Combining probabilities with log-linear pooling : application to spatial data

Denis Allard ${ }^{1}$, Philippe Renard ${ }^{2}$, Alessandro Comunian ${ }^{2,3}$, Dimitri D'Or ${ }^{4}$

${ }^{1}$ Biostatistique et Processus Spatiaux (BioSP), INRA, Avignon
${ }^{2}$ CHYN, Université de Neuchâtel, Neuchâtel, Switzerland
${ }^{3}$ now at National Centre for Groundwater Research and Training,
University of New South Wales, Sydney, Australia.
${ }^{4}$ Ephesia Consult, Geneva, Switzerland

Réseau MSTGA

22 novembre 2012

Motivation

- No spatial model available for prediction, simulation
- But, there are models for covariance functions
- \hookrightarrow How can we best use multiple bivariate probabilities?

Motivation

3D simulations of geology when 2d cross-sections are known.

- Caers (2006)

Okabe and Blunt $(2004,2007)$
Comunian et al. $(2011,2012)$

Framework

- Consider discrete events : $A \in \mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}$.
- We know conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, where the $D_{i} \mathrm{~s}$ come from different sources of information.
- We include the possibility of a prior probability, $P_{0}(A)$.
- Full model for A, D_{1}, \ldots, D_{n} not available

To provide an approximation of the probability $P\left(A \mid D_{1}, \ldots, D_{n}\right)$

Framework

- Consider discrete events : $A \in \mathcal{A}=\left\{A_{1}, \ldots, A_{K}\right\}$.
- We know conditional probabilities $P\left(A \mid D_{i}\right)=P_{i}(A)$, where the $D_{i} \mathrm{~s}$ come from different sources of information.
- We include the possibility of a prior probability, $P_{0}(A)$.
- Full model for A, D_{1}, \ldots, D_{n} not available

Purpose

To provide an approximation of the probability $P\left(A \mid D_{1}, \ldots, D_{n}\right)$:

$$
\begin{equation*}
P\left(A \mid D_{0}, \ldots, D_{n}\right) \approx P_{G}\left(P\left(A \mid D_{0}\right), \ldots, P\left(A \mid D_{n}\right)\right) \tag{1}
\end{equation*}
$$

An example : category for spatial data

- $A=$ category at a point s_{0} of a domain \mathcal{D}
- $D_{i}=$ category at points s_{i} in domain \mathcal{D}
- Other possible D_{i}, not considered here : remote sensing information, a priori pattern

An example : category for spatial data

Typical data set :

Truth	A	$P_{1}(A)=P\left(A \mid D_{1}\right)$	$P_{2}(A)=P\left(A \mid D_{2}\right)$	\cdots
"blue"	"blue"	0.71	0.55	\cdots
	"red"	0.12	0.21	\cdots
	"green"	0.17	0.24	\cdots
"red"	"blue"	0.18		
	"red"	0.42	0.12	\cdots
	"green"	0.40	0.00	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

Outline

- Mathematical properties
- Pooling formulas
- Scores and calibration
- Maximum likelihood
- Some results

Some mathematical properties

Convexity
An aggregation operator P_{G} verifying

$$
\begin{equation*}
P_{G} \in\left[\min \left\{P_{1}, \ldots, P_{n}\right\}, \max \left\{P_{1}, \ldots, P_{n}\right\}\right], \tag{2}
\end{equation*}
$$

is convex.

Convexity implies unanimity preservation.

Some mathematical properties

Convexity

An aggregation operator P_{G} verifying

$$
\begin{equation*}
P_{G} \in\left[\min \left\{P_{1}, \ldots, P_{n}\right\}, \max \left\{P_{1}, \ldots, P_{n}\right\}\right], \tag{2}
\end{equation*}
$$

is convex.

