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⇔ ∑
x∈U

|(Bx)1|B(Di)(x)|∑
Y∈Cov(C) |(Y)1|{y ∈ U : Cy = Cx}| = ∑

x∈U

|(Cx)1|C(Di)(x)∑
Y∈Cov(C) |(Y)1||{y ∈ U : Cy = Cx}| , i = 1, 2, . . . , r

⇔ |(Bx)1|B(Di)(x) = |(Cx)1|C(Di)(x), ∀x ∈ U, i = 1, . . . , r (by Proposition 2.4)

⇔ B(Di)(x) = C(Di)(x) and |(Bx)1| = |(Cx)1|, ∀x ∈ U.

So B is a reduction of C iff γ (B,D) = 1 and for any B
′ ⊂ B, γ (B

′
,D) > 1. �

The purpose of relative reduction of a fuzzy covering decision system is to find a minimal subset of a fuzzy covering to

preserve the upper approximations of decision classes and the mass function unchanged.

Example 3.3. Let U = {a, b, c}, C = {C1 = 1/a + 0/b + 0/c, C2 = 0/a + 1/b + o.7/c, C3 = 0/a + 0/b + 1/c, C4 =
1/a + 0.3/b + 1/c}, U/RD = {{a}, {b, c}}.

Ca = 1/a + 0/b + 0/c, Cb = 0/a + 1/b + 0.7/c, Cc = 0/a + 0/b + 1/c.

PlC({a}) = 1

3
, PlC({b, c}) = 2

3
,

Let B = C − {C4}, γ (B,D) = 1, and for every subset B
′
of B, γ (B

′
,D) 
= 1. Then B is a relative reduction of C.

We consider the relation of the belief function (plausibility function) with respect to a fuzzy covering and a relative

consistent set of the fuzzy covering. Then we can easily obtain the following conclusion.

Theorem 3.10. Let I = (U, C,D) be a fuzzy covering decision system and B ⊆ C. Then we have

(1) If B is a relative consistent set of C about D, and ∀x, y ∈ U, Cx = Cy ⇔ Bx = By, then PB(x) = PC(x), ∀x ∈ U.
(2) If ∀x, y ∈ U, Cx = Cy ⇔ Bx = By, and B is a relative consistent set of C about D, then B(Di) = C(Di) ⇔ BelB(Di) =

BelC(Di), ∀Di ∈ U/D.
(3) If ∀x, y ∈ U, Cx = Cy ⇔ Bx = By, and B is a relative consistent set of Cabout D, then PlB(Di) = PlC(Di), ∀Di ∈ U/D.
(4) If ∀x ∈ U, PB(x) = PC(x), then B is a relative consistent set of C about D if and

only if PlB(Di) = PlC(Di), ∀Di ∈ U/D.

4. Information fusion and approximation in multi-fuzzy covering systems

In practical problems, we need to consider the information coming frommultiple sources, thus we should study how to

fuse the information systems. In this section, we extend Dempster evidence fusion function tomulti-fuzzy covering systems.

4.1. Information fusion in multi-fuzzy covering systems

Definition 4.1. Suppose U is a nonempty and finite universe of discourse, � = {C1, C2, . . . , Cn} is a set of fuzzy coverings.

Then we call (U, �) a multi-fuzzy covering system.

By Section 3, we can obtain amass functionmi for each fuzzy covering Ci. Thus wemust consider how to get a new fusion

mass function using {m1, . . . ,mn} in order to get that the set of all focal element in fusion information is the set of all new

granules generating a new approximation space.

Let (U, �) be a multi-fuzzy covering system, Fi the set of all focal elements of mi with respect to Ci. Bi ∈ Fi denotes an

arbitrary element Bi in Fi.

m�(A) =
⎧⎪⎨
⎪⎩

∑⋂n
i=1

{Bi∈Fi}=A m1(B1)m2(B2)...mn(Bn)∑
(
⋂n
i=1

{Bi∈Fi})1 
=∅ m1(B1)m2(B2)...mn(Bn)
, (A)1 
= ∅;

0, otherwise.

