ISC Operator for reconstructing Bayesian Network in gene networks context.

Jimmy Vandel & Simon de Givry

Outlines:

- Biological motivation
- Bayesian Networks framework
- Learning Algorithms
- Local Operators
- Comet language
- Experimentation

\rightarrow gene expressions (mRNA concentrations)

- \rightarrow gene expressions (mRNA concentrations)
- \rightarrow gene regulations

- \rightarrow gene expressions (mRNA concentrations)
- \rightarrow gene regulations

<u>Goal</u> : Reconstruction of gene regulatory network.

Escherichia coli

(423 genes, 578 regulations) (SS. Shen-Orr and al., 2002)

Vandel Jimmy

MM

E

Vandel Jimmy

1. Biological motivation

DNA mutations in genes : in promoter region \rightarrow impact on its gene activity

Vanc	lel	Jim	my
)

DNA mutations in genes: in promoter region \rightarrow impact on its gene activity in coding region \rightarrow impact on others gene activities

DNA mutations in genes: in promoter region \rightarrow impact on its gene activity in coding region \rightarrow impact on others gene activities

Genetic data from one genetic marker (SNP) for each gene

1. Biological motivation

Discrete Bayesian network

Directed acyclic graph *G* composed of *n* variables $X_i = \{G_i, M_i\}$

Discrete Bayesian network

Directed acyclic graph *G* composed of *n* variables $X_i = \{G_i, M_i\}$

Graphic representation of a joint probability distribution

$$P_G(X) = \prod_{i=1}^n P_G(X_i/Pa_i)$$

Vandel Jimmy

Learning strategy

We look for the graph $G_{score} = argmax_{G_i} P(G_i/D)$ with dataset D.

$$P(G_i/D) = \frac{P(D/G_i)P(G_i)}{P(D)}$$

 $\propto P(D/G_i)P(G_i)$

 $P(D/G_i)$:marginal likelihood of *Gi*

> $P(G_i)$: prior probability of the graph Gi
 → assumed to be uniform

Objective function easy to evaluate and avoids over-fitting

- > decomposable and penalized scores
 - BDe score (D.Heckerman Machine learning 1995)

> BIC score (G.Schwartz Annals of statistics 1978)

- 1. Search space
 - Directed Acyclic Graph
 - Partial DAG (PDAG)
 - variable orders

- 1. Search space
 - Directed Acyclic Graph
 - Partial DAG (PDAG)
 - variable orders

- 2. Initial structure
 - empty structure
 - random structure
 - informed structure (MWST, expert...)

- 1. Search space
 - Directed Acyclic Graph
 - Partial DAG (PDAG)
 - variable orders

- 2. Initial structure
 - empty structure
 - random structure
 - informed structure (MWST, expert...)

- 3. Neighborhood operators
 - > addition of an edge
 - > deletion of an edge
 - reversal of an edge
 - k look-ahead
 - > optimal reinsertion

- 1. Search space
 - Directed Acyclic Graph
 - Partial DAG (PDAG)
 - variable orders

- 2. Initial structure
 - empty structure
 - random structure
 - informed structure (MWST, expert...)

- 3. Neighborhood operators
 - > addition of an edge
 - deletion of an edge
 - reversal of an edge
 - k look-ahead
 - optimal reinsertion

- 4. Meta-heuristics
 - hill climbing (with restarts)
 - tabu search
 - > simulated annealing
 - > MCMC
 - > genetic algorithms
 - >

Vandel Jimmy

3. Learning algorithms

- > addition
- > deletion
- reversal (deletion + addition on the same pair)
- > swap (deletion + addition including an extra node)

> addition

- > deletion
- reversal (deletion + addition on the same pair)

> swap (deletion + addition including an extra node)

Example:

4. Local operators

> addition

- > deletion
- > reversal (deletion + addition on the same pair)
- > swap (deletion + addition including an extra node)

