
GMDPtoolbox: Quick start

Version 1.1 - September, 2016

MJ. Cros, N. Peyrard, R. Sabbadin
MIAT, INRA Toulouse, France

This is a quick start to learn how to use GMDPtoolbox.

For a detailed presentation of formalization and resolution of a GMDP problem with the toolbox,
please refer to the user documentation of the toolbox (included in the toolbox).

1 Get the GMDPtoolbox

From the Project Forge Files page:
https://mulcyber.toulouse.inra.fr/frs/?group id=213
download the file gmdptoolbox.zip.
Unzip the file and go to the gmdptoolbox directory. On Linux system execute the following system
commands:

unzip gmdptoolbox.zip

cd gmdptoolbox

GMDPtoolbox relies on graphViz4Matlab toolbox to display graphs in functions gmdp see neighborhood,
gmdp see policy graph, gmdp eval policy value site contribution. Download this tool-
box, from MATLAB Central. From the web page:
http://www.mathworks.com/matlabcentral/fileexchange/21652-graphviz4matlab
click on the ’Download Zip’ button to download the zip file in the gmdptoolbox directory.
Unzip the file. On Linux system execute the following system command:

unzip graphViz4Matlab_03Mar2010.zip

The toolbox relies on GraphViz available free from http://www.graphviz.org. On Linux, just
install the graphviz package on your computer.

Note that one of the function gmdp linear programming requires the availibility of the MAT-
LAB Optimization toolbox.
Furthermore, if MATLAB Parallel Computing Toolbox is available, the functions
gmdp linear programming and gmdp policy iteration MF are greatly speeded.
If not available, just change parfor in for in this two functions.

To use the toolbox in a MATLAB session, add the gmdptoolbox and graphViz4Matlab directory
absolute paths to MATLAB search path. Execute the following MATLAB commands:

>> GMDPtoolbox_path = pwd;

>> addpath(GMDPtoolbox_path)

>> graphViz4Matlab_path = ’graphViz4Matlab’ % give the appropriate path

>> addpath(genpath(graphViz4Matlab_path))

To access the PDF user documentation, open the file doc/ReferenceManual.pdf with an appro-
priate software.

1

For any question, first consult the FAQ on the GMDPtoolbox website:
http://www7.inra.fr/mia/T/GMDPtoolbox/install.html#FAQ.
If there is no appropriate answer or to suggest a feature, add a request on the Bugs and Feature
request of the project:
https://mulcyber.toulouse.inra.fr/tracker/?atid=883&group id=213&func=browse

2 Create a tiny GMDP epidemics management problem on 3
crop fields

Use the epidemio example provided with the toolbox to generate a problem of epidemics management
on 3 crop fields. Each field can be in 2 states (1: uninfected, 2: infected). On each field, 2 actions are
possible (1: normal cultural mode, 2: field fallow and treat). To have more detail (transition proba-
bilities, rewards) on the problem, read the description of the function gmdp example epidemio in
the user documentation.

For this problem the neighborhood relation corresponds to a spatial proximity between fields that
enables epidemics propagation. The graph is the following:

1 2 3

This graph corresponds to the following adjacency matrix:

G =

1 1 0
1 1 1
0 1 1


>> GMDP = gmdp_example_epidemio()

GMDP =

M: [2 2 2]

B: [2 2 2]

G: [3x3 double]

Ploc: {[4x2x2 double] [8x2x2 double] [4x2x2 double]}

Rloc: {[4x2 double] [8x2 double] [4x2 double]}

N: {[1 2] [1 2 3] [2 3]}

VN: {[4x2 uint16] [8x3 uint16] [4x2 uint16]}

Check the validity of the description with the gmdp check function.

>> gmdp_check(GMDP)

ans =

1

problems =

{[]}

No error was detected.

The graph of neighborhood relations can be vizualized with the gmdp see neighborhood func-
tion.

>> gmdp_see_neighborhood(GMDP)

Here is the view with the circular layout. The layout may be changed with buttons of the horizontal
buttons bar. The circular layout corresponds to the button with the yellow star.

2

Finally, define the discount factor.

>> discount = 0.95;

3 Solve the problem

To solve a GMDP problem, two algorithms (see the user documentation for references) are developed
in the toolbox in two functions: gmdp policy iteration MF and gmdp linear programming.
The approximate policy iteration Mean-Field function gmdp policy iteration MF usually pro-
vides better approximation but it is much more time consuming.

>> policyloc = gmdp_policy_iteration_MF(GMDP, discount)

Iteration: 1 Current approximate global value: 124.9569

Iteration: 2 Current approximate global value: 161.6177

policyloc =

[4x1 double] [8x1 double] [4x1 double]

>> for i=1:3; disp(policyloc{i}’); end

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

If time is an issue, and if MATLAB Optimization Toolbox is available, then use the approximate
linear programming algorithm.

