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Find a tour with minimum distance, visiting every city only once



Distance matrix (miles)
Distances Camara Caniço Funchal ...

Camara 0 15 7 ...

Caniço 15 0 8 ...

Funchal 7 8 0 ...

... ... ... ... ...



Find an order of all the markers with maximum likelihood



2-point distance matrix (Haldane)
Distances M1 M2 M3 ...

M1 0 14 7 ...

M2 14 0 8 ...

M3 7 8 0 ...

... ... ... ... ...



Link

M1 M2 M3 M4 M5 M6 M7

Mdummy

0 0…0…

∀i,j,k   distance(i,j)  ?  distance(i,k) + distance(k,j)
=,≤

 Multi-point likelihood (with unknowns) ⇔ 
the distance between two markers depends on the order



Traveling Salesman Problem

Complete graph

Positive weight on every edge
Symmetric case: dist(i,j) = dist(j,i)
Triangular inequality: dist(i,j) ≤ dist(i,k) + dist(k,j)

Euclidean distance

Find the shortest Hamiltonian cycle



7
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15



Total distance = xxx miles



Traveling Salesman Problem

Theoretical interest
NP-complete problem

1993-2001: +150 articles about TSP in 
INFORMS & Decision Sciences databases

Practical interest
Vehicle Routing Problem

Genetic/Radiated Hybrid Mapping Problem
NCBI/Concorde, Carthagène, ...



Variants
Euclidean Traveling Salesman Selection Problem 

Asymmetric Traveling Salesman Problem

Symmetric Wandering Salesman Problem 

Selective Traveling Salesman Problem

TSP with distances 1 and 2, TSP(1,2) 

K-template Traveling Salesman Problem 

Circulant Traveling Salesman Problem 

On-line Traveling Salesman Problem 

Time-dependent TSP 

The Angular-Metric Traveling Salesman Problem 

Maximum Latency TSP 

Minimum Latency Problem 

Max TSP

Traveling Preacher Problem

Bipartite TSP 

Remote TSP 

Precedence-Constrained TSP 

Exact TSP 

The Tour Cover problem 

...



Plan

Introduction to TSP

Building a new tour

Improving an existing tour

Finding the best tour



Building a new tour





Nearest Neighbor heuristic



Greedy (or multi-fragments) heuristic



Savings heuristic (Clarke-Wright 1964)



Heuristics

Mean distance to the optimum

Savings: 11%

Greedy: 12%

Nearest Neighbor: 26%





Improving an existing tour



Which local modification can improve this tour?



Remove two edges and rebuild another tour

⇔ Invert a given sequence of markers



2-change



Remove three edges and rebuild another tour (7 possibilities)

⇒ Swap the order of two sequences of markers



« greedy » local search

2-opt
Note: a finite sequence of « 2-change » can 
reach any tour, including the optimum tour

Strategy: 
Select the best 2-change among N*(N-1)/2 
neighbors (2-move neighborhood)

Repeat this process until a fix point is reached 
(i.e. no tour improvement was made)



2-opt



Greedy local search

Mean distance to the optimum
2-opt : 9%
3-opt : 4%
LK (limited k-opt) : 1%

Complexity
2-opt :  ~N3

3-opt : ~N4

LK (limited k-opt) : <N4 ?



Complexity n = number of vertices

Algorithm Complexity 
A-TSP (n-1)! 
S-TSP (n-1)! /  2 
2-change 1 
3-change 7  
k-change (k-1)! . 2k-1 
k-move (k-1)! . 2k-1 . n! /  (k! . (n-k)!) 
 ~  O( nk )             k < <  n 

In practice: o( n ) 
2-opt et 3-opt ~  O( nk+ 1 ) 

In practice: o( n1.2 ) 
 time(3-opt) ~  3 x time(2-opt) 

 
 



For each edge (uv), maintain the list of vertices w
such that dist(w,v) < dist(u,v)

u

v

2-opt implementation trick:



Lin & Kernighan (1973)

k-change : e1->f1,e2->f2,...
=> Sumk

i=1( dist(ei) - dist(fi) ) > 0

There is an order of i such that all the partial sums 
are positives:

Sl = Suml
i=1( dist(ei) - dist(fi) ) > 0

=> Build a valid increasing alternate cycle:
xx ’->yx ’, yy’ -> zy’, zz’ -> wz’, etc.
dist(f1)<dist(e1),dist(f1)+dist(f2)<dist(e1)+dist(e2),..

+ Backtrack on y and z choices + Restart



x

x’

y

y’

z

z’

w

(in maximization)

e2

e3

e4

e1

f1

f3

f2

f4

w’

{x,y,z,w,..} ^ {x’,y’,z’,w’,..} = 0
y is among the 5 best neighbors of x’, the same for z’ and w



Is this 2-opt tour optimum?



2-opt + vertex reinsertion



local versus global optimum



Local search &
« meta-heuristics »

Tabu Search
Select the best neighbor even if it decreases 
the quality of the current tour

Forbid previous local moves during a certain 
period of time

List of tabu moves

Restart with new tours
When the search goes to a tour already seen

Build new tours in a random way



Tabu Search

• Stochastic size of the tabu list
• False restarts



Experiments with CarthaGène
N=50  K=100  Err=30%  Abs=30%

Legend: partial 2-opt = early stop , guided 2-opt 25% = early stop & sort with X = 25%



Experiments - next



Other meta-heuristics

Simulated Annealing
Local moves are randomly chosen
Neighbor acceptance depends on its quality 
Acceptance process is more and more greedy

Genetic Algorithms
Population of solutions (tours)
Mutation, crossover,…

Variable Neighborhood Search
…



Simulated Annealing
Move from A to A’ accepted
if cost(A’) ? cost(A)
or with probability 
P(A,A’) = e –(cost(A’) – cost(A))/T



Variable Neighborhood 
Search 

• Perform a move only if it improves the previous solution
• Start with V:=1. If no solution is found then V++ else V:=1



Local Search

Demonstration



Finding the best tour



Search tree

M2M1 M3

M2 M3 M1 M3 M1 M2

M3 M2 M3 M1 M2 M1

M1,M2,M3

depth 1:

depth 2:

depth 3:

leaves

node

branch

root

= choice point

= alternative

= solutions



Tree search

Complexity : n!/2 different orders
Avoid symmetric orders (first half of the tree)

Can use heuristics in choice points to order 
possible alternatives

Branch and bound algorithm
Cut all the branches which cannot lead to a better 
solution

Possible to combine local search and tree search



Branch and bound
Minimum weight spanning tree

Prim algorithm (1957)

Held & Karp algorithm (better spanning trees) (1971)
≤ linear programming relaxation of TSP, LB(I)/OPT(I) ≥ 2/3



Christofides heuristic (1976)

=> A(I) / OPT(I) ≤ 3/2   (with triangular inequalities)



Complexity

N5+6,29N5+4,19N53N

N4+9,97N4+6,64N42N

10*N34,64*N3N3N3

31,6*N210*N2N2N2

1000*N1100*N1N1N

Computer 
1000 times 
faster

Computer 
100 times 
faster

Standard 
computer

Complexity



Complete methods

1954 : 49 cities 
1971 : 64 cities
1975 : 100 cities
1977 : 120 cities
1980 : 318 cities
1987 : 2,392 cities
1994 : 7.397 cities
1998 : 13.509 cities
2001 : 15.112 cities (585936700 sec. ≈ 19 years of CPU!)