Then m� is a mass function.

Thus the fuzzy information fusion rule is an improvement of Dempster rule, which is introduced in [25]. The influence of

conflict evidence to every focal element is not considered, that is, the influence of
∑

m�(A), A ∈ F(U), and A ∈ {⋂n
i=1{Bi ∈

Fi} : (
⋂n

i=1{Bi ∈ Fi})1 = ∅} is not considered. But the conflict evidence has different relevance to every focal element of

m�. So they can affect the fusion results. Thus, we want to integrate the influence into the fusion function. Nowwe propose

a new method of evidence fusion which can be seen as improvements in conjunctive rules.
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Definition 4.2. Suppose U is a finite and nonempty universe of discourse. A, B ∈ F(U), denote

d(A, B) =
⎧⎨
⎩

|(A)1∩(B)1||(B)1| , (B)1 
= ∅;
1, otherwise.

Then d(A, B) is called the inclusion degree on F(U).

The concept of inclusion degree is introduced in [39]. It is obvious that d(A, B) ∈ [0, 1]. Then we can use the inclusion

degree to revise mass assignment, that is, use inclusion degree to distribute the conflict evidence.

Denote T� = {⋂i{Bi ∈ Fi} : (
⋂

i{Bi ∈ Fi})1 
= ∅, Fi is the set of focal elements ofmi w.r.t. Ci ∈ �}.

Example 4.1. Let U = {a, b, c}, (C1)a = 1
a
+ 1

b
+ 0.5

c
, (C1)b = 0.4

a
+ 1

b
+ 0.5

c
, (C1)c = 0.4

a
+ 1

b
+ 1

c
. (C2)a = 1

a
+ 0.3

b
+ 0.2

c
,

(C2)b = 0.5
a

+ 1
b
+ 1

c
, (C2)c = 0.5

a
+ 0.3

b
+ 1

c
. T� = { 1

a
+ 0.3

b
+ 0.2

c
, 0.5

a
+ 1

b
+ 0.5

c
, 0.4

a
+ 1

b
+ 0.5

c
, 0.4

a
+ 1

b
+ 1

c
, 0.4

a
+ 0.3

b
+ 1

c
} ⊇

{�a = 1
a

+ 0.3
b

+ 0.2
c

, �b = 0.4
a

+ 1
b

+ 0.5
c

, �c = 0.4
a

+ 0.3
b

+ 1
c
}, where �x = ∩{(Ci)y : (Ci)y(x) = 1, y ∈ U, Ci ∈ �}.

By Example 4.1, we have T� ⊇ {�x : x ∈ U} and ∀x ∈ U, ∃A ∈ T� such that A(x) = 1. Thus T� is a new normalized

fuzzy covering of U.

Theorem 4.1. Let U be a nonempty and finite universe, (U, �) a multi-fuzzy covering system. Define for each A ∈ F(U),

m∗�(A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑⋂n
i=1{Bi∈Fi}=A

(∏n

i=1
mi(Bi)

)
+ ∑

(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎜⎝ ∑n

i=1 d(A,Bi)∑
Aj∈T�

n∑
i=1

d(Aj,Bi)

∏n

i=1
mi(Bi)

⎞
⎟⎠ , A ∈ T�;

0, otherwise.

Then m∗� is a mass function. We call it the fusion mass function.

Proof. (1)m∗�(∅) = 0.

