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RNA is an important biomolecule, now known to play both an
information carrying role, as well as a catalytic role.

� The genomic information of retroviruses, such as the hepatitis C
and human immunodeficiency viruses, is encoded by RNA rather
than DNA.

� The peptidyl transferase reaction, arguably the most to whom
correspondence should be addressed important enzymatic reaction
responsible for life, is catalyzed not by a protein, but rather by
RNA.
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It is computationally intractable to compute the minimum free energy
tertiary structure of RNA; indeed, determining the optimal
pseudoknotted structure without any constraints on the type of
pseudoknots is NP-complete.
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In contrast, by disallowing pseudoknots, secondary structure
prediction is algorithmically tractable; there are dynamic programming
algorithms to compute the minimum free energy structure for a single
RNA molecule, as well as for the hybridization of two RNA molecules,
and even more than two RNA molecules.

Such thermodynamics-based algorithms are particularly important,
since the tertiary structure of RNA is known to be largely determined
by secondary structure, which acts as a scaffold for tertiary contacts;

5 of 35



METHODS: Boltzmann distribution

Boltzmann distribution weights each structure S of RNA ω by a

Boltzmann factor: BS,ω = e
−ES,ω

RT where :

� ES ,ω is the free energy of S (kCal/mol)

� T is the temperature in Kelvin

� R is the Gas constant (1, 986 ∗ 10−3kCal ∗ K−1 ∗mol−1)
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The partition function of Boltzmann is calculated by:

Zω = ΣS∈Sωe
−ES,ω

RT

where Sω is the ensemble structures compatibles with RNA ω

The Boltzmann probability of an structure S:

PS ,ω =
e

−ES,ω
RT

ZS ,ω
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METHODS: Monte Carlo algorithm

Generally, any (probability) distribution can be sampled by a Monte
Carlo type algorithm.

Prerequisites: Detailed Balance

π(x)p(x → y) = π(y)p(y → x)

Metropolis rule: p(x → y) = min(1, π(x)
π(y) )

Boltzmann sampling: π(x) = 1
Z e

−Ex
RT
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METHODS: Wang-Landau sampling

F. Wang and D. P. Landau.
Efficient, Multiple-Range Random Walk Algorithm to Calculate the
Density of States. Phys. Rev. Lett., 86:20502053, 2001.

”A dynamic Monte Carlo algorithm to estimate the density of states
by performing a random walk in energy space with a flat histogram”
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Illustration of Wang-Landau random walk
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How to get the Density Of State (d.o.s)
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Starting from initial state ( x ), a random neighbor ( y ) is chosen
with a transition probability:

P(x → y) = min(1,
g(Ex)

g(Ey )
)

g(Ei) : the density of state of energy Ei

� If the move is accepted, the value of g(Ey ) is multiplied with a modification
factor c > 1 and the histogram entry h(Ey ) is updated.

� If the move is rejected, g(Ex) is multiplied with c and h(Ex) is Incremented.
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RESULTS: Density of state for a single RNA
energy

Figure: Validation Wang-Landau sampling by RNASubopt data
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Figure: (Left)Density of states for free energy of secondary. (Right)Sum of
squared differences between the density of states and the best fitting normal
distribution resp. extreme value distribution.
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Figure: (Left)Density of states for free energy of secondary. (Right)Sum of
squared differences between the density of states and the best fitting normal
distribution resp. extreme value distribution.

RNAsubopt: calculate suboptimal secondary structures of RNA including in

Vienna Package. with option -e -D.
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Boltzmann Partition function:

Zω = ΣS∈Sωe
−ES,ω

RT ≈ ΣEg(E ) ∗ e
−E
R∗T

Gibbs free energy:

G = −R ∗ T ∗ ln(Z )

G = H − T ∗ S
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RESULTS: Melting temperature for
hybridization of two RNA:

Melting temperature:

The temperature at which one half of the strands are unhybridized
and unfolded.

Predicting the melting temperature of RNA duplexes is one of the
most important applications of the partition function for interacting
nucleic acid pairs.

Melting experiments have been the most useful way to measure the
stabilities of RNA and DNA structures under different conditions.
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The number of secondary structures:

� RNA sequence of length n

� δi ,j = 1 if positions i, j can form a Watson-Crick or wobble pair,
otherwise let δi ,j = 0

� θ = 3 denote the minimum number of unpaired bases in a hairpin
loop.

� Ni ,j denotes the number of secondary structures on subsequence
[i,j] of the given RNA sequence.
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We have that:

� IF j < i + 3,Ni ,j = 1

� ELSE:

Ni ,j = Ni ,j−1 + Σj−θ−1
k=i δk,j ∗ Ni ,k−1 ∗ Nk+1,j−1

δk,j = 1, if nucleotide k and j are base pair, else = 0.

The total number of secondary structures is then N1,n.

This algorithm is O(n3)
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The number of hybridizations:

Figure: The ensemble of seven possible species: unfolded A and B, folded A
and B,and hybridized A-A, B-B and A-B is depicted here.
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� an RNA sequence A = a1, . . . , an of length n.

� an RNA sequence B = b1, . . . , bm of length m.

� let HPi ,j = 1 if positions ai , bj can hybridize, forming a
Watson-Crick or wobble pair, otherwise let HPi ,j = 0.

