

PTB's positional rule in regulating alternative splicing and RNA design under motif constraints

Yu Zhou 14-04-2009

Supervisors:

Prof. Alain Denise, Laboratoire de Recherche En Informatique **Prof. Yi Zhang**, College of Life Science

Genome-wide analysis of PTB binding by CLIPseq reveals a positional rule for PTB to positively or negatively regulate alternative splicing in mammalian cells

Yuanchao Xue, Yu Zhou, ..., Xiang-dong Fu*, Yi Zhang*

Alternative splicing (AS)

a mechanism to generate structurally and functionally distinct protein variants

Large number of cis-elements and transacting factors involve in AS regulation.

ESE: Exonic Splicing Enhancer

PTB

(Polypyrimidine Tract Binding protein, hnRNP I)

- PTB is a general splicing repressor.
- SELEX reveals it binds to CU-rich motifs.
- Monomer in solution (Monie et al., 2005).
- Looping model to repress splicing.

Oberstrass et al., 2005, Science

Remaining questions:

- Monomer or dimer in vivo?
- Binding motifs in vivo?
- In vivo targets of PTB?
- The mechanism of PTB repression of splicing?
- New function?

CLIP(-seq) to identify in vivo RNA targets of PTB

CrossLinking ImmunoPrecipitation

UV **RNase RNase** RBP 5'-OH 3'-P SDS-PAGE PNK **RNA** ligase γ 32P RBP RBP 5'-OH RNA-protein TA cloning and Proteinase K sequencing Free RNA tags High-throughput sequencing

Revised from Science. 2003 Nov 14;302(5648):1212-5.

Cloning-sequenced tags are mostly in introns

Flowchart of peak detection

Get PTB binding locus enriched of tags
Determine the threshold in gene dependent manner

Strategy similar with *NSMB* paper (Gene Yeo et.al 2009)

PTB may target more than 42.55% genes, as sequencing not saturated.

12

PTB binding clusters significantly enrich known PTB binding motifs.

		5-mei	4-11161	J-mei	0-mei	7-11101	
1	CU	UCU	υυςυ	UCUCU	υυςυςυ	υςυςυςυ	
2	UC	CUU	CUCU	υυυςυ	CUCUCU	υυυςυςυ	
3	UU	UUC	υςυυ	υςυυυ	UCUCUC	CUCUCUC	
4	UG	CUC	UCUC	UCUGU	СUUUCU	υςυυυςυ	
5	CC	CC CUG		υυςυυ	UCUCUG	UCUGUCU	
6		CCU	UCUG	CUUCU	υυυςυυ	UCUCUGU	
7		υυυ	CUUU	UUCUC	υςυυςυ	сиисиси	
8		UCC	UCCU	CUUUC	υυυυςυ	υυυςυυυ	
9		UGU	CUUC	UCUUC	υςυςυυ	UUCUCUC	
10		UUG	CUGU	UUCUG	υςυυυς	сииииси	

Ε.

6 mor

2 mor

3

.

PTB binding locations are significantly associated with alternative splicing event.

Alt avant	# Total avanta	# PTB cluste	Z-score		
An event	# Total events	Observed	expected	(100 random trials)	
Skipped exon	7449	5824	5053	14.11	
Alt Terminal	909	815	661	8.56	
Retained intron	1446	147	96	6.59	
Mulx exon	522	662	581	4.04	
Alt5Prime	1970	582	524	3.24	
Alt3Prime	3207	805	748	2.70	

PTB-dependent repression or enhancement of alternative splicing *in vivo*

Enhancer

PTB composite RNA functional map Balance of Dynamic Competition

OOF

Summary

- PTB exists in vivo as dimer.
- PTB associates with different splicing events.
- PTB binding profile provides mechanistic insights to understand the undefined splicing regulation of many genes.
- PTB dominant binding near constitutive splice sites induces exon inclusion, whereas dominant binding close to alternative sites causes exon skipping (dynamic competition mechanism).
- This is a new positional rule for general splicing suppressors PTB to positively or negatively regulate alternative splicing in mammalian cells.

Further works

. . .