(2) ∀A ∈ F(U), if A ∈ T�, then A ∈ {⋂i{Bi ∈ Fi} : (
⋂

i{Bi ∈ Fi})1 
= ∅}. Conversely, if X ∈ {⋂i{Bi ∈ Fi} : (
⋂

i{Bi ∈
Fi})1 
= ∅}, then ∃B1 ∈ F1, . . . , Bn ∈ Fn, X = B1 ∩ B2 ∩ . . . ∩ Bn and (X)1 
= ∅. Thus∑

A∈F(U)

m∗�(A) = ∑
Ak∈T�

m∗�(Ak)

= ∑
Ak∈T�

⎛
⎜⎜⎜⎜⎝

∑
n⋂

i=1

{Bi∈Fi}=Ak

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠ + ∑

(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎝ ∑n

i=1 d(Ak, Bi)∑
Aj∈T�

∑n
i=1 d(Aj, Bi)

n∏
i=1

mi(Bi)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

= ∑
Ak∈T�

⎛
⎜⎜⎜⎜⎝

∑
n⋂

i=1

{Bi∈Fi}=Ak

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠

⎞
⎟⎟⎟⎟⎠ + ∑

Ak∈T�

⎛
⎜⎝ ∑
(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎝ ∑n

i=1 d(Ak, Bi)∑
Aj∈T�

∑n
i=1 d(Aj, Bi)

n∏
i=1

mi(Bi)

⎞
⎠

⎞
⎟⎠

= ∑
Ak∈T�

⎛
⎜⎜⎜⎜⎝

∑
n⋂

i=1

{Bi∈Fi}=Ak

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠

⎞
⎟⎟⎟⎟⎠ + ∑

(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠

= 1 −
⎛
⎜⎝ ∑
(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠ − ∑

(
⋂n

i=1{Bi∈Fi})1=∅

⎛
⎝ n∏

i=1

mi(Bi)

⎞
⎠

⎞
⎟⎠ = 1.

Thusm∗� is a mass function. �

A fuzzy set X ∈ F(U) with m∗�(X) > 0 is referred to a focal element of m∗�. We denote by M� the family of all focal

elements of m∗�. Then M� is a fuzzy covering of U and the elements inM� are the basic information granules.
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Example 4.2. Let U = {a, b, c}, (C1)a = 1
a

+ 0.5
b

+ 0
c
, (C1)b = 0.1

a
+ 1

b
+ 1

c
, (C1)c = 1

a
+ 1

b
+ 1

c
. (C2)a = 1

a
+ 0.5

b
+ 0

c
,

(C2)b = 0.1
a

+ 1
b

+ 0.7
c
, (C2)c = 1

a
+ 1

b
+ 1

c
.

T� = {(C1)a, (C1)b, (C2)b, (C1)c} and (C1)a ∩ (C2)b = ∅, (C1)b ∩ (C2)a = ∅. Let A = (C1)a, B = (C1)b, C = (C2)b,
D = (C1)c . Then

m1(A) = 1

6
, m1(B) = 1

3
, m1(C) = 0,m1(D) = 1

2
.

m2(A) = 1

5
, m2(B) = 0, m2(C) = 1

5
, m1(D) = 3

5
.

Thusm�(A) = 7
27

,m�(B) = 6
27

, m�(C) = 5
27

. m�(D) = 9
27

.

However, m∗�(A) = 172
675

, m∗�(B) = 289
1350

, m∗�(C) = 127
675

, m∗�(D) = 463
1360

.

Then m�(A) ≥ m∗�(A), m�(B) ≥ m∗�(B), butm�(C) ≤ m∗�(C), m�(U) ≤ m∗�(U).m∗� is a minor adjustment tom�.

By Example 4.2, we know that the probability assignment of C and U become greater, and the probability assignment of

A and B become smaller, that is, the influence to C and U by {⋂n
i=1{Bi ∈ Fi} : (

⋂n
i=1{Bi ∈ Fi})1 = ∅} is greater than A and

B. From this aspect, m∗� is more reasonable than m�. So we use T� and m∗� to define the belief function and plausibility

function on U.

Definition 4.3. Let U = {x1, x2, . . . , xn} be a nonempty and finite universe of discourse, � a multi-fuzzy covering system

of U. ∀X ∈ F(U), denote

Bel�(X) = ∑
A∈F(U)

m∗�(A)
∧
y∈U

((1 − A(y)) ∨ X(y)), Pl�(X) = ∑
A∈F(U)

m∗�(A)
∨
y∈U

(A(y) ∧ X(y)).