Unanimity preservation
An aggregation operator P_{G} verifying $P_{G}=p$ when $P_{i}=p$ for $i=1, \ldots, n$ is said to preserve unanimity.
Convexity implies unanimity preservation.
In general, convexity is not necessarily a desirable property, see Example 1

Toy example

- Prior probability is $1 / 6$ for each side
- D_{1} : side is ≤ 3
- D_{2} : side is even

We observe D_{1} is true ; D_{2} is not true

Toy example

- Prior probability is $1 / 6$ for each side
- D_{1} : side is ≤ 3
- D_{2} : side is even

We observe D_{1} is true ; D_{2} is not true

A_{k}	$" 1 "$	"2"	"3"	"4"	"5"	"6"
$P\left(A_{k} \mid D_{1}\right)$	$1 / 3$	$1 / 3$	$1 / 3$	0	0	0
$P\left(A_{k} \mid D_{2}\right)$	$1 / 3$	0	$1 / 3$	0	$1 / 3$	0

Toy example

- Prior probability is $1 / 6$ for each side
- D_{1} : side is ≤ 3
- D_{2} : side is even

Consider D_{1} is true ; D_{2} is not true

A_{k}	$" 1 "$	"2"	"3"	"4"	"5"	"6"
$P\left(A_{k} \mid D_{1}\right)$	$1 / 3$	$1 / 3$	$1 / 3$	0	0	0
$P\left(A_{k} \mid D_{2}\right)$	$1 / 3$	0	$1 / 3$	0	$1 / 3$	0
$P_{G}=$ Average	$4 / 12$	$2 / 12$	$4 / 12$	0	$2 / 12$	0
$P_{G} \propto$ Product	$1 / 2$	0	$1 / 2$	0	0	0
$P\left(A_{k} \mid D_{1}, D_{2}\right)$	$1 / 2$	0	$1 / 2$	0	0	0

Multiplying the probabilities seems to provide sharper probabilities
than adding them (here they are exact).

Toy example

- Prior probability is $1 / 6$ for each side
- D_{1} : side is ≤ 3
- D_{2} : side is even

Consider D_{1} is true ; D_{2} is not true

A_{k}	$" 1 "$	$" 2 "$	$" 3 "$	"4"	"5"	"6"
$P\left(A_{k} \mid D_{1}\right)$	$1 / 3$	$1 / 3$	$1 / 3$	0	0	0
$P\left(A_{k} \mid D_{2}\right)$	$1 / 3$	0	$1 / 3$	0	$1 / 3$	0
$P_{G}=$ Average	$4 / 12$	$2 / 12$	$4 / 12$	0	$2 / 12$	0
$P_{G} \propto$ Product	$1 / 2$	0	$1 / 2$	0	0	0
$P\left(A_{k} \mid D_{1}, D_{2}\right)$	$1 / 2$	0	$1 / 2$	0	0	0

Similar for other combinations for D_{1} and D_{2}
Multiplying the probabilities seems to provide sharper probabilities than adding them (here they are exact).

Some mathematical properties

External Bayesianity

An aggregation operator is said to be external Bayesian if the operation of updating the probabilities with the likelihood L commutes with the aggregation operator, that is if

$$
\begin{equation*}
P_{G}\left(P_{1}^{L}, \ldots, P_{n}^{L}\right)(A)=P_{G}^{L}\left(P_{1}, \ldots, P_{n}\right)(A) \tag{3}
\end{equation*}
$$

Imposing this property leads to a very specific class of pooling operators.

Some mathematical properties

External Bayesianity

An aggregation operator is said to be external Bayesian if the operation of updating the probabilities with the likelihood L commutes with the aggregation operator, that is if

$$
\begin{equation*}
P_{G}\left(P_{1}^{L}, \ldots, P_{n}^{L}\right)(A)=P_{G}^{L}\left(P_{1}, \ldots, P_{n}\right)(A) \tag{3}
\end{equation*}
$$

- It should not matter whether new information arrives before or after pooling
- Equivalent to the weak likelihood ratio property in Bordley (1982).
- Very compelling property, both from a theoretical point of view and from an algorithmic point of view.
Imposing this property leads to a very specific class of pooling operators.

Some mathematical properties

0/1 forcing
An aggregation operator which returns $P_{G}(A)=0$ if $P_{i}(A)=0$ for some $i=1, \ldots, n$ is said to enforce a certainty effect, a property also called the $0 / 1$ forcing property.

