

A brief introduction to combinatorial optimization: The Traveling Salesman Problem

Simon de Givry

Find a tour with minimum distance, visiting every city only once

Distance matrix (miles)

Distances	Camara	Caniço	Funchal	
Camara	0	15	7	
Caniço	15	0	8	
Funchal	7	8	0	
•••				

Find an order of all the markers with maximum likelihood

2-point distance matrix (Haldane)

Distances	M1	M2	M3	
M1	0	14	7	
M2	14	0	8	
M3	7	8	0	

 \forall ,j,k distance(i,j) ? distance(i,k) + distance(k,j) =, \leq

Multi-point likelihood (with unknowns) ⇔ the distance between two markers depends on the order

Traveling Salesman Problem

Complete graph Positive weight on every edge Symmetric case: dist(i,j) = dist(j,i) Triangular inequality: dist(i,j) ≤dist(i,k) + dist(k,j) Euclidean distance Find the shortest Hamiltonian cycle

Total distance = xxx miles

Traveling Salesman Problem

Theoretical interest

NP-complete problem

1993-2001: +150 articles about TSP in INFORMS & Decision Sciences databases

Practical interest

Vehicle Routing Problem

Genetic/Radiated Hybrid Mapping Problem NCBI/Concorde, Carthagène, ...

Variants

Euclidean Traveling Salesman Selection Problem Asymmetric Traveling Salesman Problem Symmetric Wandering Salesman Problem Selective Traveling Salesman Problem TSP with distances 1 and 2, TSP(1,2)K-template Traveling Salesman Problem Circulant Traveling Salesman Problem On-line Traveling Salesman Problem Time-dependent TSP The Angular-Metric Traveling Salesman Problem Maximum Latency TSP Minimum Latency Problem Max TSP Traveling Preacher Problem Bipartite TSP Remote TSP Precedence-Constrained TSP Exact TSP The Tour Cover problem

Introduction to TSP Building a new tour Improving an existing tour Finding the best tour

Building a new tour

Nearest Neighbor heuristic

Greedy (or multi-fragments) heuristic

Savings heuristic (Clarke-Wright 1964)

Mean distance to the optimum

Savings:	11%
----------	-----

Greedy:	12%
---------	-----

Nearest Neighbor: 26%

Savings Tour

Optimal Tour

Improving an existing tour

Which local modification can improve this tour?

Remove two edges and rebuild another tour convert a given sequence of markers

Remove three edges and rebuild another tour (7 possibilities) —Swap the order of two sequences of markers

« greedy » local search

2-opt

<u>Note</u>: a finite sequence of « 2-change » can reach any tour, including the optimum tour

Strategy:

Select the best 2-change among N*(N-1)/2 neighbors (2-move neighborhood)

Repeat this process until a fix point is reached (i.e. no tour improvement was made)

Greedy local search

Mean distance to the optimum 9% 2-opt : 4% 3-opt : LK (limited k-opt) : 1% Complexity 2-opt : $\sim N^3$ $\sim N^4$ 3-opt : LK (limited k-opt) : < N⁴?

Complexity n = number of vertices

Algorithm	Complexity
A-TSP	(n-1)!
S-TSP	(n-1)! / 2
2-change	1
3-change	7
k-change	(k-1)! . 2 ^{k-1}
k-move	(k-1)! . 2 ^{k-1} . n! / (k! . (n-k)!)
	~ O(n ^k) k << n
In practice:	o(n)
2-opt et 3-opt	~ O(n ^{k+1})
In practice:	o(n ^{1.2})
	time(3-opt) ~ 3 x time(2-opt)

2-opt implementation trick:

For each edge (uv), maintain the list of vertices w such that dist(w,v) < dist(u,v)

Lin & Kernighan (1973)

- k-change : $e_1 f_1, e_2 f_2, ...$
 - => $Sum_{i=1}^{k}(dist(e_i) dist(f_i)) > 0$
 - There is an order of i such that all the partial sums are positives:

$$S_{i} = Sum_{i=1}^{i}(dist(e_{i}) - dist(f_{i})) > 0$$

=> Build a valid increasing alternate cycle: xx '->yx ', yy' -> zy', zz' -> wz', etc. dist(f₁)<dist(e₁),dist(f₁)+dist(f₂)<dist(e₁)+dist(e₂),... + Backtrack on y and z choices + Restart (in maximization)

 ${x,y,z,w,..} ^{x',y',z',w',..} = 0$

y is among the 5 best neighbors of x', the same for z' and w

Is this 2-opt tour optimum?

2-opt + vertex reinsertion

Local search & « meta-heuristics »

Tabu Search

Select the best neighbor even if it decreases the quality of the current tour

Forbid previous local moves during a certain period of time

List of tabu moves

Restart with new tours

When the search goes to a tour already seen Build new tours in a random way

Experiments with CarthaGène N=50 K=100 Err=30% Abs=30%

Log-likelihood improvement of genetic maps with 50 markers on simulated data

Experiments - next

Other meta-heuristics

Simulated Annealing

- Local moves are randomly chosen
- Neighbor acceptance depends on its quality Acceptance process is more and more greedy
- **Genetic Algorithms**
 - Population of solutions (tours)
 - Mutation, crossover,...
- Variable Neighborhood Search

Potential solutions

Local Search

Demonstration

Finding the best tour

Tree search

Complexity : n!/2 different orders

Avoid symmetric orders (first half of the tree)

Can use *heuristics* in choice points to order possible alternatives

Branch and bound algorithm

Cut all the branches which cannot lead to a better solution

Possible to combine local search and tree search

 \leq linear programming relaxation of TSP, LB(I)/OPT(I) \geq 2/3

Christofides heuristic (1976)

 $=> A(I) / OPT(I) \leq 3/2$ (with triangular inequalities)

Complexity

Complexity	Standard	Computer	Computer
	computer	100 times	1000 times
		faster	faster
Ν	N1	100*N1	1000*N1
N ²	N2	10*N2	31,6*N2
N ³	N3	4,64*N3	10*N3
2 ^N	N4	N4+6,64	N4+9,97
3 ^N	N5	N5+4,19	N5+6,29

Complete methods

- 1954 : 49 cities
- 1971 : 64 cities
- 1975 : 100 cities
- 1977 : 120 cities
- 1980 : 318 cities
- 1987 : 2,392 cities
- 1994 : 7.397 cities
- 1998 : 13.509 cities
- 2001 : 15.112 cities (585936700 sec. ≈19 years of CPU!)