Then Bel� and Pl� are belief and plausibility functions on U, respectively.

Theorem 4.2. Bel� and Pl� satisfy the following statements: ∀X ∈ F(U),

1. Bel�(∅) = Pl�(∅) = 0, Bel�(U) = Pl�(U) = 1;

2. Bel�(X) ≤ Pl�(X);
3. Bel�(X) + Bel�(∼ X) ≤ 1;

4. Bel� and Pl� are all monotone about X;

5. Bel�(X) + Pl�(∼ X) = 1.

Let U be a non-empty and finite universe, � be a multi-fuzzy covering system of U, and D be a set of decision attributes,

then (U, �,D) is called a fuzzy covering decision system. Now we can compute the belief degree of every decision class by

using operator Bel�. It will help us to classify the objects. So we give the decision rules in the following.

SupposeU is a nonempty andfinite universe of discourse,D is a decision attribute set.U/D = {D1, . . . ,Dr} is a crisp parti-

tion ofU. Definemathematical expectation E(D) =
∑

Di∈U/D Bel�(Di)

|U/D| , and standard deviationσ(D) =
√∑

Di∈U/D(Bel�(Di)−E(D))2

|U/D| .

Assumption 4.1. Let U be a nonempty and finite universe of discourse, � a multi-fuzzy covering system of U. U/B and U/D
are two decision partitions. Then we can use the following rules to decide which decision partition is better than the other.

(1) ∀Bi ∈ U/B, if Bel(Bi) ≥ Bel(Dj) for every Dj ∈ U/D with Bi ∩ Dj 
= ∅, then U/B is better than U/D.
(2) If (1) is not satisfied, then compute E(D) and E(B). If E(D) > E(B), then the classification effects of U/D is better

than U/B. If E(B) > E(D), then the classification effects of U/B is better than U/D. If E(B) = E(D), we consider σ(D) and

σ(B), and we think that classification effects of the variance smaller one is better than the other. Otherwise, we believe the

classification effects of the two decisions are both good.

Assumption 4.2. LetU be a nonempty and finite universe of discourse,� amulti-fuzzy covering system of U.D is a decision

attribute and U/D is a partition of U. If the classification of the elements is known expect one element x ∈ U, we compute

Bel�(Di∪{x}) for eachDi ∈ U/D. SelectD∗ satisfying Bel�(D∗∪{x}) = max{Bel�(Di∪{x}) : Di ∈ U/D}. Thenwe determine

that x belongs to decision class D∗.

Example 4.3. Let U = {x1, x2, x3, x4} be a set of four patients, E = {a1, a2, a3, a4} be a set of four attributes. a1 =: Heat,
a2 =: Cough, a3 =: headache, a4 =: URI. D = {1 =: commoncold, 2 =: influenza}. For attribute a1 we have C1:
C1 = {1/x1 + 0.7/x2 + 1/x3 + 0.4/x4, 0.3/x1 + 1/x2 + 0.3/x3 + 1/x4}.
For attribute a2 we have C2:
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C2 = {1/x1 + 1/x2 + 0.3/x3 + 0.7/x4, 0.8/x1 + 0.7/x2 + 1/x3 + 1/x4}.
For attribute a3 we have C3:
C3 = {1/x1 + 0.7/x2 + 1/x3 + 1/x4, 0.4/x1 + 1/x2 + 1/x3 + 0.7/x4}.
For attribute a4 we have C4:
C4 = {1/x1 + 0.7/x2 + 1/x3 + 0.5/x4, 0.4/x1 + 1/x2 + 1/x3 + 1/x4}.

Thus for C1 we have:

C1x1 = C1x3 = 1/x1 + 0.7/x2 + 1/x3 + 0.4/x4,

C1x2 = C1x4 = 0.3/x1 + 1/x2 + 0.3/x3 + 1/x4,

m(C1x1) = m(C1x3) = 1

2
, m(C1x2) = m(C1x4) = 1

2
.