Linear pooling

Linear Pooling

$$
\begin{equation*}
P_{G}(A)=\sum_{i=0}^{n} w_{i} P_{i}(A) \tag{4}
\end{equation*}
$$

where the w_{i} are positive weights verifying $\sum_{i=0}^{n} w_{i}=1$

- Convex \Rightarrow preserves unanimity.
- Neither verify external bayesianity, nor 0/1 forcing
- Cannot achieve calibration (Ranjan and Gneiting, 2010).

Ranjan and Gneiting (2010) proposed a Beta transformation of the linear pooling. Parameters are estimated via ML.

Log-linear pooling

Log-linear pooling

A log-linear pooling operator is a linear operator of the logarithms of the probabilities :

$$
\begin{equation*}
\ln P_{G}(A)=\ln Z+\sum_{i=0}^{n} w_{i} \ln P_{i}(A) \tag{5}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
P_{G}(A) \propto \prod_{i=0}^{n} P_{i}(A)^{w_{i}} \tag{6}
\end{equation*}
$$

- Non Convex but preserves unanimity if $\sum_{i=0}^{n} w_{i}=1$
- Verifies $0 / 1$ forcing
- Verifies external bayesianity (Genest and Zidek, 1986)

Generalized log-linear pooling

Theorem (Genest and Zidek, 1986)

The only pooling operator P_{G} depending explicitly on A and verifying external Bayesianity is the log-linear pooling

$$
\begin{equation*}
P_{G}(A) \propto \nu(A) P_{0}(A)^{1-\sum_{i=1}^{n} w_{i}} \prod_{i=1}^{n} P_{i}(A)^{w_{i}} \tag{7}
\end{equation*}
$$

- Verifies external Bayesianity and 0/1 forcing
- $\nu(A)$ plays the role of an updating likelihood
- The sum $S_{\mathrm{w}}=\sum_{i=1}^{n} w_{i}$ plays an important role. Suppose that $P_{i}=p$ for each $i=1, \ldots, n$.
- If $S_{\mathbf{w}}=1$, the prior probability P_{0} is filtered out. Then, $P_{G}=p$ and unanimity is preserved
- if $S_{\mathrm{w}}>1$, the prior probability has a negative weight and P_{G} will always be further from P_{0} than p
- $S_{w}<1$, the converse holds

Maximum entropy approach

Proposition

The pooling formula P_{G} maximizing the entropy subject to the following univariate and bivariate constraints $P_{G}\left(P_{0}\right)(A)=P_{0}(A)$ and $P_{G}\left(P_{0}, P_{i}\right)(A)=P\left(A \mid D_{i}\right)$ for $i=1, \ldots, n$ is

$$
\begin{equation*}
P_{G}\left(P_{1}, \ldots, P_{n}\right)(A)=\frac{P_{0}(A)^{1-n} \prod_{i=1}^{n} P_{i}(A)}{\sum_{A \in \mathcal{A}} P_{0}(A)^{1-n} \prod_{i=1}^{n} P_{i}(A)} \tag{8}
\end{equation*}
$$

i.e. it is a log-linear formula with $w_{i}=1$, for all $i=1, \ldots, n$. Proposed in Allard (2011) for non parametric spatial prediction of soil type categories.
$\{$ Max. Ent. $\} \subset\{$ Log linear pooling $\} \subset\{$ Gen. log-linear pooling $\}$.

Maximum Entropy for spatial prediction

Maximum Entropy for spatial prediction

Maximum Entropy for spatial prediction

Estimating the weights for log-linear pooling

Maximum entropy is parameter free. For (generalized) log-linear pooling, how do we estimate the parameters ?

We will minimize scores

The quadratic or Brier score (Brier, 1950) is defined by

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
Iogarithmin soam
The logarithmic score corresponds to

Estimating the weights for log-linear pooling

Maximum entropy is parameter free. For (generalized) log-linear pooling, how do we estimate the parameters ?

