
MODÈLE ADDITIF

Le modèle additif

- modèle central
- l'interaction : écart au modèle additif

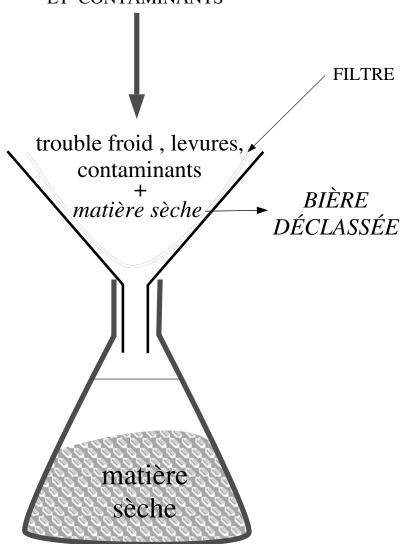
Plan

1. Exemple

- Le contexte
- Les données
- Représentation graphique

2. Estimation

- Estimation des paramètres
- Résidus


3. Points forts

4. <u>Décomposition</u>

- Table d'ANOVA
- Table récapitulative

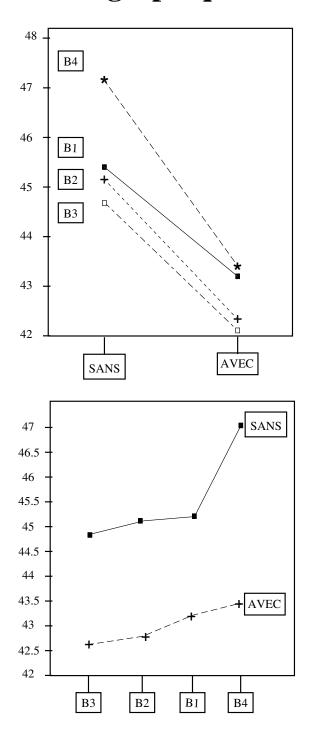
Le contexte

Effet de la filtration sur la quantité de matière sèche de bières.

Les données

FILTRATION

		SANS	AVEC
BIÈRE	B1	45.300	43.235
	B2	45.125	42.395
	В3	44.765	42.215
	B4	47.275	43.460


Convention : X_{ij} i : ligne (1 à I) ; bière (I=4)

j: colonne (1 à J); filtration (J=2)

Exemples: $X_{11} = 45.300$

 $X_{42} = 43.460$

Représentation graphique des données

Questions des expérimentateurs

- Le filtre retient-il une partie de la matière sèche des bières?
- Les bières ont-elles un comportement différent en filtration?

FILTRATION					
		SANS	AVEC		
	B1	45.300	43.235		
BIÈRE	B2	45.125	42.395		
DIEKE	В3	44.765	42.215		
	B4	47.275	43.460		
				44.221	X

Convention : Moyenne générale = X.. = $\widehat{\mu}$

45.616	42.826	
+1.395	-1.395	

Moyenne $X_{.j}$ EFFET FILTRE

						_
EFFET	FILTRE	= X	<i>i</i> — _	\boldsymbol{X}	=	β_i

44.267	+0.046
43.760	-0.461
43.490	-0.731
45.367	+1.146

EFFET BIÈRE = $X_{i.} - X_{..} = \widehat{\alpha_{i}}$

Le modèle additif

$$E(X_{ij}) = \mu + \alpha_i + \beta_j$$

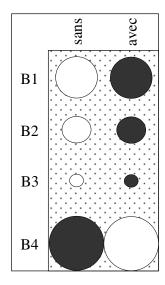
FILTRATION

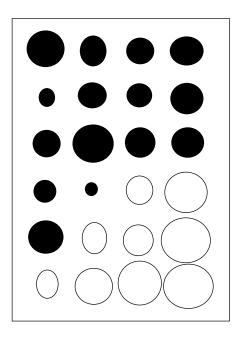
		SANS	AVEC	EFFET BIÈRE	
	B1			$+0.046 = \widehat{\alpha}_{1}$	
BIÈRE	B2			$-0.461=\widehat{\boldsymbol{\alpha_2}}$	$\sum \widehat{lpha_i} = 0$
DIEKE	В3			$-0.731 = \widehat{\boldsymbol{\alpha_3}}$	
	B4			$+ 1.146 = \widehat{\alpha_4}$	
EFFET F	ILTRE	$+ 1.395 = \widehat{\beta_1}$	$-1.395 = \widehat{\beta_2}$	$44.221 = \widehat{\boldsymbol{\mu}}$	