For C2 we have:

C2x1 = C2x2 = 1/x1 + 1/x2 + 0.3/x3 + 0.7/x4,

C2x3 = C2x4 = 0.8/x1 + 0.7/x2 + 1/x3 + 1/x4.

m(C2x1) = m(C2x2) = 1

2
, m(C2x2) = m(C2x4) = 1

2
.

For C3 we have:

C3x1 = C3x4 = 1/x1 + 0.7/x2 + 1/x3 + 1/x4,

C3x2 = 0.4/x1 + 1/x2 + 1/x3 + 0.7/x4,

C3x3 = 0.4/x1 + 0.7/x2 + 1/x3 + 0.7/x4.

m(C3x1) = m(C2x4) = 1

2
, m(C2x2) = 1

6
, m(C2x3) = 1

3
.

T� = {A1 = 1/x1 + 0.7/x2 + 0.3/x3 + 0.4/x4, A2 = 0.8/x1 + 0.7/x2 + 1/x3 + 0.4/x4, A3 = 0.4/x1 + 0.7/x2 +
1/x3 + 0.4/x4, A4 = 0.3/x1 + 1/x2 + 0.3/x3 + 0.7/x4, A5 = 0.3/x1 + 0.7/x2 + 0.3/x3 + 1/x4} and m�(A1) ≈ 0.188,
m�(A2) ≈ 0.246, m�(A3) ≈ 0.246, m�(A4) ≈ 0.130 m�(A5) ≈ 0.190

(1) If there are two decisions D = {D1 = {x1, x2},D2 = {x3, x4}}, B = {B1 = {x1, x3}, B2 = {x2, x4}} given by two

doctors, then we can compute Bel�(D1) and Bel�(D2) in two conditions. Moreover, we can determine the reasonable one

of D1 and D2 by using the belief degree of D1 and D2. In the case of decision D,

Bel�(D1) = 0.152, Bel�(D2) = 0.18.

The belief degree of D1 is 0.152. The belief degree of D2 is 0.18.
But if B = {B1 = {x1, x3}, B2 = {x2, x4}}, then Bel�(B1) = 0.204, Bel�(B2) = 0.224. Obviously, the belief degree of

every set in B is bigger than D. Thus, we can believe that the classification effects of B is better than D.

(2) If we know D1 = {x1, x2}, D2 = {x4}, but we do not know which decision class x3 belongs to, we compute that

Bel�({x1, x2, x3}) = 0.4776, and Bel�({x3, x4}}) = 0.18. So we think that x3 belongs to D1.

4.2. Induced fuzzy covering approximation operators

In Section 3, a fuzzy approximation space generates a serial lower (upper) approximations, we know that the lower

(upper) approximation can induce the belief (plausibility) function. A nature problem is under what conditions, lower

(upper) approximation operator can be generated from the Bel(Pl) functions? And how to do it? In this subsection, we study

these questions by using the theory of maximum flow [11]. The definitions about graph, network, maximum flow, etc, can

be found in [11].

Let |T�| denote the number of elements in T�, and |T�| 
= ∞. Let Ai in T� denote a vertex ai, V1 = {ai : Ai ∈ T�}, and
xj in U denote a vertex xj , V2 = {xj : xj ∈ U}. If Ai(xj) = 1, then there is a directed edge from ai to xj . Denote vij = (ai, xj).

Definition 4.4. A directed bipartite graph (or bigraph) is a directed graph whose vertices can be divided into two disjoint

sets U and V such that every directed edge connects a vertex in U to one in V ; that is, U and V are independent sets.

Proposition 4.3. If V = V1 ∪ V2, E = {eij} denotes the set of directed edges, then G(V, E) is a directed Bipartite graph.

Since there must exist an element Ai in T� such that Ai(xj) = 1, ∀xj ∈ U, we have the following conclusion.