We will minimize scores
Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\sum_{j=1}^{K}\left(\delta_{j k}-P_{G}(j)\right)^{2} \tag{9}
\end{equation*}
$$

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
Logarithmic score
The logarithmic score corresponds to

Maximizing the logarithmic score \Leftrightarrow minimizing KL distance.

Estimating the weights for log-linear pooling

Maximum entropy is parameter free. For (generalized) log-linear pooling, how do we estimate the parameters ?
We will minimize scores
Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\sum_{j=1}^{K}\left(\delta_{j k}-P_{G}(j)\right)^{2} \tag{9}
\end{equation*}
$$

Minimizing Brier score \Leftrightarrow minimizing Euclidien distance.
Logarithmic score
The logarithmic score corresponds to

$$
\begin{equation*}
S\left(P_{G}, A_{k}\right)=\ln P_{G}(k) \tag{10}
\end{equation*}
$$

Maximizing the logarithmic score \Leftrightarrow minimizing KL distance.

Maximum likelihood estimation

Maximizing the logarithmic score \Leftrightarrow maximizing the log-likelihood.
Let is consider M repetitions of a random experiment. For $m=1, \ldots, M$:

- conditional probabilities $P_{i}^{(m)}\left(A_{k}\right)$
- aggregated probabilities $P_{G}^{(m)}\left(A_{k}\right)$
- $Y_{k}^{(m)}=1$ if the outcome is A_{k} and $Y_{k}^{(m)}=0$ otherwise

	Y_{k}^{m}	$P_{1}^{m}\left(A_{k}\right)=P^{m}\left(A_{k} \mid D_{1}\right)$	$P_{2}^{m}\left(A_{k}\right)=P^{m}\left(A_{k} \mid D_{2}\right)$	\cdots
$m=1$	$Y_{1}^{1}=1$	0.71	0.55	\cdots
	$Y_{2}^{1}=0$	0.12	0.21	\cdots
$m=2$	$Y_{3}^{1}=0$	0.17	0.24	\cdots
	$Y_{1}^{2}=0$	0.18	0.12	\cdots
	$Y_{3}^{2}=1$	0.42	0.80	\cdots
\vdots	\vdots	0.40	0.08	\cdots

Maximum likelihood estimation

Find $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ and $\nu=\left(\nu_{1}, \ldots, \nu_{K}\right)$ maximazing

$$
\begin{align*}
L(\mathbf{w}, \boldsymbol{\nu})= & \sum_{m=1}^{M} \sum_{k=1}^{K} Y_{k}^{(m)}\left\{\ln \nu_{k}+\left(1-\sum_{i=1}^{n} w_{i}\right) \ln P_{0, k}+\sum_{i=1}^{n} w_{i} \ln P_{i, k}^{(m)}\right\} \\
& -\sum_{m=1}^{M} \ln \left\{\sum_{k=1}^{K} \nu_{k} P_{0, k}^{1-\sum_{i=1}^{n} w_{i}} \prod_{i=1}^{n}\left(P_{i, k}^{(m)}\right)^{w_{i}}\right\} \tag{11}
\end{align*}
$$

Calibration

Calibration
The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{12}
\end{equation*}
$$

[^0]
Calibration

Calibration

The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{12}
\end{equation*}
$$

Theorem (Ranjan and Gneiting, 2010) Linear pooling cannot be calibrated.

Theorem (Allard et al., 2012) Calibration \Rightarrow maximum likelihood estimates. parameters are those estimated from maximum likelihood.'

Calibration

Calibration

The aggregated probability $P_{G}(A)$ is said to be calibrated if

$$
\begin{equation*}
P\left(Y_{k} \mid P_{G}\left(A_{k}\right)\right)=P_{G}\left(A_{k}\right), \quad k=1, \ldots, K \tag{12}
\end{equation*}
$$

Theorem (Ranjan and Gneiting, 2010) Linear pooling cannot be calibrated.

Theorem (Allard et al., 2012)
Calibration \Rightarrow maximum likelihood estimates.
"If P admits a log-linear pooling expression, the only calibrated parameters are those estimated from maximum likelihood."

