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Motivation

I No spatial model available for prediction, simulation
I But, there are models for covariance functions
I ↪→ How can we best use multiple bivariate probabilities ?
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Motivation

3D simulations of geology when 2d cross-sections are known.
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Framework

I Consider discrete events : A ∈ A = {A1, . . . ,AK}.
I We know conditional probabilities P(A | Di) = Pi(A), where the

Dis come from different sources of information.
I We include the possibility of a prior probability, P0(A) .
I Full model for A,D1, . . . ,Dn not available

Purpose
To provide an approximation of the probability P(A | D1, . . . ,Dn) :

P(A|D0, . . . ,Dn) ≈ PG(P(A|D0), . . . ,P(A|Dn)). (1)
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An example : category for spatial data
I A = category at a point s0 of a domain D
I Di = category at points si in domain D
I Other possible Di , not considered here : remote sensing information, a

priori pattern
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An example : category for spatial data
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Typical data set :

Truth A P1(A) = P(A | D1) P2(A) = P(A | D2) · · ·
"blue" "blue" 0.71 0.55 · · ·

"red" 0.12 0.21 · · ·
"green" 0.17 0.24 · · ·

"red" "blue" 0.18 0.12 · · ·
"red" 0.42 0.80 · · ·

"green" 0.40 0.08 · · ·
...

...
...

...
...
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Outline

I Mathematical properties
I Pooling formulas
I Scores and calibration
I Maximum likelihood
I Some results
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Some mathematical properties

Convexity
An aggregation operator PG verifying

PG ∈ [min{P1, . . . ,Pn},max{P1, . . . ,Pn}], (2)

is convex.

Unanimity preservation
An aggregation operator PG verifying PG = p when Pi = p for
i = 1, . . . ,n is said to preserve unanimity.
Convexity implies unanimity preservation.

In general, convexity is not necessarily a desirable property, see
Example 1
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Toy example
I Prior probability is 1/6 for each side
I D1 : side is ≤ 3
I D2 : side is even

We observe D1 is true ; D2 is not true

Ak "1" "2" "3" "4" "5" "6"
P(Ak | D1) 1/3 1/3 1/3 0 0 0
P(Ak | D2) 1/3 0 1/3 0 1/3 0
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Toy example
I Prior probability is 1/6 for each side
I D1 : side is ≤ 3
I D2 : side is even

Consider D1 is true ; D2 is not true

Ak "1" "2" "3" "4" "5" "6"
P(Ak | D1) 1/3 1/3 1/3 0 0 0
P(Ak | D2) 1/3 0 1/3 0 1/3 0

PG = Average 4/12 2/12 4/12 0 2/12 0
PG ∝ Product 1/2 0 1/2 0 0 0
P(Ak | D1,D2) 1/2 0 1/2 0 0 0

Similar for other combinations for D1 and D2

Multiplying the probabilities seems to provide sharper probabilities
than adding them (here they are exact).

10 / 32



Toy example
I Prior probability is 1/6 for each side
I D1 : side is ≤ 3
I D2 : side is even

Consider D1 is true ; D2 is not true

Ak "1" "2" "3" "4" "5" "6"
P(Ak | D1) 1/3 1/3 1/3 0 0 0
P(Ak | D2) 1/3 0 1/3 0 1/3 0

PG = Average 4/12 2/12 4/12 0 2/12 0
PG ∝ Product 1/2 0 1/2 0 0 0
P(Ak | D1,D2) 1/2 0 1/2 0 0 0

Similar for other combinations for D1 and D2

Multiplying the probabilities seems to provide sharper probabilities
than adding them (here they are exact).

10 / 32



Some mathematical properties

External Bayesianity
An aggregation operator is said to be external Bayesian if the
operation of updating the probabilities with the likelihood L commutes
with the aggregation operator, that is if

PG(PL
1 , . . . ,P

L
n )(A) = PL

G(P1, . . . ,Pn)(A). (3)

I It should not matter whether new information arrives before or
after pooling

I Equivalent to the weak likelihood ratio property in Bordley (1982).
I Very compelling property, both from a theoretical point of view

and from an algorithmic point of view.

Imposing this property leads to a very specific class of pooling
operators.
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Some mathematical properties

0/1 forcing
An aggregation operator which returns PG(A) = 0 if Pi(A) = 0 for
some i = 1, . . . ,n is said to enforce a certainty effect, a property also
called the 0/1 forcing property.
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Linear pooling

Linear Pooling

PG(A) =
n∑

i=0

wiPi(A), (4)

where the wi are positive weights verifying
∑n

i=0 wi = 1

I Convex⇒ preserves unanimity.
I Neither verify external bayesianity, nor 0/1 forcing
I Cannot achieve calibration (Ranjan and Gneiting, 2010).

