VÉRIFICATION DES POSTULATS DU MODÈLE LINÉAIRE

Plan du chapitre 7

- 1. Importance des postulats
- 2. Vérification des postulats
- 3. Que faire si un des postulats n'est pas vérifié ?
- 4. Si rien ne marche

Importance des postulats

Premier postulat $E(\varepsilon_n) = 0$

Le modèle consiste toujours à écrire la variable sous la forme :

$$Y_n = \mu_n + \varepsilon_n$$
 avec $\mu_n = \sum x_{pn} \theta_p$

Indispensable si l'on veut que le modèle soit plausible pour décrire la réalité.

Si les quatre postulats sont vérifiés, les estimateurs $\widehat{\theta}$ et $\widehat{\sigma}^2$ possèdent les propriétés suivantes :

$$-E(\widehat{\theta}) = \theta$$

$$-\operatorname{Var}(\widehat{\theta}) = \sigma^2(X'X)^{-1}$$

- $\widehat{\theta}$ est gaussien

$$-E(\widehat{\sigma}^2) = \sigma^2$$

$$-\widehat{\sigma}^2 \sim \!\! \frac{\sigma^2 \chi^2 ({\rm N-P})}{{\rm N-P}}$$

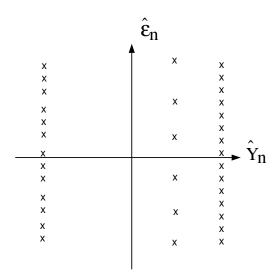
 $-\widehat{\sigma}^2$ est indépendant de $\widehat{\theta}$

Grâce aux **quatre postulats**, il est possible de faire des tests sur l'estimateur $\widehat{\theta}$

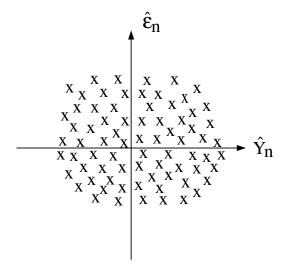
Vérification des postulats

Pour vérifier les postulats, on fait toujours une représentation graphique des résidus estimés.

