INTERVALLE DE CONFIANCE

On a un estimateur d'un paramètre

Objectif : encadrer la vraie valeur du paramètre, c'est-à-dire : proposer un intervalle et savoir quelle est la probabilité que cet intervalle contienne la vraie valeur

Quel intervalle ? Quelle probabilité ?

Etapes : - méthode pour déterminer un IC autour de l'estimateur du paramètre recherché

- introduire différents postulats sur la distribution des X_i pour réduire l'IC

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 1

POSTULATS SUR LA DISTRIBUTION DES X_I POUR DÉTERMINER L'INTERVALLE DE CONFIANCE

Par définition, ces postulats doivent être faits a priori

- 1) Aucun postulat
 - → méthode du signe
- 2) Postulat 1 : distribution symétrique méthode de Wilcoxon
- 3) Postulat 2 : distribution gaussienne (postulat plus fort)
 méthode de Student

Pour les 3 méthodes, on suppose que la distribution est continue.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 2

2-échantillon : X_1, X_2

$$X_{(1)} = \min(X_1, X_2)$$
 $X_{(2)} = \max(X_1, X_2)$

$$X_{(1)}$$
 $X_{(2)}$

On propose l'intervalle $X_{(1)} \leq m \leq X_{(2)}$.

Probabilité que cet intervalle contienne m?

Calcul de
$$\Pr\{X_{(1)} \leq m \leq X_{(2)}\}$$

1)Pr
$$\{m < X_{(1)}\}\ = \Pr \{m < X_1 \text{ et } m < X_2\}$$

= $\Pr \{m < X_1\} \times \Pr \{m < X_2\}$
= $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

- 2) Pr $\{m > X_{(2)}\} = \frac{1}{4}$
- 3) Pr $\{X_{(1)} \le m \le X_{(2)}\} = 1$ Pr $\{m < X_{(1)}\}$ $Pr\{m > X_{(2)}\}$ $= 1 \frac{1}{4} \frac{1}{4} = \frac{1}{2}$

Conclusion: $[X_{(1)}; X_{(2)}]$ contient m une fois sur deux.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 3

n-échantillon : X_1, X_2, \ldots, X_n

On propose $[X_{(1)}; X_{(n)}].$

Calcul de la probabilité que cet intervalle contienne m:

$$\gamma = \Pr\{X_{(1)} \le m \le X_{(n)}\}$$

$$\gamma = 1 - \frac{1}{2^{n-1}} \qquad \text{erreur } = \frac{1}{2^{n-1}}$$

 $\gamma = \text{coefficient de confiance}$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 4

$$[X_{(1)}; X^{(1)}], \mathbf{ou} [X_{(2)}; X^{(2)}], \ldots, \mathbf{ou} [X_{(c)}; X^{(c)}]$$
?

À chaque intervalle est associé un coefficient de confiance γ .

On choisit γ a priori, et on détermine un intervalle :

de coefficient de confiance au moins égal à γ ,

à l'aide d'une table.

$$n = 9$$
 $\gamma \ge 0,95 \longrightarrow [X_{(\)};\ X^{(\)}]$
$$\gamma \ge 0,99 \longrightarrow [X_{(\)};\ X^{(\)}]$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 5

CALCUL DE LA TABLE

Calcul de $\Pr\{X_{(c)} \le m \le X^{(c)}\}.$

Y = nombre d'observations plus petites que la médiane m

$$\bullet \ \{X_{(c)} \le m \le X^{(c)}\} \qquad \iff \qquad ?$$

- si aucun X_i ne coïncide avec m, $Y \ge c$ $X_{(c)} \leq m$
- $\Rightarrow Y \le n c$ • $m \leq X^{(c)}$

Résultat : $\Pr\{X_{(c)} \leq m \leq X^{(c)}\} = \Pr\{c \leq Y \leq n-c\}$

Calculable si l'on connaît la loi de Y.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 6