Proposition 4.4. There are at least one directed edge connected to xj, ∀xj ∈ V2.
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In the following, we discuss the lower (upper) approximation operator generated by the Bel(Pl) functions in two cases.

Case 1. |T�| ≤ |U|.

Add a new vertex s, and let s connect every vertex ai ∈ V1, we denote ei = (s, ai) and add a new vertex t, let t connect

every vertex xj ∈ V2, we denote ej = (xj, t). Thus we can get a new graph G
′
. The capacity on each directed edge ei = (s, ai)

is |U|, the capacity on each directed edge ej = (xj, t) is 1, and the capacity on each directed edge eij = (ai, xj) ∈ E is 1. Then

G
′
is a network. A flow on a graph is a nonnegative integer-valued function f from the set of directed edges to Z+. The flow

on directed edge eij is fij , the flow on directed edge ei is fsi, the flow on directed edge ej is fjt . Now we can get a maximum

flow on G
′
. Let F be a flow and F(G) be the value of the flow F on G.

Proposition 4.5. If G
′
is a network defined as above, |T�| ≤ n, then the value of a maximum flow on G

′
is Fmax(G

′
) = |U|.

By the method of maximum flow, the proof of Proposition 4.5 is obvious. By Proposition 4.5 we know that fjt = 1,

∀xj ∈ V2. Thus for every xj ∈ V2 there exists only one vertex ai such that fij = 1 and the following proposition holds.

Proposition 4.6. Let G
′
be a network defined as above, |T�| ≤ n. Then there exists a maximum flow F such that F(G

′
) = |U|

and fsi ≥ 1, ∀ai ∈ V1.

Proof. Firstly, we give a feasible flow F
′
such that fsi = 1 for every ai ∈ V1 and fjt ≤ 1 for every xj ∈ U. Thus there are at

least |U| − |V1| edges eij ∈ E such that fij = 0 but cij = 1. Secondly, we try to increase the flow fs1 for a1 ∈ V1 to get a new

feasible flow. If fs1 can not be increased, then consider fs2, and repeat the same action one by one. Finally, we always can get

a maximum flow F such that F(G
′
) = |U| and fsi ≥ 1, ∀ai ∈ V1. �

Theorem 4.7. Suppose F is amaximum flow of G
′
such that F(G

′
) = |U| and fsi ≥ 1,∀ai ∈ V1. If fij = 1 in F, then let�xj = {Ai}

be a fuzzy neighborhood of xj. Every Ai ∈ T� is a fuzzy neighborhood of at least one elements in U and for every xj ∈ U, there

exists one neighborhood.

LetU = {x1, x2, . . . , xn}beanonemptyandfiniteuniverseof discourse,� amulti-fuzzy covering systemofU. If |T�| ≤ n,

then ∀X ∈ F(U),

Bel�(X) = ∑
A∈F(U) m

∗�(A)
∧

y∈U((1 − A(y)) ∨ X(y)), (by Theorem 4.7)

= ∑
�x∈T� |{y ∈ U : �y = �x}|

(∧
y∈U((1 − �x(y)) ∨ X(y))

m∗�(�x)

|{y∈U:�y=�x}|
)

= ∑
x∈U

∧
y∈U((1 − �x(y)) ∨ X(y))

m∗�(�x)

|{y∈U:�y=�x}| .

Let P(x) = m∗�(�x)

|{y∈U:�y=�x}| , ∀x ∈ U, then the above equation is equivalent to

Bel�(X) = ∑
x∈U

∧
y∈U

((1 − �x(y)) ∨ X(y))P(x).

Similarly, we can get Pl�(X) = ∑
x∈U

∨
y∈U(�x(y) ∧ X(y))P(x).

Denote

Apr�(X)(x) = ∧
y∈U

((1 − �x(y)) ∨ X(y)),

Apr�(X)(x) = ∨
y∈U

(�x(y) ∧ X(y)).