4. Local operators

- > addition
- > deletion
- > reversal (deletion + addition on the same pair)
- > swap (deletion + addition including an extra node)

- > addition
- > deletion
- > reversal (deletion + addition on the same pair)
- > swap (deletion + addition including an extra node)

 \rightarrow escape from some local maxima

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

 $Swap(G_{2}, G_{3}, G_{7})?$

Current situation

 $\Delta_{score} Add (G_{7}, G_{3}|G_{1}) > \Delta_{score} Add (G_{2}, G_{3}|G_{1}) > 0$

Vandel Jimmy

(Iterative Swap Operator)

Swap (G_{2}, G_{3}, G_{7}) ? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

 $\Delta_{score} Add (G_{7}, G_{3}|G_{1}) > \Delta_{score} Add (G_{2}, G_{3}|G_{1}) > 0$

Vandel Jimmy

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation $\Delta_{score} Add (G_{7}, G_{3}|G_{1}) > \Delta_{score} Add (G_{2}, G_{3}|G_{1}) > 0$

Select the edge of the cycle minimizing $\Delta_{score} Add$

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

 $\Delta_{score} Add (G_{7,}G_{3}|G_{1}) > \Delta_{score} Add (G_{2,}G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOPSelect the edge of the cycle minimizing $\Delta_{score} Add$

Try to delete it

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

4. Local operators

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

Vandel Jimmy

 $\Delta_{score} Add (G_{7,}G_{3}|G_{1}) > \Delta_{score} Add (G_{2,}G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOP Select the edge of the cycle minimizing $\Delta_{score} Add$ Try to delete it If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Deletion(G_4, G_6) \le 0$

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

 $\Delta_{score} Add (G_{7,}G_{3}|G_{1}) > \Delta_{score} Add (G_{2,}G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOP Select the edge of the cycle minimizing $\Delta_{score} Add$ Try to delete it If $\Delta_{score} Swap (G_2, G_3, G_7) + \Delta_{score} Deletion (G_4, G_6) \le 0$ Try to swap this edge

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

 $\Delta_{score} Add (G_{7,}G_{3}|G_{1}) > \Delta_{score} Add (G_{2,}G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOP Select the edge of the cycle minimizing $\Delta_{score} Add$ Try to delete it If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Deletion(G_4, G_6) \le 0$ Try to swap this edge If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Swap(G_4, G_6, G_5) \le 0$ **STOP** Else Record Swap (G_4, G_6, G_5) Else Record Deletion (G_4, G_6)

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation

 $\Delta_{score} Add (G_{7,}G_{3}|G_{1}) > \Delta_{score} Add (G_{2,}G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOP Select the edge of the cycle minimizing $\Delta_{score} Add$ Try to delete it If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Deletion(G_4, G_6) \le 0$ Try to swap this edge If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Swap(G_4, G_6, G_5) \le 0$ **STOP** Else Record Swap (G_4, G_6, G_5) Else Record Deletion (G_4, G_6) If ! STOP Validate all recorded moves

Vandel Jimmy

4. Local operators

(Iterative Swap Operator)

Swap
$$(G_{2}, G_{3}, G_{7})$$
? \rightarrow Cycle $\{G_{3}, G_{4}, G_{6}, G_{7}\}$

Current situation $\Delta_{score} Add (G_{7}, G_{3}|G_{1}) > \Delta_{score} Add (G_{2}, G_{3}|G_{1}) > 0$

While there exist a cycle and ! STOP **nISC operator** Select the edge of the cycle minimizing $\Delta_{score} Add$ Try to delete it If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Deletion(G_4, G_6) \le 0$ Try to swap this edge If $\Delta_{score} Swap(G_2, G_3, G_7) + \Delta_{score} Swap(G_4, G_6, G_5) \le 0$ **STOP** Else Record Swap (G_4, G_6, G_5) Else Record Deletion (G_4, G_6) If ! STOP Validate all recorded moves

Vandel Jimmy

4. Local operators

Is a High level programming language

(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

Vandel Jimmy

5. Comet language

ls a

High level programming language

То

Model optimization problems

Implement search procedures

(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

Vandel Jimmy

5. Comet language

ls a

High level programming language

То

Model optimization problems

Implement search procedures

In domains of

Constraint programming

Constraint-Based Local search

(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

Vandel Jimmy

5. Comet language

ls a

High level programming language

То

Model optimization problems

Implement search procedures

In domains of

Constraint programming

Constraint-Based Local search

Offering easy implementation for

Invariants

Objective functions

Constraints definition

Parallel programming

(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

. . .