Y = nombre de valeurs $\mathcal{B}(n,p)$ plus petites que mépreuve : épreuve: + petit 2 issues à chaque tirage 2 issues + grand 0ou égal probabilité de $\{+ \text{ petit}\} = \frac{1}{2}$ $\Pr\{1\} = p$ $\Pr\{+ \text{ grand ou égal}\} = 1 - \frac{1}{2} = \frac{1}{2}$ $\Pr\{0\} = q = 1 - p$ *n*-échantillon n réalisations variable aléatoire Y =variable aléatoire nombre de réalisations Y = nombre dede {+ petit} réalisations de {1} $Y \sim \mathcal{B}(n,p)$ $Y \sim \mathcal{B}(n, 1/2)$ Donc on sait calculer $Pr\{c \le Y \le n - c\}.$ $=\sum_{i=c}^{n-c} C_n^i (\frac{1}{2})^i (\frac{1}{2})^{n-i}$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 7

Erreur = probabilité que
$$[X_{(c)} ; X^{(c)}]$$

ne contienne pas m

est notée α

$$\alpha = 1 - \gamma$$

Symétrie de la distribution binomiale

$$\Longrightarrow \Pr\{m < X_{(c)}\} = \Pr\{m > X^{(c)}\}$$

notée α'

$$\alpha = \Pr\{m < X_{(c)}\} + \Pr\{m > X^{(c)}\} = 2\alpha'$$

$$\alpha = 2\alpha'$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 8

Y dépend du paramètre m

Y ne peut pas être calcul'ee à partir du n-échantillon

(on ne connaît pas le nombre de valeurs plus petites que m, car on ne connaît pas m)

 $\implies Y$ n'est pas une statistique.

La loi de Y est connue:

c'est une loi binomiale,

calculable, tabulée.

 $\Longrightarrow Y$ est une variable pivot.

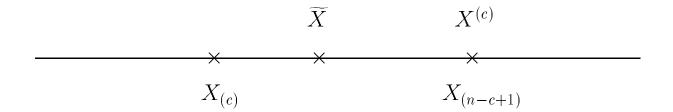
FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 9

DÉFINITION D'UN INTERVALLE DE CONFIANCE DE LA MÉDIANE MÉTHODE DU SIGNE

Médiane de l'échantillon \widetilde{X} : estimateur de m.

Valeurs de l'échantillon réordonnées :



On supprime (c-1) valeurs à chaque extrémité :

$$\implies$$
 intervalle $[X_{(c)}; X^{(c)}]$

niveau de confiance : γ

erreur :
$$\alpha = 2\alpha' = 1 - \gamma$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 10

IC de la médiane avec les statistiques d'ordre $X_{(c)}$ et $X^{(c)}$					
c =	1	2	3	4	5
	min	$X_{(2)}$	$X_{(3)}$	$X_{(4)}$	$X_{(5)}$
n	à	à	à	à	à
	max	$X^{(2)}$	$X^{(3)}$	$X^{(4)}$	$X^{(5)}$
2	$0,\!5000$				
3	$0,\!7500$				
4	$0,\!8750$	$0,\!3750$			
5	$0,937\ 5$	$0,\!6250$			
6	0,9688	0,7813	$0,\!3125$		
7	0,9844	$0,\!8750$	$0,\!546.8$		
8	0,9922	0,9297	0,7110	0,2734	
9	0,9961	0,9609	$0,\!8203$	0,4922	
10	0,9980	0,978 5	0,8906	0,6563	$0,\!2461$
11	0,9990	0,9883	0,9346	0,7734	$0,\!4512$
$\frac{11}{12}$	0,9995	0,9937	0,9614	0.8540	0,4012 $0,6123$
$\frac{12}{13}$	0,99976	0,9966	0,9775	0,9077	0,7332
$\frac{13}{14}$	0,99988	0,9982	0.9871	0,9426	0,8204
15	0,999939	0,99902	0,9921	0,9428	0,8815
19	0,555 555	0,55502	0,3321	0,3040	0,0010
16	0,999969	0,99948	0,9958	0,9787	0,9232
17	0,999985	0,99973	0,9977	0,9873	$0,\!9510$
18	0,9999923	0,99986	0,9987	0,9925	0,9691
19	0,9999962	0,999924	0,99927	0,9956	0,9808
20	0,9999981	0,999 960	0,99960	0,9974	0,9882
25	0,999999934	0,999 998 3	0,999 978 6	0,99983	0,9990

c dépend de $\gamma,$ et de n.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 11