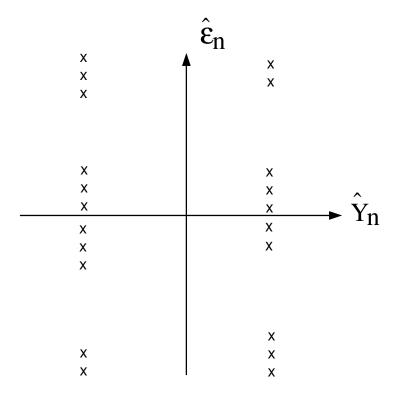
En analyse de variance

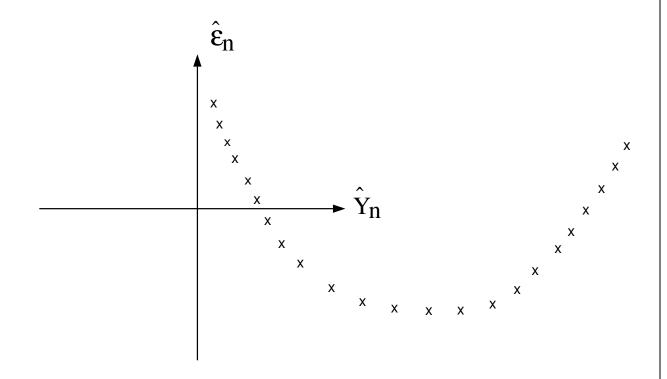


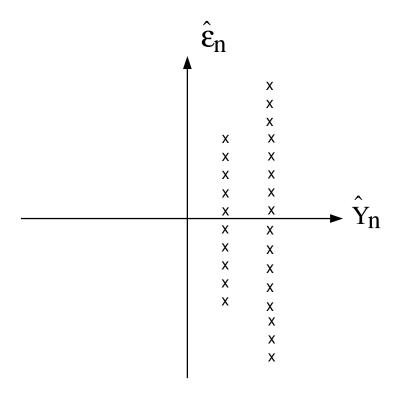
En regression

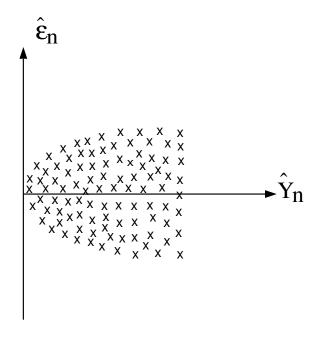


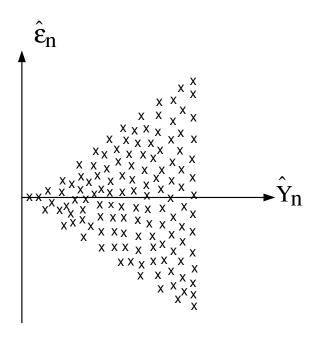
FPSTAT INRA 1997







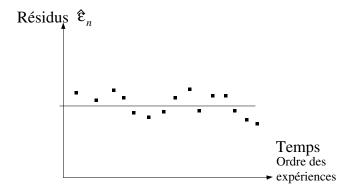




FPSTAT INRA 1997

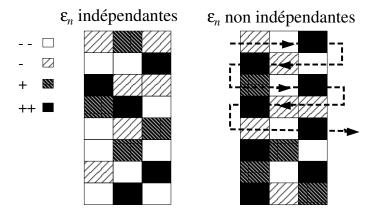
Les ε_n sont-ils indépendants ?

Représentation graphique de $\widehat{\varepsilon}_n$ en fonction du temps ou de l'ordre des expériences



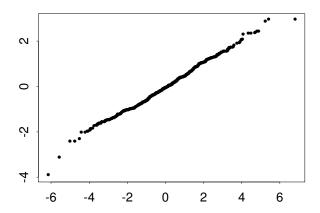
Les $\widehat{\epsilon}_n$ ne sont pas indépendants.

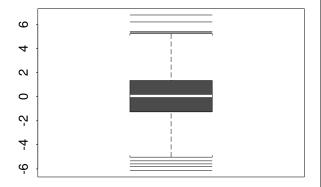
Représentation graphique schématique des $\widehat{\varepsilon}_n$ dans l'espace

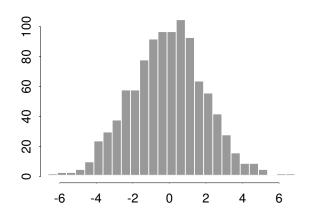


Les ε_n sont-ils normalement distribués ?

Représentations graphiques de la distribution de $\widehat{\varepsilon}_n$

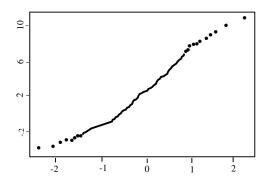


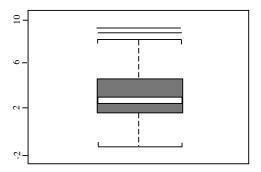


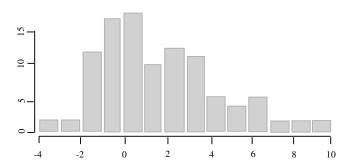


<u>Les</u> ε_n sont-ils normalement distribués ?

Représentations graphiques de la distribution de $\widehat{\varepsilon}_n$







FPSTAT INRA 1997

Que faire si un des postulats n'est pas vérifié ?

Si un postulat n'est pas vérifié, les données récoltées gardent leur valeur que faire alors ?

Postulat 1 : $E(\varepsilon_n) = 0$ pour tout n

- en analyse de la variance : introduire de nouveaux facteurs
- en régression : penser à des régresseurs non linéaires et à des produits de régresseurs.

Postulat 2 : $Var(\varepsilon_n) = \sigma^2$ constante

La technique générale est de transformer la variable mesurée.