Ranjan and Gneiting (2010) proposed a Beta transformation of the
linear pooling. Parameters are estimated via ML.
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Log-linear pooling

Log-linear pooling
A log-linear pooling operator is a linear operator of the logarithms of
the probabilities :

ln PG(A) = ln Z +
n∑

i=0

wi ln Pi(A), (5)

or equivalently

PG(A) ∝
n∏

i=0

Pi(A)
wi . (6)

I Non Convex but preserves unanimity if
∑n

i=0 wi = 1
I Verifies 0/1 forcing
I Verifies external bayesianity (Genest and Zidek, 1986)

14 / 32



Generalized log-linear pooling

Theorem (Genest and Zidek, 1986)
The only pooling operator PG depending explicitly on A and verifying
external Bayesianity is the log-linear pooling

PG(A) ∝ ν(A)P0(A)1−
∑n

i=1 wi

n∏
i=1

Pi(A)
wi . (7)

I Verifies external Bayesianity and 0/1 forcing
I ν(A) plays the role of an updating likelihood
I The sum Sw =

∑n
i=1 wi plays an important role. Suppose that

Pi = p for each i = 1, . . . ,n.
I If Sw = 1, the prior probability P0 is filtered out. Then, PG = p and

unanimity is preserved
I if Sw > 1, the prior probability has a negative weight and PG will

always be further from P0 than p
I Sw < 1, the converse holds
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Maximum entropy approach

Proposition
The pooling formula PG maximizing the entropy subject to the
following univariate and bivariate constraints PG(P0)(A) = P0(A) and
PG(P0,Pi)(A) = P(A | Di) for i = 1, . . . ,n is

PG(P1, . . . ,Pn)(A) =
P0(A)1−n ∏n

i=1 Pi(A)∑
A∈A P0(A)1−n

∏n
i=1 Pi(A)

. (8)

i.e. it is a log-linear formula with wi = 1, for all i = 1, . . . ,n. Proposed
in Allard (2011) for non parametric spatial prediction of soil type
categories.

{Max. Ent.} ⊂ {Log linear pooling} ⊂ {Gen. log-linear pooling}.
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Maximum Entropy for spatial prediction
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Maximum Entropy for spatial prediction
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Maximum Entropy for spatial prediction
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Estimating the weights for log-linear pooling

Maximum entropy is parameter free. For (generalized) log-linear
pooling, how do we estimate the parameters ?

We will minimize scores

Quadratic or Brier score
The quadratic or Brier score (Brier, 1950) is defined by

S(PG,Ak ) =
K∑

j=1

(δjk − PG(j))
2 (9)

Minimizing Brier score⇔ minimizing Euclidien distance.

Logarithmic score
The logarithmic score corresponds to

S(PG,Ak ) = ln PG(k) (10)

Maximizing the logarithmic score⇔ minimizing KL distance.
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Maximum likelihood estimation

Maximizing the logarithmic score⇔ maximizing the log-likelihood.

Let is consider M repetitions of a random experiment. For
m = 1, . . . ,M :

I conditional probabilities P(m)
i (Ak )

I aggregated probabilities P(m)
G (Ak )

I Y (m)
k = 1 if the outcome is Ak and Y (m)

k = 0 otherwise

Y m
k Pm

1 (Ak ) = Pm(Ak | D1) Pm
2 (Ak ) = Pm(Ak | D2) · · ·

m = 1 Y 1
1 = 1 0.71 0.55 · · ·

Y 1
2 = 0 0.12 0.21 · · ·

Y 1
3 = 0 0.17 0.24 · · ·

m = 2 Y 2
1 = 0 0.18 0.12 · · ·

Y 2
2 = 1 0.42 0.80 · · ·

Y 2
3 = 0 0.40 0.08 · · ·

...
...

...
...

...
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Maximum likelihood estimation

Find w = (w1, . . . ,wn) and ννν = (ν1, . . . , νK ) maximazing

L(w, ννν) =
M∑

m=1

K∑
k=1

Y (m)
k

{
ln νk + (1−

n∑
i=1

wi) ln P0,k +
n∑

i=1

wi ln P(m)
i,k

}

−
M∑

m=1

ln

{
K∑

k=1

νk P1−
∑n

i=1 wi
0,k

n∏
i=1

(P(m)
i,k )wi

}
. (11)
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Calibration

Calibration
The aggregated probability PG(A) is said to be calibrated if

P(Yk | PG(Ak )) = PG(Ak ), k = 1, . . . ,K (12)

Theorem (Ranjan and Gneiting, 2010)
Linear pooling cannot be calibrated.

Theorem (Allard et al., 2012)
Calibration⇒ maximum likelihood estimates.

“If P admits a log-linear pooling expression, the only calibrated
parameters are those estimated from maximum likelihood.”
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Calibration

Theorem
Calibration⇒ maximum likelihood estimates.
Proof : A linear combination of the score functions yields

M∑
m=1

K∑
k=1

Y (m)
k ln P(m)

Ĝ,k
=

M∑
m=1

K∑
k=1

P(m)
G,k ln P(m)

Ĝ,k
. (13)

If the M experiments are drawn according to P

E[Yt ln PĜ] = E[Pt
Ĝ ln PĜ] as M → ∞. (14)

From the conditional expectation formula :

E[Yt ln PĜ] = E{E[Yt ln PĜ | PĜ]} = E{E[Yt | PĜ] ln PĜ}. (15)

If PĜ is calibrated, i.e. if E[Yt | PĜ] = PĜ, Eq. (14) is verified. Hence
calibration ⇒ weights in PĜ are solution of the maximum likelihood.

