NAPP, a Single-Pass method to detect ncRNA in Bacteria by phylogenetic profiling with a "plus value"

Marchais Antonin

Sequence, structure and function of RNAs – Daniel Gautheret Institut de Génétique et Microbiologie, Université Paris-Sud

April 16, 2009

Plan

- Overview
- How can you detect ncRNA today ?

2 NAPP, a new pipeline based on co-inheritance concept

3 Applications

Overview How can you detect ncRNA today ?

Introduction

- Overview
- How can you detect ncRNA today ?

2 NAPP, a new pipeline based on co-inheritance concept

3 Applications

4 Conclusion and Perspectives

Overview How can you detect ncRNA today

The modern ncRNA world

えるのとおりえるのともし きるそともメネるに マネションエマネションエネネシーシンエネネシ **キャメメ 4 * 2 チャキャメ 4 ア 2 * * × × + + + 82412412424212414921231 ノアチムアグラアチがアキンアントムアン 上一万秋人をした水火なししが大き イスキャーキースト しょうくちょうそう キーション メロクトエイメロクトエキメロクイエトメキク だもとそうみだもぶとたべきへとなしん 1 2 2 2 0 2 2 2 2 3 0 2 2 2 2 2 0 2 2 アアチレントアナチャンマウトアキンマイ とななべわしてくししなべたしかしなた! よ ネキイトト えネシントわし スタイトわメスシー イルクエンロイルクエンギロルクイエンギルチ · チネる× ギャット とし キッ× 1 ちん ケキ ゴアネリオー ダブチャントレンショー おしみわしたしたチメヨカし」でたったしやし 818またやおともしたかおチメカたやお= ネビもはらというないないないない そつみかゆとしなるとしかひつとないもとやと \$271 X 4 1 4 7 X X 2 1 4 7 X 1 7 C L 4 チャキアノノチャアリキアウナリキタシシ

- 1371 ncRNA families in RFAM, twice in two years
- Diversity of function and structure
- Many of them are not functionally characterized

 \rightarrow With the "genome-by-day" era, automatic ncRNAs detection and function prediction became an absolute necessity

Overview How can you detect ncRNA today ?

- Sequence conservation in intergenic regions (Comparative genomics)
- Structured elements (folding energy)
- Compensatory mutations (Covariance models)
- Terminators in intergenic regions

Overview How can you detect ncRNA today ?

What about the ncRNA prediction methods ?

Classical pipeline to detect new ncRNAs:

- Detection of intergenic conserved elements
- Filtering of conserved elements using RNAz, QRNA, Evofold
- Time consuming, No information about putative function, Not Automatized

Overview How can you detect ncRNA today ?

Needed

ncRNA detection tools that:

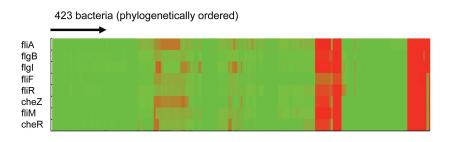
- Deal with current and incoming genome data
- Require as little user input/expertise as possible
- Achieve at least same level of sensitivity/specificity as an expert using own alignments and RNAz/Evofold
- Provide information about the ncRNA putative function ??

NAPP, a new pipeline based on co-inheritance concept

2 NAPP, a new pipeline based on co-inheritance concept

3 Applications

4 Conclusion and Perspectives

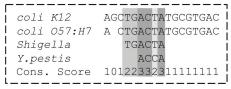


Proposed pipeline

- Take any reference genome
- For each Intergenic region:
 - Blast against all available genomes
 - Collect anything loosely conserved
 - Classify conserved elements using phylogenetic profiling

Phylogenetic profiling

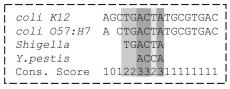
- 8 proteins involved in *E.coli* motility:
 - Similar profiles !
 - Pelligrini, 1999


Phylogenetic profiling of noncoding elements may...

- Help distinguish true conservation from dispersed hits
- Functionally distinguish elements based on species distribution
- And it is built by nature to stand up to the deluge of genomic data!

Loosely detect conserved noncoding elements

- For each InterGenic Region in reference sequence, blast it against all available genomes (500, 1000, whatever)
- Pile-up all Blast hits for region
- Measure raw conservation score at each position



How to cancel noise from multiple highly related sequences?