- 1. An integrated package for analyzing CLIP-seq data for individual RNA binding protein.
 - mapping tags to genome,
 - peak identification,
 - saturation analysis,
 - landscape comparison,
 - motif analysis,
 - annotation analysis,
 - association with AS,
 - patterns with different splicing events

One splicing code

2. Combine different splicing codes from different splicing factors.

RNA design under motif constraints

Yu Zhou, Stephane Vialette, Yi Zhang, Alain Denise*

Strong secondary structure abolishes function of ESE within or nearby

Computational Problem:

Design sequences folded to given structure under constraints of mandatory motifs and forbidden motifs.

Mandatory motif: one specific ESE, like UCGUCG. Forbidden motifs: other ESEs except the one chosen to test.

Current programs in RNA design

- RNAinverse
- RNA-SSD
- INFO-RNA

None of them can solve the constraint of forbidden motifs!

A simple example: Automaton

• • • • •

A simple example: CFG

structure: (.)()

Grammar with 17 productions (axiom state = S) V1 -> g | a | c | u V2 -> gc | cg | au | ua | gu | ug V3 -> gV1cV2 | cV1gV2 | aV1uV2 | uV1aV2 | gV1uV2 | uV1gV2 S -> V3

Intersected CFG

Grammar with 10 productions (axiom state = S) S -> $a0_V4_a5$ $a0_V4_a5 -> a0_V3_a5$ $a0_V3_a5 -> c a1_V1_a2 g a3_V2_a5$ $a1_V1_a2 -> u$ $a3_V2_a5 -> gc | cg | au | ua | gu | ug$

> (.) () C U G G U C U G C G C U G G U C U G G C C U G G C C U G U A C U G G U

.

A pipeline to build automaton for mandatory motif and forbidden motifs

The current program works for smaller sequences

T	Saguanaa	м	FSA			Grammar			#seq	Time(min)	
	Sequence		#F	#state	#trans	GI	GA	GB	AG	ТА	TG
1	CUCGAACGCAANNNNNNNNNAAUUC	ACCCAA	1	902	3062	14142, 17522	2040, 6405	630, 803	346	24.7	55.20
	((((((()))))))	ACGCAA								54./m	55.58
2	CUCGAACGCAANNNNNNNNNAAUUC	ACGCAA	1	902	3062	906, 3064	903, 3064	903, 3064	457647	34.3m	4.7s
		110001111									
3	CUCGAACGCAANNNNNNNNNAAUUC	ACGCAA	1	902	3062	24220, 29483	3123, 10438	636, 820	1038	35.7m	1.7m
	(((((())))))	110001111									
4	CUCGAACGCAANNNNNNNNNAAUUC	ACGCAA	1	902	3062	38507, 48783	5434, 18910	645, 856	4844	34.2m	2.7m
	((((()))))	110001111									
5	CUCGAACGCAANNNNNNNNNAAUUC	ACGCAA	1	902	3062	48087, 56849	5826, 20167	663, 914	7958	34.2m	3.3m.
	(((())))	110001111									
6	CUCGANNNNNNUACAGANNNNNNAAUUC	IIACAGA	1	222	712	16643, 47520	14946,45655	1998, 5005	13948	28.1m	1.2m
	((((((()))))))	UNCHON									
7	CUCGANNNNNNNNNNNNNNNUACAGAAAUUC	IIACACA	0	0	0	-	-	-	0	16.0m	
	((((((()))))))	UACAGA								10.911	-
8	NNNNNNNNUCGUCG	UCCUCC	1	1117	3889	716553,	219601,	18223,	42234	40.4m	0.2
	(((())))	UCGUCG				1710596	885384	34324		49.4m	92111
9	UCGUCGNNNNNNNNN	UCCUCC	1	020	3209	115152,	32620,	11469,	35209	22.645	6.2.
)))	UCGUCG		939		252205	122590	20532		22.0III	0.3M

Further works

1. To improve the algorithm:

Do the intersection more efficiently

2. Selecting better candidates sequences according:

- UP (Unpaired Probability)
- Self-containment, (PLOS comp. biology, 2008)

Thanks to: Prof. Yi Zhang and Alain Denise Prof. Xiang-dong Fu (UCSD) Yuanchao Xue Stephane Vialette Lab members in WHU and LRI