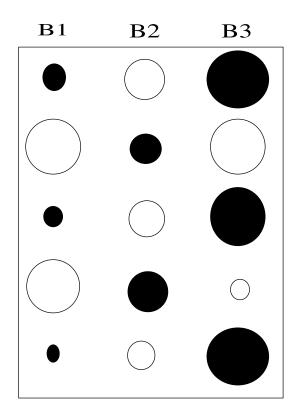
$$\sum \widehat{eta_j} = 0$$

Estimation des données par le modèle

45.662	42.872
44.155	42.365
44.885	42.095
46.762	43.972

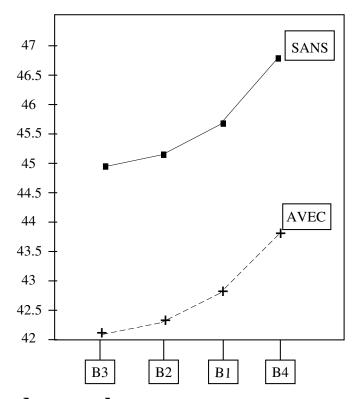

Les résidus du modèle


Écarts entre données réelles et données estimées


	sans	avec
B1	45.300 - 45.662 = -0.360	43.235 - 42.872 = 0.363
B2	45.125 - 45.155 = -0.030	42.395 - 42.365 = 0.030
В3	44.765 - 44.885 = -0.120	42.215 - 42.095 = 0.120
B4	47.275 - 46.762 = 0.512	43.460 - 43.972 = -0.512

Formule:
$$R_{ij} = X_{ij} - \left(\widehat{\mu} + \widehat{\alpha_i} + \widehat{\beta_j}\right)$$
 $R_{ij} = X_{ij} - \left(X_{\cdot \cdot \cdot} + \left(X_{i \cdot \cdot} - X_{\cdot \cdot \cdot}\right) + \left(X_{\cdot j} - X_{\cdot \cdot \cdot}\right)\right)$
 $R_{ij} = X_{ij} - X_{i \cdot \cdot} - X_{\cdot j} + X_{\cdot \cdot}$
Remarques: $\sum_i R_{ij} = \sum_j R_{ij} = \sum_{ij} R_{ij} = 0$

Représentation graphique des résidus

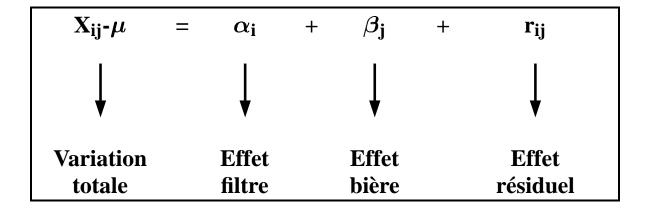


Points forts _____

Représentation des données estimées par le modèle

Parallélisme des courbes

$$\mu_{ij} - \mu_{i'j} = \mu + \alpha_i + \beta_j - \mu - \alpha_{i'} - \beta_j$$
$$= \alpha_i - \alpha_{i'} \qquad \forall j$$


Intérêt du modèle additif

L'effet de chaque niveau de facteur se résume à une seule valeur de paramètres et les effets sont "indépendants".

Table d'analyse de variance de l'exemple

ORIGINE	SCE	DDL	СМ	F	PR>F
EFFET PRINCIPAL					
•FILTRE	15.57	1	15.57	57.0	0.0038 *
•BIÈRE	4.13	3	1.37	5.0	0.1089
RESTE	0.82	3	0.27		

$$X_{ij} = \mu + \alpha_i + \beta_j + r_{ij}$$

Hypothèse de base Ho: égalité des traitements.

F de Fisher-Snedecor = CM des effets principaux / CM résiduel

Table récapitulative

D'après l'exemple:

FILTRATION (2)

BIÈRES (4)

$\mu[1]$	$eta_j[1]$
$lpha_i[3]$	RESTE [3]

4 bières \rightarrow 4 α et $\sum \alpha_i = \mathbf{0}$

D'une manière générale :

J niveaux

$\mu[1]$	$eta_j[J-1]$
$lpha_i[I-1]$	reste $[I-1][J-1]$

I niveaux