GRANDS ÉCHANTILLONS

Si n est grand:

$$\mathcal{B}(n,p) \approx \mathcal{N}(np,npq)$$

donc:

$$\mathcal{B}(n, 1/2) \approx \mathcal{N}(n/2, n/4)$$

$$c = \frac{n+1}{2} - z \frac{\sqrt{n}}{2}$$

avec z tel que :

$$Pr(Z \ge z) = \alpha' = \frac{\alpha}{2}$$

$$Pr(Z < z) = 1 - \frac{\alpha}{2}$$

Z suit $\mathcal{N}(0,1)$

à rechercher dans une table de la loi normale



FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 12

DE L'IC BILATÉRAL À L'IC UNILATÉRAL IC BILATÉRAL

Production laitière de 50 bêtes (litre de lait/an)

```
1: 2161
            11: 3912
                         21: 4177
                                     31: 4590
                                                  41: 5073
 2:2624
            12: 3921
                         22: 4192
                                     32: 4601
                                                  42: 5091
 3: 2665
            13: 3955
                         23: 4202
                                     33: 4727
                                                  43: 5183
 4: 2821
            14: 3979
                         24: 4204
                                     34: 4772
                                                  44: 5344
 5: 2874
            15: 4031
                         25: 4230
                                     35: 4780
                                                  45: 5371
 6: 3381
            16: 4078
                         26: 4377
                                     36: 4783
                                                  46: 5665
            17: 4092
 7: 3463
                         27: 4441
                                     37: 4862
                                                  47: 5672
 8: 3643
            18: 4101
                         28: 4494
                                     38: 4896
                                                  48: 5682
 9: 3738
                                                  49: 5823
            19: 4155
                         29: 4521
                                     39: 4927
10: 3818
            20: 4159
                         30: 4551
                                     40: 4981
                                                  50: 5848
```

On veut estimer (par intervalle) la production laitière médiane.

$$\Pr\{[X_{(c)}, X^{(c)}] \ni m\} = \gamma \simeq 0,95$$

- $\bullet \gamma =$
- $\bullet \alpha =$
- \bullet c =

$$IC = [X_{()}, X^{()}] = [,]$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 13

DE L'IC BILATÉRAL À L'IC UNILATÉRAL IC UNILATÉRAL

50-échantillon : production laitière (litre de lait/an) :

```
1: 2161
           11: 3912
                      21: 4177
                                  31: 4590
                                             41: 5073
 2: 2624
           12: 3921
                      22: 4192
                                  32: 4601
                                             42: 5091
 3: 2665
           13: 3955
                      23: 4202
                                  33: 4727
                                             43: 5183
 4: 2821
           14: 3979
                      24: 4204
                                  34: 4772
                                             44: 5344
 5: 2874
           15: 4031
                      25: 4230
                                  35: 4780
                                             45: 5371
 6: 3381
           16: 4078
                      26: 4377
                                  36: 4783
                                             46: 5665
 7: 3463
           17: 4092
                      27: 4441
                                             47: 5672
                                  37: 4862
 8: 3643
           18: 4101
                      28: 4494
                                  38: 4896
                                             48: 5682
 9: 3738
           19: 4155
                                  39: 4927
                                             49: 5823
                      29: 4521
           20: 4159
10: 3818
                      30: 4551
                                  40: 4981
                                             50: 5848
```

Est-ce que la production médiane est supérieure à la médiane régionale R=4190 litres/an ?