Calibration

Theorem
Calibration \Rightarrow maximum likelihood estimates.
Proof : A linear combination of the score functions yields

$$
\begin{equation*}
\sum_{m=1}^{M} \sum_{k=1}^{K} Y_{k}^{(m)} \ln P_{\hat{G}, k}^{(m)}=\sum_{m=1}^{M} \sum_{k=1}^{K} P_{G, k}^{(m)} \ln P_{\hat{G}, k}^{(m)} . \tag{13}
\end{equation*}
$$

If the M experiments are drawn according to P

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{Y}^{t} \ln \mathbf{P}_{\hat{G}}\right]=\mathbb{E}\left[\mathbf{P}_{\hat{G}}^{t} \ln \mathbf{P}_{\hat{G}}\right] \text { as } M \rightarrow \infty . \tag{14}
\end{equation*}
$$

From the conditional expectation formula :

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{Y}^{t} \ln \mathbf{P}_{\hat{G}}\right]=\mathbb{E}\left\{\mathbb{E}\left[\mathbf{Y}^{t} \ln \mathbf{P}_{\hat{G}} \mid \mathbf{P}_{\hat{G}}\right]\right\}=\mathbb{E}\left\{\mathbb{E}\left[\mathbf{Y}^{t} \mid \mathbf{P}_{\hat{G}}\right] \ln \mathbf{P}_{\hat{G}}\right\} . \tag{15}
\end{equation*}
$$

If $\mathbf{P}_{\hat{G}}$ is calibrated, i.e. if $\mathbb{E}\left[\mathbf{Y}^{t} \mid \mathbf{P}_{\hat{G}}\right]=\mathbf{P}_{\hat{G}}$, Eq. (14) is verified. Hence calibration \Rightarrow weights in $P_{\hat{G}}$ are solution of the maximum likelihood.

Measure of calibration and sharpness

Recall Brier score

$$
\begin{equation*}
B S=\frac{1}{M}\left\{\sum_{k=1}^{K} \sum_{m=1}^{M}\left(P_{G}^{(m)}\left(A_{k}\right)-Y_{k}^{(m)}\right)^{2}\right\} \tag{16}
\end{equation*}
$$

It can be decomposed in the following way :

$$
B S=\text { calibration term }+ \text { sharpness term }+ \text { Cte }
$$

- Calibration must be close to 0
- Conditional on calibration, sharpness must be as high as possible

First experiment : truncated Gaussian vector

- One prediction point s_{0}
- Three data s_{1}, s_{2}, s_{3} defined by distances d_{i} and angles θ_{i}
- Random function $X(s)$ with exp. cov, parameter 1
- $D_{i}=\left\{X\left(s_{i}\right) \leq t\right\}$
- $A=\left\{X\left(s_{0}\right) \leq t-1.35\right\}$
- 10,000 simulated thresholds so that $P(A)$ is almost uniformly sampled in $(0,1)$

First case (symmetrical) : $d_{1}=d_{2}=d_{3} ; \theta_{1}=\theta_{2}=\theta_{3}$

	Weight	Param.	-Loglik	BIC	BS	CALIB	SHARP
P_{1}	-	-	5782.2		0.1943	0.0019	0.0573
P_{12}	-	-	5686.8		0.1939	0.0006	0.0574
P_{123}	-	-	5650.0		0.1935	0.0007	0.0569
Lin.	-	-	5782.2	11564.4	0.1943	0.0019	0.0573
BLP	-	$\alpha=0.67$	5704.7	11418.7	0.1932	0.0006	0.0570
ME	-	-	5720.1	11440.2	0.1974	0.0042	0.0564
Log.lin.	0.75	-	5651.4	11312.0	0.1931	0.0006	0.0571
Gen. Log.lin.	0.71	$\nu=1.03$	5650.0	11318.3	0.1937	0.0008	0.0568

- Linear pooling very poor ; Beta transformation is an improvement
- Gen. Log. Lin : highest likelihood, but marginally
- Log linear pooling : lowest BIC and Brier Score
- Note that $S_{w}=2.25$