Then Apr� and Apr� are called upper and lower approximation operators of � induced by the Bel function and the Pl

function, respectively. Thus

Bel�(X) = ∑
x∈U

Apr�(X)(x)P(x),

Pl�(X) = ∑
x∈U

Apr�(X)(x)P(x).

The properties of lower and upper approximation operators induced by the belief function and the plausibility function

are shown below.
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Theorem 4.8. Suppose � is a multi-fuzzy covering system of U. The lower and upper approximation operators induced by the

belief function and the plausibility function satisfy the following properties: ∀A, B ∈ F(U), α ∈ [0, 1],
(1) Apr�(∅) = ∅, Apr�(U) = U;
(2) Apr�(A) ⊆ A ⊆ Apr�(A);
(3) Apr�(A) =∼ Apr�(∼ A), Apr�(A) =∼ Apr�(∼ A);
(4) Apr�(A ∪ α̂) = Apr�(A) ∨ α̂, Apr�(A ∩ α̂) = Apr�(A) ∧ α̂;
(5) Apr�(A ∩ B) = Apr�(A) ∩ Apr�(B), Apr�(A ∪ B) = Apr�(A) ∪ Apr�(B);
(6) A ⊆ B ⇒ Apr�(A) ⊆ Apr�(B), Apr�(A) ⊆ Apr�(B);
(7) Apr�(A ∪ B) ⊇ Apr�(A) ∪ Apr�(B), Apr�(A ∩ B) ⊆ Apr�(A) ∩ Apr�(B).

Proof. It is easy to prove by the above definition of Apr� and Apr�. �

Example 4.4. U = {a, b, c, d}, T� = {A1 = 1/a + 0.5/b + 0.3/c + 1/d, A2 = 0.1/a + 1/b + 1/c + 1/d, A3 =
1/a + 0.5/b + 1/c + 0.2/d}. Thus we can obtain a network G

′
and a feasible flow on G

′
as follows:

Now we can get a maximum flow

Then�a = A1,�b = A2,�c = A3,�d = A1. Thuswecancompute the lower andupper approximationsof every fuzzy set

inU. IfX = 0.5/a+0/b+0.1/c+1/d, thenApr�(X) = 0.5/a+0/b+0.1/c+0.5/d andApr�(X) = 1/a+1/b+0.5/c+1/d.

Case 2. |T�| > |U|.
Similarly to Case 1, we assume that the flow capacity on each directed edge ei = (s, ai) is 1, the capacity on each directed

edge ej = (xj, t) is |T�|, and the capacity on each directed edge eij = (ai, xj) ∈ E is 1, which form G
′′
. Hence we can get a

maximum flow on G
′′
.

Proposition 4.9. If G
′′
is a network defined as above, |T�| > |U|, then the value of a maximum flow on G

′′
is F(G

′′
) = |T�|.

By the method of maximum flow, Proposition 4.9 is obvious. From Proposition 4.9, we know that fjt = 1, ∀ai ∈ V1. Thus

for every ai ∈ V1 there exists only one vertex xj such that fij = 1. Then we obtain that if G
′′
is a network defined as above,

|T�| > |U|, then there exists a maximum flow F such that F(G
′′
) = |T�| and fjt ≥ 1, ∀xj ∈ V2.

In the following we give the method of finding the maximum flow of G
′′
.
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Firstly, we give a feasible flow F
′
such that fjt = 1 for every xj ∈ V2 and fsi ≤ 1 for every ai ∈ V1. Thus there are at least

|T�| − |U| directed edges eij ∈ E satisfying fij = 0, and then fsi = 0.

Secondly, we try to increase the flow fs1 for a1 ∈ V1 to get a new feasible flow such that fjt ≥ 1, ∀xj ∈ V2. If fs1 can not

be increased, then consider fs2, and repeat the same action one by one.

Finally, we can always get a maximum flow F such that F(G
′′
) = |T�| and fjt ≥ 1, ∀xj ∈ V2.