Intervalle bilatéral :
$$c = 18$$
 $\gamma' = 0.967$

Intervalle unilatéral : $c' = \gamma' =$

$$\Pr\{ [X_{(c')}; +\infty [\ni m] \approx \Pr\{ [X_{(c)}; X^{(c)}] \ni m \}$$

Les intervalles calculés sur le 50-échantillon sont :

$$[X_{(\)}; +\infty [=[\ ; +\infty [\ [X_{(18)}; X^{(18)}] = [4101; 4727]$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 14

POSTULATS SUR LA DISTRIBUTION DES X_I POUR DÉTERMINER L'INTERVALLE DE CONFIANCE

Par définition, ces postulats doivent être faits a priori

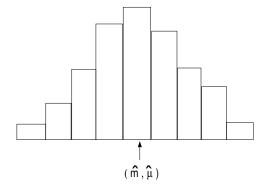
- Aucun postulat
 méthode du signe
- 2) Postulat 1 : distribution symétrique
 - → méthode de Wilcoxon
- 3) Postulat 2 : distribution gaussienne (postulat plus fort)
 méthode de Student

Pour les 3 méthodes, on suppose que la distribution est continue.

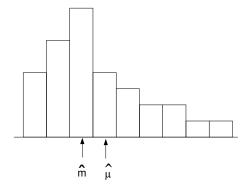
FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 15

DISTRIBUTION SYMÉTRIQUE



DISTRIBUTION ASYMÉTRIQUE



la moyenne et la médiane sont confondues

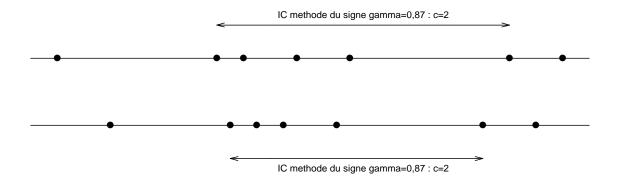
construction d'un intervalle symétrique autour du paramètre considéré, fonction de :

- la taille de l'échantillon,
- la dispersion des données de l'échantillon,
- le coefficient de confiance γ choisi.

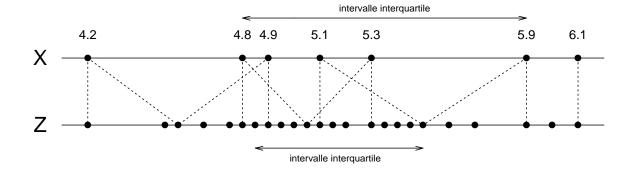
FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 16

Variation de l'IC de la médiane en fonction de la dispersion des observations



Les moyennes 2 à 2 sont moins dispersées autour de m



FPSTAT 2 – La décision statistique. 2. Intervalles de confiance. 17

IC de la médiane par la méthode de Wilcoxon

$$\bullet X_1, \dots, X_n \to Z_{ij} = \frac{X_i + X_j}{2}, i \le j$$

- distribution des X_i symétrique \Rightarrow les X_i et les Z_{ij} ont même médiane
- IC pour la médiane : $[Z_{(c)}, Z^{(c)}]$
- ullet calcul de c en fonction de γ et n:

 Z_{ij} non indépendantes

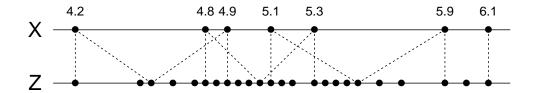
 $Y_Z = \text{nombre de} Z_{ij} \leq m$ ne suit pas une binomiale

utilisation d'une table spécifique différente de la précédente pour calculer le cœfficient de confiance ou déterminer l'IC