Second case (non symmetrical) : $\left(d_{1}, d_{2}, d_{3}\right)=(0.8,1,1.2) ; \theta_{1}=\theta_{2}=\theta_{3}$

	Weight	Param.	- Loglik	BIC	BS	CALIB	SHARP
P_{1}	-	-	5786.6		0.1943	0.0022	0.0575
P_{12}	-	-	5730.8		0.1927	0.0007	0.0577
P_{123}	-	-	5641.4		0.1928	0.0009	0.0579
Lin.eq	$(1 / 3,1 / 3,1 / 3)$	-	5757.2	11514.4	0.1940	0.0018	0.0575
Lin.	$(1,0,0)$	-	5727.2	11482.0	0.1935	0.0015	0.0577
BLP	$(1,0,0)$	$\alpha=0.66$	5680.5	11397.8	0.1921	0.0004	0.0580
ME	-	-	5727.7	11455.4	0.1972	0.0046	0.0571
Log.lin.eq.	$(0.72,0.72,0.72)$	-	5646.1	11301.4	0.1928	0.0006	0.0576
Log.lin.	$(1.87,0,0)$	-	5645.3	11318.3	0.1928	0.0007	0.0576
Gen. Log.lin.	$(1.28,0.53,0)$	$\nu=1.04$	5643.1	11323.0	0.1930	0.0010	0.0576

- Optimal solution gives 100% weight to closest point
- BLP : lowest Brier score
- Log. linear pooling : lowest BIC ; almost calibrated

Simulated experiment : Boolean model

- Boolean model of spheres in 3D
- $A=\left\{s_{0} \in\right.$ void $\}$
- 2 data points in horizontal plane +2 data points in vertical plane (randomly located)
- $D_{i}=\left\{s_{i} \in\right.$ void $\}, i=1, \ldots, 4$
- $P\left(A \mid D_{i}\right)$ are easy to compute
- 50,000 repetitions
- $P(A)$ sampled in $(0.05,0.95)$

Second experiment : Boolean model

	Weights	Param.	- Loglik	BIC	BS	CALIB	SHARP
P_{0}	-	-	29859.1	59718.2	0.1981	0.0155	0.0479
P_{i}	-	-	16042.0	32084.0	0.0892	0.0120	0.1532
Lin.	$\simeq 0.25$	-	14443.3	28929.9	0.0774	0.0206	0.1736
BLP	$\simeq 0.25$	$(3.64,4.91)$	9690.4	19445.7	0.0575	0.0008	0.1737
ME	-	-	7497.3	14994.6	0.0433	0.0019	0.1889
Log.lin	$\simeq 0.80$	-	7178.0	14399.3	0.0416	0.0010	0.1897
Gen. Log. lin	$\simeq 0.79$	$\nu=1.04$	$\mathbf{7 1 7 2 . 9}$	14399.9	0.0417	0.0011	$\mathbf{0 . 1 8 9 8}$

- Log-linear has best scores
- Log-linear is sharper than BLP
- BS is significantly lower for Log. lin. than for BLP

Conclusions

New paradigm for spatial prediction of categorical variables:

use multiplication of probabilities instead of addition

- Demonstrated the usefulness of lig-linear pooling formula
- Optimality for parameters estimated by ML
- Very good performances on tested situations
- Outperforms BLP in some situations

To do
Implement Log-linear pooling for spatial prediction. Expected to outperform ME.

References

Allard D, Comunian A and Renard P (2012) Probability aggregation methods in geoscience Math Geosci DOI : 10.1007/s11004-012-9396-3
Allard D, D'Or D, Froidevaux R (2011) An efficient maximum entropy approach for categorical variable prediction. Eur J S Sci 62(3) :381-393Genest C, Zidek JV (1986) Combining probability distributions: A critique and an annotated bibliography. Stat Sci $1: 114-148$
\square
Ranjan R, Gneiting T (2010) Combining probability forecasts. J Royal Stat Soc Ser B 72:71-91

[^0]: "If P admits a log-linear pooling expression, the only calibrated
 parameters are those estimated from maximum likelihood."