Theorem 4.10. Suppose F is a maximum flow of G
′′
such that F(G

′′
) = |T�| and fjt ≥ 1, ∀xj ∈ V2. Let �xj = {Ai : fij = 1},

∀xj ∈ V2, then �xj 
= ∅, ∀xj ∈ V2.

LetU = {x1, x2, . . . , xn}be anonempty andfinite universe of discourse,� amulti-fuzzy covering systemofU. If |T�| > n

and for every x ∈ U, m∗�(Ai) = m∗�(Aj), ∀Ai, Aj ∈ �x , then ∀X ∈ F(U),

Bel�(X) = ∑
A∈F(U)

m∗�(A)
∧
y∈U

((1 − A(y)) ∨ X(y)) (by Theorem 4.10)

= ∑
x∈U

⎛
⎝ ∑

A∈�x

∧
y∈U

((1 − A(y)) ∨ X(y))

⎞
⎠m∗�(A)

= ∑
x∈U

∑
A∈�x

∧
y∈U((1 − A(y)) ∨ X(y))

|�x| (m∗�(A)|�x|)

Let P(x) = m∗�(A)|�x|, then

Bel(X) = ∑
x∈U

∑
A∈�x

∧
y∈U((1 − A(y)) ∨ X(y))

|�x| P(x)

Similarly, we get

Pl�(X) = ∑
x∈U

∑
A∈�x

∨
y∈U(A(y) ∧ X(y))

|�x| P(x).

Denote

Apr
′
�(X)(x) =

∑
A∈�x

∧
y∈U((1 − A(y)) ∨ X(y))

|�x| , Apr
′
�(X)(x) =

∑
A∈�x

∨
y∈U(A(y) ∧ X(y))

|�x| .

Then Apr
′
� and Apr

′
� are called upper and lower approximation operators of � induced by Bel and Pl, respectively. Thus

Bel�(X) = ∑
x∈U Apr

′
�(X)(x)P(x), Pl�(X) = ∑

x∈U Apr
′
�(X)(x)P(x).

The properties of lower and upper approximation operators induced by the belief function and the plausibility function

are shown below.

Theorem 4.11. Suppose � is a multi-fuzzy covering system of U. The upper and lower approximation operators induced by Bel

and Pl satisfy the following properties: ∀A, B ∈ F(U),

(1) Apr�(∅) = ∅, Apr�(U) = U;
(2) Apr�(A) ⊆ A ⊆ Apr�(A);
(3) Apr�(A) =∼ Apr�(∼ A), Apr�(A) =∼ Apr�(∼ A);
(4) A ⊆ B ⇒ Apr�(A) ⊆ Apr�(B), Apr�(A) ⊆ Apr�(B).

Example 4.5 (Following Example 4.3). By |T�| = 5 > |U|, we have �x1 = {A1}, �x2 = {A4}, �x3 = {A2, A3}, �x4 = {A5},
and |�3| = 2. If X = 1/x1 + 1/x2 + 0.3/x3 + 0/x4, then Apr�(X) = 0.6/x1 + 0.3/x2 + 0.3/x3 + 0/x4, Apr�(X) =
1/x1 + 1/x2 + 0.75/x3 + 0.7/x4.

5. Conclusion

In this paper we first gave the definition and properties of a dual of fuzzy covering upper and lower approximation

operators. Then we defined a new pair of belief function and plausibility function based on the fuzzy covering upper and

lower approximation operators, and discussed their properties based on fuzzy coverings of a universe and then, we studied
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the reduction of a fuzzy covering on the belief and plausibility functions and presented amethod to compute a reduction by

use of plausibility functions.Moreover,weproposed a fusionmass functionover amulti-fuzzy covering systemanddiscussed

the application of the fusionmass function. Finally we discussed the question how to get lower and upper approximations in

a evidence theory space of information fusion in two special cases. In the future, we will develop the proposed approaches

to more generalized and more complex information systems such as fuzzy decision systems.
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