>> policyloc = gmdp_linear_programming(GMDP, discount);

Resolve site 1

Optimization terminated.

Done site 1

Resolve site 2

Optimization terminated.

Done site 2

Resolve site 3

Optimization terminated.

Done site 3

policyloc =

[4x1 double] [8x1 double] [4x1 double]

>> for i=1:3; disp(policyloc{i}’); end

1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

3

The same policy is found by the two approaches.

4 Explore the policy found

Show the policy more explicitely

Display actions prescribed for each site and each neighbor’s state.

>> gmdp_see_policy(GMDP, policyloc)

Site 1 Neighbor(s): 1 2

Actions: 1 1 2 2

Site 2 Neighbor(s): 1 2 3

Actions: 1 1 2 2 1 1 2 2

Site 3 Neighbor(s): 2 3

Actions: 1 2 1 2

4.1 Analyze the policy

First, we can analyse the repartition of actions prescribed by the policy (independently of sites and
sites neighbors states)

>> actions_repartition = gmdp_analyze_policy(GMDP, policyloc)

Here is the figure displayed.

The policy prescribes as many times action 1 as action 2 on each site.
Then we can analyse the repartition at particular sites, this time depending on site states (but not on
site’s neighbors states).

>> actions_repartition_state_site = gmdp_analyze_policy_neighbor(GMDP, policyloc);

4

From these repartition we can see that the policy can be expressed as follow:
If field i is uninfected (site state 1) then chose a normal cultural mode (action 1).
If field i is infected (site state 2) then leave the field fallow and treat (action 2).

4.2 Evaluate the policy with the Mean-Field approach

Compute an approximation of the global value function of the policy found.

>> Vloc = gmdp_eval_policy_MF (GMDP, discount, policyloc)

Vloc =

[4x1 double] [8x1 double] [4x1 double]

>>for i=1:3; disp(Vloc{i}’); end

56.7577 56.7577 53.4217 53.4217

52.8888 52.8888 49.9880 49.9880 52.8888 52.8888 49.9880 49.9880

56.7577 53.4217 56.7577 53.4217

We observe that, for sites 1, 2 and 3, reward is maximum when the site is not contaminated, whatever
the neighborhood state.
Note that it is possible to have a better approximation of the value function with a better approxi-
mation of infinity (1000 instead of the default value 100) but to the cost of a larger execution time.

>> for i=1:n; Qloc0{i}=(ones(GMDP.M(i),1)/GMDP.M(i));end

>> Vloc = gmdp_eval_policy_MF (GMDP, discount, policyloc, Qloc0, 1000)

Vloc =

[4x1 double] [8x1 double] [4x1 double]

>> for i=1:3; disp(Vloc{i}’); end

57.0741 57.0741 53.7381 53.7381

53.1839 53.1839 50.2831 50.2831 53.1839 53.1839 50.2831 50.2831

57.0741 53.7381 57.0741 53.7381

4.3 Simulate policy

Another way of evaluating the policy is to simulate the application of this policy.

>> [sim_state, sim_reward] = gmdp_simulate_policy(GMDP, policyloc);

Let us now see the evolution of the global value (cumulated and instantaneous) during the 40 periods
(default duration) simulated (mean value over 100 simulated trajectories).

>> value_evolution1 = gmdp_eval_policy_value(discount, sim_reward);

>> value_evolution2 = gmdp_eval_policy_value(discount, sim_reward, false);

The end of the cumulative global value is not flat and instantaneous global reward if not null after 40
periods (the default value), lets simulate more periods and re-estimate expected reward.

5

>> [sim_state, sim_reward] = gmdp_simulate_policy(GMDP, policyloc,100,100,90);

>> value_evolution3 = gmdp_eval_policy_value(discount, sim_reward);

>> value_evolution4 = gmdp_eval_policy_value(discount, sim_reward, false);

This trajectory length is more adapted to the discount factor (instantaneous reward near zero at the
90th period).
With a length of 40 periods, the cumulative global value is: value evolution(40), 132.7156.
With a length of 90 periods, the cumulative global value is: value evolution(90), 151.3487.
With more simulations (nb init = 500 and nb run = 500), we get a close approximation and find
151.0874.

The gmdp eval policy value site contribution enables to quantify the contribution of each
site to the cumulated global value.

>> value_site = gmdp_eval_policy_value_site_contribution(GMDP, discount, sim_reward)

value_site =

34.1663 31.7808 34.0529

It is quite balanced (the reason why the sites have the same color), with a slightly lower contribution
of site 2.

Finally, the gmdp eval policy state time function enables to analyze the time spent in the
different site states.

>> state_time = gmdp_eval_policy_state_time(GMDP, sim_state);

6

We then see that each site is nearly 30% of the time in state contaminated (state 2, colored in brown).

7