Hill-climbing implementation in Comet

Invariant Incremental variable

- \rightarrow update when is modified
- \rightarrow modify

Vandel Jimmy

5. Comet language

Experimentation

DREAM5 systems genetics challenge (November 2010, New York) Objective: recover gene regulatory network from > Gene expressions > Genetic data

Our gold network

- > 2000 nodes (1000 genes / 1000 genetic markers)
- > 1983 edges

Simulated population of 300 individuals

Gold standard network

Vandel Jimmy

Experimentation

DREAM5 systems genetics challenge (November 2010, New York) Objective: recover gene regulatory network from > Gene expressions > Genetic data

Our gold network

- > 2000 nodes (1000 genes / 1000 genetic markers)
- > 1983 edges

Simulated population of 300 individuals

- > Discretization of data (max. 4 classes)
- > Pre-filtering candidate parents under condition $\Delta Add(Parent, Target) > 0$

> Limit number of parents : 6

Vandel Jimmy

6. Experimentation

Gold standard network

Results (1/4)

- > 1000 runs of hill climbing algorithm
- Initialized with random networks (2 parents max)
- 5 operator configurations:
 Addition + Deletion
 Addition + Deletion + Reversal
 Addition + Deletion + Swap
 - Addition + Deletion + Reversal + Swap
 - Addition² + Deletion + Reversal² + Swap² (²:nISC)

	A+D	A+D+R	A+D+S	A+D+R+S	A ² +D+R ² +S ²
BDeu scores ≻ mean ≻ deviation	-359 580 169.3	-359 430 168.5	-357 990 92.9	-357 850 91.0	-357 460 55.2
Mean time (in seconds)	17.9	27.0	27.6	32.3	149.2

Results (2/4)

- > 1 run of hill climbing algorithm
- Initialized with random networks (2 parents max)
- I operator configurations: Addition² + Deletion + Reversal² + Swap² (²:nISC)

Number of applied operators by type during the search

Vandel Jimmy

Results (3/4)

- > 1000 runs of hill climbing algorithm
- 2 starting configurations: * empty network

random networks (2 parents max)

2 operator configurations: Addition + Deletion + Reversal
Addition² + Deletion + Reversal² + Swap² (²:nISC)

Results (4/4)

- > 1000 runs of hill climbing algorithm
- Initialized with random networks (2 parents max)
- 5 configurations: * Addition + Deletion + Reversal
 - * Addition + Deletion + Swap
 - * Addition² + Deletion + Reversal² + Swap² (²:nISC)
 - * Addition* + Deletion + Reversal* + Swap* (*:ISC)
 - **Tabu search** with Addition + Deletion + Reversal (10 000 operations, tabuu list size :100)

	A+D+R	A+D+S	A ² +D+R ² +S ²	A*+D+R*+S*	Tabu
BDeu scores ≻ <i>mean</i> ≻ deviation	-359 430 168.5	-357 990 92.9	-357 460 55.2	-357 450 54.5	-359 150 160.4
Mean time (in seconds)	27.0	27.6	149.2	373.1	291.5

Conclusion & Perspectives

We

- > Propose a new Iterative Swap Operator breaking cycles
- > Improve BDeu scores of learned networks with this operator
- Compare initial structure effect

TODO list:

- > try other meta-heuristics
- > tune Tabu parameters
- > improve time efficiency of ISC operator

Question time !