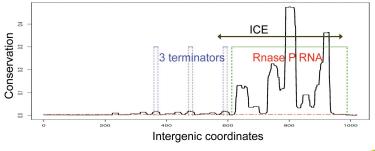
Loosely detect conserved noncoding elements

- For each InterGenic Region in reference sequence, blast it against all available genomes (500, 1000, whatever)
- Pile-up all Blast hits for region
- Measure raw conservation score at each position

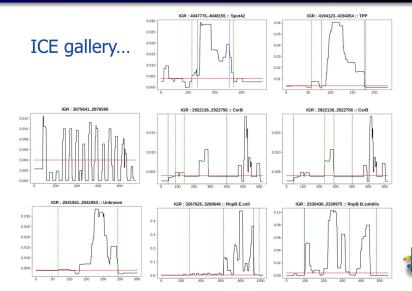
How to cancel noise from multiple highly related sequences?

• Weight conservation score by phylogenetic distance using 16S tree

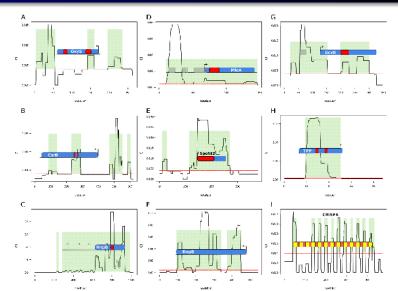
Weighted score=


 $\frac{\sum_{i=1}^{k} (Dist(Oi,Ok)^* X_{i\to k})}{\sum_{i=1}^{k} Dist(Oi,Ok)}$

ICE: Intergenic Conserved Elements

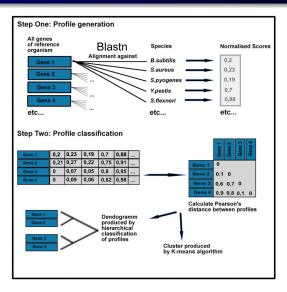

Example of ICE detected in *E.coli K12* intergenic fragment 3267625..3268646

Empirical criteria for Cons > 0.04; ICE: > 15 nt length / < 35 nt spacing



ICE Gallery

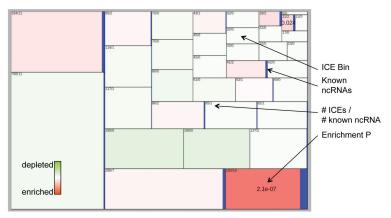
ICE Gallery


ICEs stats

	E. coli	B. subtillis
# ICEs	3483	2714
ICE min/max size	15/701	15/284
ICE mean size	39	34
Fraction of known ncRNA captured (except tRNA/rRNA)	56/74	61/70

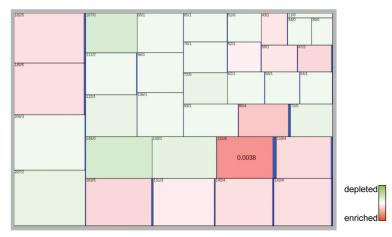
Longest elements: *E.coli* Rnase P and *B.subtilis* SRP

From ICE to profiles

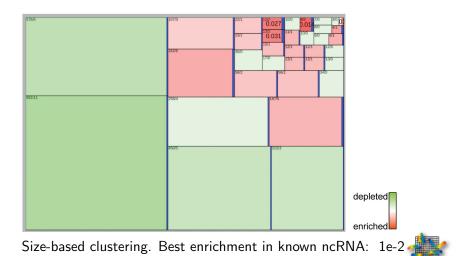


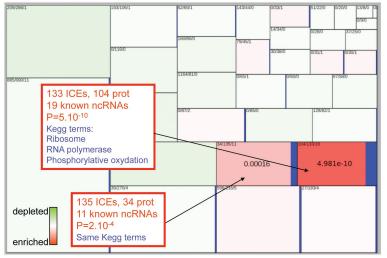
ICE phylogenetic profile

The hierarchical clustering view

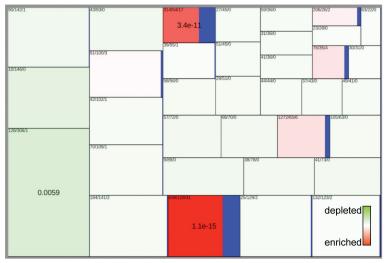

K-means Clustering (ICEs only)