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 18

calcul de l'IC de Wilcoxon



FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 19

POSTULATS SUR LA DISTRIBUTION DES X_I POUR DÉTERMINER L'INTERVALLE DE CONFIANCE

Par définition, ces postulats doivent être faits a priori

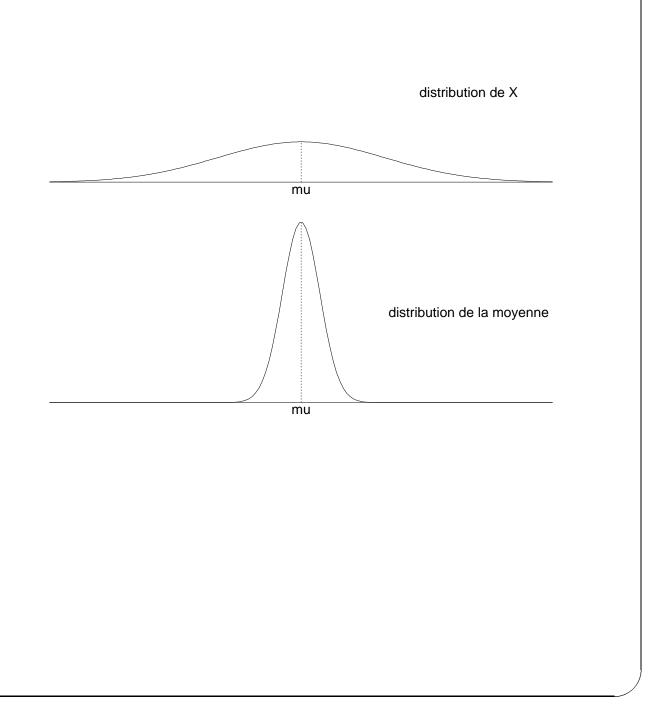
- 1) Aucun postulat méthode du signe
- 2) Postulat 1 : distribution symétrique méthode de Wilcoxon
- 3) Postulat 2 : distribution gaussienne (postulat plus fort)
 - → méthode de Student

Pour les 3 méthodes, on suppose que la distribution est continue.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 20

INTERVALLE DE CONFIANCE DE LA MÉDIANE SOUS L'HYPOTHESE D'UNE DISTRIBUTION GAUSSIENNE



FPSTAT 2 – La décision statistique. 2. Intervalles de confiance. 21

INTERVALLE DE CONFIANCE DE LA MOYENNE SOUS L'HYPOTHÈSE D'UNE DISTRIBUTION GAUSSIENNE MÉTHODE DE STUDENT

ullet On construit un intervalle symétrique autour de la moyenne empirique, \overline{X} , de l'échantillon :

$$\overline{X}$$
 – marge $\leq \mu \leq \overline{X}$ + marge

- ullet La marge sera calculée en tenant compte à nouveau :
 - de la taille de l'échantillon n,
 - de la dispersion des données de l'échantillon $\widehat{\sigma}^2$,
 - et du coefficient de confiance choisi γ .

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 22

• Soient n variables X_i :

$$X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$$

la moyenne empirique est:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

ullet Soit z l'écart gaussien associé au risque α :

$$\Pr\left\{-z \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z\right\} = 1 - \alpha$$

$$\Pr\left\{\overline{X} - z\frac{\widehat{\sigma}}{\sqrt{n}} \le \mu \le \overline{X} + z\frac{\widehat{\sigma}}{\sqrt{n}}\right\} = 1 - \alpha$$

Le paramètre σ^2 n'est pas connu *a priori*, on l'estime à partir des données expérimentales.

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 23

• Cas des **petits échantillons**(n < 20)

La variable $T = \frac{\overline{X} - \mu}{\widehat{\sigma} / \sqrt{n}}$ ne suit pas une loi normale, mais une loi de Student à (n-1) degrés de liberté : t_{n-1} .

On remplace donc l'écart gaussien z par l'écart de Student t:

$$\Pr\left\{\overline{X} - t \frac{\widehat{\sigma}}{\sqrt{n}} \le \mu \le \overline{X} + t \frac{\widehat{\sigma}}{\sqrt{n}}\right\} = 1 - \alpha$$

• Cas des **grands échantillons** (n > 20-25):

$$\Pr\left\{\overline{X} - z\frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z\frac{\sigma}{\sqrt{n}}\right\} = 1 - \alpha$$

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 24

BILAN SUR LES INTERVALLES DE CONFIANCE

• IDENTIFIER :

- une population,
- une variable d'étude,
- un paramètre de la loi de cette variable.

• PRÉCISER :

- la distribution a priori de la variable.

• DÉFINIR :

- un niveau de confiance γ .

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 25

BILAN (suite) SUR LES INTERVALLES DE CONFIANCE

 \bullet Calculer, pour un échantillon de taille n:

un intervalle de confiance autour du paramètre un estimateur du paramètre et une marge autour de cet estimateur

ces intervalles sont toujours aléatoires!!!

• Remarque :

Les intervalles prennent en compte la distribution des X_i .

FPSTAT 2 – La décision statistique.

2. Intervalles de confiance. 26