<u>Transformations de variables lorsque</u> $Var(\varepsilon_n)$ <u>n'est pas constante</u>

Lorsque l'on dispose d'une information sur la distribution de ${\cal Y}$

Distribution de Poisson:

$$\sigma^2 \propto \mu : Y \longrightarrow \begin{cases} \sqrt{Y} \\ \sqrt{Y + \text{cste}} \end{cases}$$

Distribution Log-normale:

$$\sigma \propto \mu : Y \longrightarrow \begin{cases} \operatorname{Log} Y \\ \operatorname{Log} (Y+1) \end{cases}$$

Distribution Binomiale:

$$\sigma \propto \sqrt{\mu(1-\mu)} : Y \longrightarrow \arcsin \sqrt{Y}$$

Ne pas appliquer sans discernement

- regarder les résidus avant transformation
- choisir éventuellement une transformation
- vérifier les résidus après transformation

<u>Transformations</u> de variables <u>lorsque</u> $Var(\varepsilon_n)$ <u>n'est pas constante</u>

Lorsque l'on ne dispose pas d'information sur la distribution de ${\cal Y}$

Si l'écart-type est une fonction puissance de la moyenne $\sigma \propto \mu^k$, on définit une famille de transformations :

pour
$$k \neq 1$$
, Y^{1-k}
pour $k = 1$, Log Y

Exemples

k=1
$$\sigma \propto \mu \ : \qquad Y \longrightarrow \operatorname{Log} Y$$

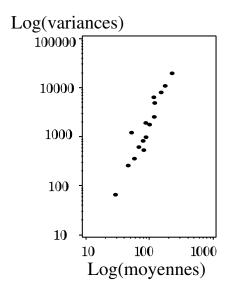
$$k = \frac{1}{2} \qquad \sigma \propto \mu^{1/2} \ ,$$

$$\sigma^2 \propto \mu \ : \qquad Y \longrightarrow Y^{1-\frac{1}{2}} = \sqrt{Y}$$

Trouver k?

si
$$\sigma \propto \mu^k$$
 , alors $\sigma^2 \propto \mu^{2k}$ d'où $\sigma^2 = c \, \mu^{2k}$ d'où $\log \sigma^2 = c' \, + 2k \, \log \mu$

Relation linéaire entre Log μ et Log σ^2 , pente de la droite = 2k.



Comptages de mouches dans des pièges :

- 4 appâts
- 4 blocs

Calcul de 16 moyennes

et de 16 variances

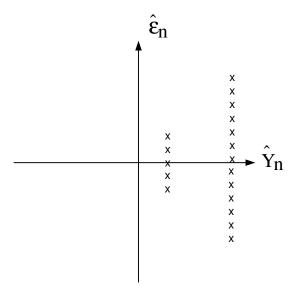
5 répétitions

droite de pente très proche de 2

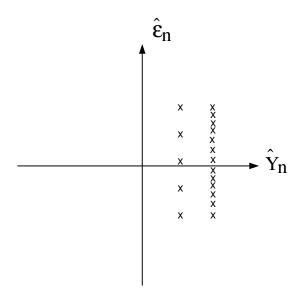
 \implies transformation Log.

<u>Vérification</u> <u>de</u> $Var(\varepsilon_n) = \sigma^2$ <u>après</u> <u>transformation</u> <u>des</u> <u>variables</u>

résidus avant transformation



résidus après transformation $Y \to \sqrt{Y}$



FPSTAT INRA 1997

Postulat 3 : les ε_n sont indépendants

Les solutions sortent du cadre de ce cours. On peut utiliser :

- La randomisation avant l'expérience (voir module)
- Le modèle mixte ou les séries chronologiques.

Postulat 4: les ε_n ont une distribution normale

- Chercher s'il existe des données aberrantes (ou outliers)
 expliquant le défaut de normalité
- On peut souvent faire quand même des tests si N et N-P sont grands.

Si rien ne marche

Si aucune transformation ne permet d'avoir des résidus satisfaisants, on peut encore utiliser :

- un modèle linéaire généralisé (voir module)
- un modèle non linéaire.