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Réseau MSTGA, Avignon (LJK Grenoble) Connected components for planar graphs September 14, 2007 1 / 24



Plan

1 Definition of the Tutte polynomial
Connexion with random cluster partition function
On derivatives of the Tutte polynomial
Particular cases of the Tutte polynomial
For planar graphs

2 Some results on connected components
Applications : finite planar graphs
Applications : infinite planar graphs
Perspectives
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Definition of the Tutte polynomial

G = (V , E) a connected planar graph, V (|v | = n) the set of vertices, E
(|E | = m) the set of edges.

Definition
The Tutte polynomial of G denoted by T (G, x , y) can be obtained by
computing the four following rules :
(1) If G has no edges, then T (G, x , y) = 1.
(2) If e is an edge of G that is neither a loop nor an isthmus, then

T (G, x , y) = T (G′
e, x , y) + T (G′′

e, x , y)

where G′
e is the graph G with the edge e deleted and G′′

e is the graph
G with the edge e contracted.
(3) If e is an isthmus, then T (G, x , y) = xT (G′

e, x , y)
(4) If e is a loop, then T (G, x , y) = yT (G′

e, x , y).
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Example

Construction of the tutte polynomial for a cycle Cn of length n;
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Connexion with random cluster partition function

T (G, x , y) =
1

(x − 1)(y − 1)n

∑
A⊂E

(y − 1)|A|[(x − 1)(y − 1)]k(G,A)

Two important values of the Tutte polynomial
(1) On the curve (x − 1)(y − 1) = 1, (x = 1/p and y = 1/(1− p)),

T (G, 1/p, 1/(1− p) = (1− p)n−m−1p1−n.

(2) On the curve (x − 1)(y − 1) = q, (x = 1 + q(1− p)/p and
y = 1/(1− p)),

T (G, x , y) =
(1− p)n−m−1p1−n

q

∑
A⊂E

p|A|(1− p)m−|A|qk(G,A)

=
T (G, 1/p, 1/(1− p))

q
E(qk(G,p))
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On derivatives of the Tutte polynomial

Taking q = 1, the factorial moments are

E [(k − 1)(k − 2) . . . (k − i)] = (
1− p

p

)i
∂ i

∂x i T (G,
1
p

,
1

1− p
)

T (G, 1
p , 1

1−p )

E(k(G, p)) = 1 + (
1− p

p

) ∂

∂x
T (G,

1
p

,
1

1− p
)

T (G, 1
p , 1

1−p )

n∑
i=1

E(|Ci |−1) = E(k(G, p))

The expected value of length of the MST of G

E(LMST (G)) =

∫ 1

0
E(k(G, p)) dp − 1
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Particular cases of the Tutte polynomial

The chromatic polynomial

P(G, q) = qk(G)(−1)k(G)+n(G)T (G, x = 1− q, y = 0)

T (G, 1, 1) number of spanning trees
T (G, 2, 1) number of spanning forests, (or independent sets)
T (G, 2, 2) number of spanning subgraphs
T (G, 1, 2) number of spanning connected subgraphs
T (G, 2, 0) number of acyclic orientations
T (G, 0, 2) number of totally cyclic orientations
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Be careful

(1) G? dual of G ⇒ T (G?, x , y) = T (G, y , x).
G = G? ⇒ T (G, x , y) = T (G, y , x) Wrong converse.
(2) T (G, x , y) = T (H, x , y) 6⇒ G = H.
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Definition of the dual graph G? of a planar graph G

Euler relation : f = m − n + α.
n? = f + 1, m? = m and f ? = n − 1.
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Some results on connected components

Distribution on edges of G : edge white with probability p.
edge black with probability 1− p

A : set of white edges in G.
k(G, A, p) : number of white connected components in (V , A).

Distribution on edges of G? : edge white with probability 1− p.
edge black with probability p

A? : set of white edges in G?.
k(G?, A?, 1− p) : number of white connected components in (V ?, A?).

A ⊂ E A? ⊂ E?
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Some results on connected components

Proposition
Let be G a connected planar graph and denote by G? the dual graph of
G. For all subset A of E and corresponding subset A? of E?,

k(G?, A?, 1− p)− k(G, A, p) = |A| − n + 1

where |A| represents number of elements of A.

Proposition

E(k(G?, 1− p))− E(k(G, p)) = mp− n + 1 → p =
n − 1

m
?
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Some results on connected components

Proposition

E(k(G?, 1− p))− E(k(G, p)) = p(1− p) d
dp log T(G, 1

p , 1
1−p).

For self dual graphs (G = G?) : choose p = 1/2.
⇒ On the curve (x − 1)(y − 1) = q = 1, (x = 1/p, y = 1/(1− p)),
T (G, 2, 2) = min[T (G, x , y)].
On the curve (x − 1)(y − 1) = q, (x = 1 + q(1− p)/p, y = 1/(1− p)),

T (G, 1 +
√

q, 1 +
√

q) = min[T (G, x , y)] obtained with p =

√
q

1 +
√

q
the

critical probability for q-Potts model ?
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Applications : finite planar graphs

Example : the wheel, a self dual graph.

n vertices, m = 2(n − 1) edges.

E [k(G?, 1− p)]− E [k(G, p)] = 2(n − 1)(p − 1
2
)

⇒ p = 1/2. The natural choice of p is 1/2 and so that for all graphs
with m = 2(n − 1).
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Applications : infinite planar graphs

E(k(G∗, 1− pe))− E(k(G, pe)) = mpe − n + 1.

pe =
n − 1

m
⇒ E(k(G∗, 1− n−1

m )) = E(k(G, n−1
m )).

When n tends to infinity with m, m function of n,

⇒ E(k(G?, 1− lim
n→+∞

pe)) = E(k(G, lim
n→+∞

pe).
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Name Graph pe = (n − 1)/m lim
s→+∞

pe

s squares (2s + 1)/(3s + 1) 2/3

s triangles (s + 1)/(2s + 1) 1/2

Square Lattice

2 2 2

212

2 2 2

(2s + 1)/(4s) 1/2

Bow-tie Lattice C2 = (4s)/(10s − 3) 2/5

Crossed Matching C3 = s/(3s − 1) 1/3

Octagonal s/(3s − 1) 1/3

Honeycomb Lattice 2

2

2

2

2

2

2

1

2

8s2 − 3

12s2 − 4s − 2
2/3

kagome lattice

2

2 2

212

2 2

2

(6s + 1)

2(6s − 1)
1/2
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For honeycomb lattice, E(k(G, 2/3)) = E(k(G?, 1/3)).
How to understand for example this 2/3 associated with honeycomb
lattice ?
We have

pe =
n − 1

m
=

2(n − 1)
nint∑
i=1

qi +

next∑
i=1

qi

=
2

1
n − 1

nint∑
i=1

qi +
1

n − 1

next∑
i=1

qi

.

For all regular lattice with bounded degree,

lim
n→+∞

next

n
= 0 ⇒ lim

n→+∞
pe = lim

n→+∞
2(n − 1)/

nint∑
i=1

qi = 2/q̄.
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Perspectives

The special case of self-dual graphs : the location of complex
zeros of their Tutte polynomial.
Trace and determinant for symetric Tutte polynomial.
Relation between coefficients of the Tutte polynomial.
The q complex case.
Symmetry and conformal transformations.
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