24 / 32



Measure of calibration and sharpness

Recall Brier score

BS =
1
M

{
K∑

k=1

M∑
m=1

(P(m)
G (Ak )− Y (m)

k )2

}
, (16)

It can be decomposed in the following way :

BS = calibration term + sharpness term + Cte

I Calibration must be close to 0
I Conditional on calibration, sharpness must be as high as

possible
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First experiment : truncated Gaussian vector

I One prediction point s0

I Three data s1, s2, s3 defined by distances di and angles θi

I Random function X (s) with exp. cov, parameter 1
I Di = {X (si) ≤ t}
I A = {X (s0) ≤ t − 1.35}
I 10,000 simulated thresholds so that P(A) is almost uniformly

sampled in (0,1)
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First case (symmetrical) : d1 = d2 = d3 ; θ1 = θ2 = θ3

Weight Param. −Loglik BIC BS CALIB SHARP
P1 — — 5782.2 0.1943 0.0019 0.0573
P12 — — 5686.8 0.1939 0.0006 0.0574
P123 — — 5650.0 0.1935 0.0007 0.0569
Lin. — — 5782.2 11564.4 0.1943 0.0019 0.0573
BLP — α = 0.67 5704.7 11418.7 0.1932 0.0006 0.0570
ME — — 5720.1 11440.2 0.1974 0.0042 0.0564
Log.lin. 0.75 — 5651.4 11312.0 0.1931 0.0006 0.0571
Gen. Log.lin. 0.71 ν = 1.03 5650.0 11318.3 0.1937 0.0008 0.0568

I Linear pooling very poor ; Beta transformation is an improvement
I Gen. Log. Lin : highest likelihood, but marginally
I Log linear pooling : lowest BIC and Brier Score
I Note that Sw = 2.25
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Second case (non symmetrical) :
(d1,d2,d3) = (0.8,1,1.2) ; θ1 = θ2 = θ3

Weight Param. −Loglik BIC BS CALIB SHARP
P1 — — 5786.6 0.1943 0.0022 0.0575
P12 — — 5730.8 0.1927 0.0007 0.0577
P123 — — 5641.4 0.1928 0.0009 0.0579
Lin.eq (1/3, 1/3, 1/3) — 5757.2 11514.4 0.1940 0.0018 0.0575
Lin. (1, 0, 0) — 5727.2 11482.0 0.1935 0.0015 0.0577
BLP (1, 0, 0) α = 0.66 5680.5 11397.8 0.1921 0.0004 0.0580
ME — — 5727.7 11455.4 0.1972 0.0046 0.0571
Log.lin.eq. (0.72, 0.72, 0.72) — 5646.1 11301.4 0.1928 0.0006 0.0576
Log.lin. (1.87, 0, 0) — 5645.3 11318.3 0.1928 0.0007 0.0576
Gen. Log.lin. (1.28, 0.53, 0) ν = 1.04 5643.1 11323.0 0.1930 0.0010 0.0576

I Optimal solution gives 100% weight to closest point
I BLP : lowest Brier score
I Log. linear pooling : lowest BIC ; almost calibrated
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Simulated experiment : Boolean model

I Boolean model of spheres in 3D
I A = {s0 ∈ void}
I 2 data points in horizontal plane + 2 data points in vertical plane

(randomly located)
I Di = {si ∈ void}, i = 1, . . . ,4
I P(A | Di) are easy to compute
I 50,000 repetitions
I P(A) sampled in (0.05,0.95)
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Second experiment : Boolean model

Weights Param. − Loglik BIC BS CALIB SHARP
P0 — — 29859.1 59718.2 0.1981 0.0155 0.0479
Pi — — 16042.0 32084.0 0.0892 0.0120 0.1532
Lin. ' 0.25 — 14443.3 28929.9 0.0774 0.0206 0.1736
BLP ' 0.25 (3.64, 4.91) 9690.4 19445.7 0.0575 0.0008 0.1737
ME — — 7497.3 14994.6 0.0433 0.0019 0.1889
Log.lin ' 0.80 — 7178.0 14399.3 0.0416 0.0010 0.1897
Gen. Log. lin ' 0.79 ν = 1.04 7172.9 14399.9 0.0417 0.0011 0.1898

I Log-linear has best scores
I Log-linear is sharper than BLP
I BS is significantly lower for Log. lin. than for BLP
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Conclusions

New paradigm for spatial prediction of categorical variables :

use multiplication of probabilities instead of addition

I Demonstrated the usefulness of lig-linear pooling formula
I Optimality for parameters estimated by ML
I Very good performances on tested situations
I Outperforms BLP in some situations

To do
Implement Log-linear pooling for spatial prediction. Expected to
outperform ME.
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