� For 1 = i, j = n, 1 = k, l = m, let Hi ,j ;k,l denote the number of
Hybridizations of the subsequence ai , ..., ajwithbk , ..., bl
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If (j < i or l < k), then define Hi ,j ;k,l = 0.

Otherwise, define Hi ,j ;k,l by:

Hi,j ;k,l =

Hi,j−1;k,l−1∗(1+HP(j ,l))

+
∑j−1

x=i HP(x ,l)∗Hi,x−1;k,l−1∗NAx+1,j

+
∑l−1

y=k HP(j ,y)∗Hi,j−1;k,y−1∗NAy+1,j

The total number of pseudoknot-free hybridizations is then H1,n;1,m.
This algorithm is O(n4)
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Figure: Illustration of hybridization of two RNA molecules.
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Ensemble free energy:

1. Compute the temperature independent number of structures :
N(A), N(B), and number of hybridization : N(AA), N(BB),
N(AB) for each of the five species A, B, AA, BB, AB.

2. For each temperature T in Celsius from 0 ◦C to 100 ◦C, run
program WL to compute the relative density of states f(A,T),
f(B,T), f(AA,T), f(BB,T), f(AB,T) for each species.
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3 From previous step (1) and (2), compute the absolute density of
states and using following equation, compute the temperature
dependent partition function Z(A, T), Z(B, T), Z(AA, T), Z(BB,
T), Z(AB, T) for each species.

Z (T ) = ΣEg(E ) ∗ e
−E
R∗T

where g(E) is the absolute density of state for energy E.

4 For each temperature T from 0 ◦C to 100 ◦C, compute the
ensemble free energy ∆G(T) from the partition functions for
each of five species. (Dimitrov and Zuker 2004)
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a Redundancy correction:

Zaa = Zaa − Z 2
a

Zbb = Zbb − Z 2
b

Zab = Zab − Za ∗ Zb

b Symmetry correction:

Zaa =
Zaa

2
, Zbb =

Zbb

2
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c Chemical equilibrium constants:

KA =
Zaa

Z 2
a

,KB =
Zbb

Z 2
b

KAB =
Zab

Zb ∗ Zb

d Concentration of molecules A and B:

2 ∗ KA ∗ N2
A + KAB ∗ NA ∗ NB + NA − N0

A = 0

2 ∗ KB ∗ N2
B + KAB ∗ NA ∗ NB + NB − N0

B = 0
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e The ensemble free energy:

µa = R ∗ T ∗ (ln(
NA

N0
A

− ln(ZA)))

µb = R ∗ T ∗ (ln(
NB

N0
B

− ln(ZB)))

F = µa∗NA+µb∗NB +µaa∗NAA+µbb∗NBB +µab∗NAB

which can be simplified to :

F = µa ∗ N0
A + µb ∗ N0

B

f Normailization the ensemble free energy:

∆G =
µa ∗ N0

A + µb ∗ N0
B

max(N0
A,N

0
B)
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5 Calculate the heat capacity (N.R markham Dissertation 2006)

Cp =
d∆H

dT
= −T ∗ d

2∆G

dT 2

The second derivative is computed numerically by fitting a
parabola to 2m+1 evenly spaced points, using the approximation:

d2∆G
dT 2 ≈ 30

m(m+1)4m2(2m+3)δT 2

∑
−m≤i≤m(3i2−m(m+1)∆G (T0+iδT )

The ensemble heat capacity is of interest because the local
maximum (or, more generally, the local maxima) define the
melting point(s) Tm(Cp).

31 of 35



6 In a post-processing step, smooth the heat capacity curve by
computing a running average.

Figure: Heat capacity curve Cp(T) for the same sequence, computed by
the WL(left) method described in this paper and Unafold(right).
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Sequence Experiment Unafold RNAcofold WL

ACGCA & UGCGU 29.8 42.64 46.14 42
GCACG & CGUGC 37.5 46.61 43.91 44

AGCGA & UCGCU 30.2 42.88 45.15 41
GCUCG & CGAGC 37.2 47.75 44.71 48

ACUGUCA & UGACAGU 48.2 56.8 57.59 51
GUCACUG & CAUGUAC 51.1 58.44 55.91 56

AGUCUGA & UCAGACU 45.7 56.4 56.68 52
GACUCAG & CUGAGUC 52 59.11 56.25 52
GAGUGAG & CUCACUC 53.7 59.07 56.00 58

The date Experiment extract from article: Xia et al. (1998)
The date Unafold and RNAcofold extract from article: Chitsaz & al
(2009)
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DISCUSSIONS

� the advantage of WL over existent methods in computing the
density of states for both single RNA molecules and for
hybridization complexes of two RNA molecules.

� the program UNAFold does not allow any intramolecular structure
(base pairing between two nucleotides of the same structure), a
feature that our WL method permits, as does the RNAcofold
program.
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� the melting temperature TM computed by WL agrees reasonably
well with that computed by O(n3) methods UNAFold, RNAcofold,
and the recent O(n6) method of Chitsaz et al., each of which
methods admits slightly different interactions.

� finally, we intend to implement a new energy evaluation function,
that allows arbitrary pseudoknots, zig-zags, etc. This will allow us
to estimate the partition function, ensemble free energy, heat
capacity, melting temperature, etc. for a context known to be
NP-complete.
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