A good classifier for known ncRNAs


Clustering based on conservation


Best enrichment in known ncRNA: 4e-3

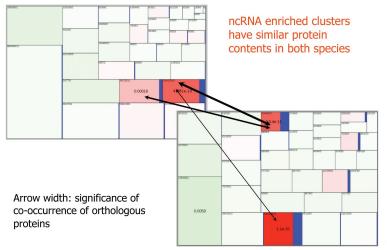
Clustering based on size



ICE + Protein clustering

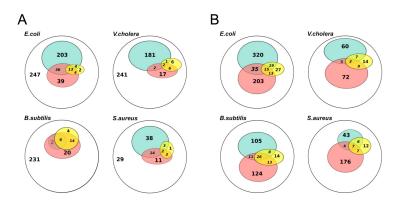
Better than ICEs alone

Results in Bacillus subtilis

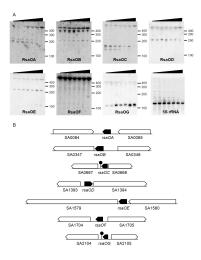


Enrichment in other non-coding elements

ncRNA (63) Promoters (374) 0.00016 depleted 0.0067 enriched Terminators (47) TF binding sites (75)



E.coli vs B.subtilis

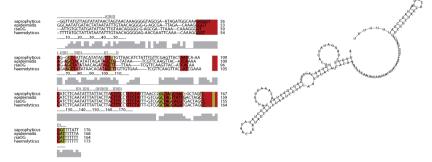


Performance of NAPP as a ncRNA classifier

These results show that NAPP clustering of ncRNAs compares favorably with two recent, specialized ncRNA predictions system

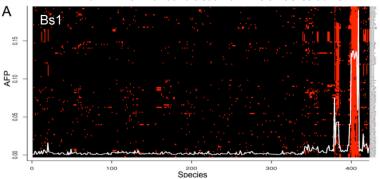
Experimental Validation of ncRNA candidates in S.aureus

- Of 48 ncRNA predicted ICEs, we randomly selected 24 to be tested. 7 showed a transcript signal between 100 and 300 bp
- 4 putative riboswitches (T-box, SAM, PreQ1) and 3 putative non-coding RNAs acting in trans

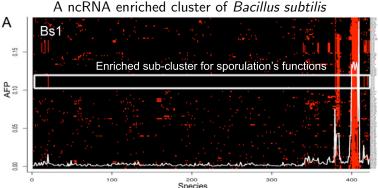

2 NAPP, a new pipeline based on co-inheritance concept

3 Applications

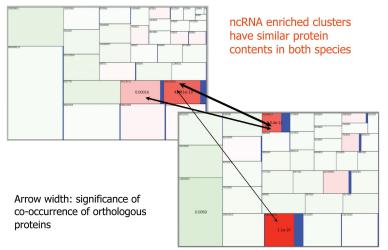
4 Conclusion and Perspectives


New ncRNA family : RsaOG

A new ncRNA family conserved in all *Staphylococcus*


Find ncRNA by co-inheritance with a specific pathway or function

A ncRNA enriched cluster of Bacillus subtilis


Find ncRNA by co-inheritance with a specific pathway or function

ICEs clustering in a ncRNA enriched sub-group presenting a functional enrichment may be involved in the same function.

Search of homologous ncRNA related proteins

Conclusion and Perspectives

- 1 Introduction
- 2 NAPP, a new pipeline based on co-inheritance concept

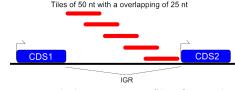
3 Applications

Currently, our method can

- Predict ncRNAs in any bacterial genome
- Processes a new genome in just a couple of hours
- With no expert intervention
- With a predictive performance that equals or beats structure/covariation based methods
- No sequence content analysis, no covariation, no folding energy
- Add information about functional cohineritance

Perspectives

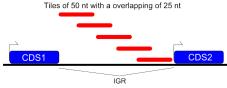
• Improve of the alignment of ICEs against genome (Other alignment software)


Perspectives

- Improve of the alignment of ICEs against genome (Other alignment software)
- Optimization of the empirical parameters

Perspectives

- Improve of the alignment of ICEs against genome (Other alignment software)
- Optimization of the empirical parameters
- Use Tilling as an alternative strategy to improve covering of genome:



Construct phylogenetic profiles for each Tile

Perspectives

- Improve of the alignment of ICEs against genome (Other alignment software)
- Optimization of the empirical parameters
- Use Tilling as an alternative strategy to improve covering of genome:

Construct phylogenetic profiles for each Tile

• Update the number of bacterial genomes in database and compute for all

Remerciements

• Sequence, Structure et Fonction des ARN (IGM):

- Daniel Gautheret
- Magali Naville
- Chongjian Chen
- Claire Toffano-Nioche
- Signalisation et Reseaux de regulations bacteriens (IGM):
 - Philippe Bouloc
 - Chantal Bohn
 - Patricia Skorski
- Laboratoire de regulation de l'expression genetique chez les microorganismes (IBPC):
 - Patrick Stragier
- More information in Marchais et al, Genome Res, 2009

