ISC Operator for reconstructing Bayesian Network in gene networks context.

Jimmy Vandel \& Simon de Givry

Outlines:

, Biological motivation
, Bayesian Networks framework
, Learning Algorithms
, Local Operators
> Comet language
. Experimentation

Biological motivation

DNA

Vandel Jimmy

1. Biological motivation
$2 / 17$

Biological motivation

DNA
\rightarrow gene expressions (mRNA concentrations)

Biological motivation

DNA

\rightarrow gene expressions (mRNA concentrations)
\rightarrow gene regulations

Biological motivation

DNA

\rightarrow gene expressions (mRNA concentrations)
\rightarrow gene regulations

Goal :

Reconstruction of gene regulatory network.
 \author{

}
Escherichia coli

Polymorphism

Polymorphism

Polymorphism

\square

Polymorphism

\square

DNA mutations in genes : in promoter region \rightarrow impact on its gene activity

Polymorphism

G1

DNA mutations in genes: in promoter region \rightarrow impact on its gene activity in coding region \rightarrow impact on others gene activities

Polymorphism

DNA mutations in genes: in promoter region \rightarrow impact on its gene activity in coding region \rightarrow impact on others gene activities

Genetic data from one genetic marker (SNP) for each gene

Discrete Bayesian network

Directed acyclic graph G composed of n variables $X_{i}=\left\{G_{i}, M_{i}\right\}$

Discrete Bayesian network

Directed acyclic graph G composed of n variables $X_{i}=\left\{G_{i}, M_{i}\right\}$

Conditional distribution $P_{G}\left(\boldsymbol{G}_{3} / G_{2,} M_{2}\right)$

		G_{3}	$!G_{3}$
G_{2}	M_{2}	0.72	0.28
\boldsymbol{G}_{2}	$!M_{2}$	0.59	0.41
$!G_{2}$	M_{2}	0.63	0.37
$!G_{2}$	$!M_{2}$	0.10	0.90

Graphic representation of a joint probability distribution

$$
P_{G}(X)=\prod_{i=1}^{n} P_{G}\left(X_{i} / P a_{i}\right)
$$

Learning strategy

We look for the graph $G_{\text {score }}=\operatorname{argmax}_{G_{i}} P\left(G_{i} / D\right)$ with dataset D.

$$
\begin{aligned}
& P\left(G_{i} / D\right)=\frac{P\left(D / G_{i}\right) P\left(G_{i}\right)}{P(D)} \\
& \propto P\left(D / G_{i}\right) P\left(G_{i}\right) \\
& \quad P\left(D / G_{i}\right): \text { marginal likelihood of } \mathrm{Gi} \\
& \quad P\left(G_{i}\right) \text { :prior probability of the graph } \mathrm{Gi} \\
& \rightarrow \text { assumed to be uniform }
\end{aligned}
$$

Objective function easy to evaluate and avoids over-fitting
> decomposable and penalized scores

- BDe score (D.Heckerman Machine learning 1995)
> BIC score (G.Schwartz Annals of statistics 1978)

Local search components

1. Search space
> Directed Acyclic Graph
> Partial DAG (PDAG)
, variable orders

Local search components

1. Search space
, Directed Acyclic Graph
> Partial DAG (PDAG)
2. Initial structure
, empty structure
, random structure
, informed structure (MWST, expert...)

Local search components

1. Search space
, Directed Acyclic Graph
> Partial DAG (PDAG)
» variable orders
2. Initial structure
, empty structure

- random structure
- informed structure (MWST, expert...)

3. Neighborhood operators
, addition of an edge
2 deletion of an edge
2 reversal of an edge
, k look-ahead

- optimal reinsertion

Local search components

1. Search space
, Directed Acyclic Graph
> Partial DAG (PDAG)
, variable orders
2. Initial structure
, empty structure

- random structure
- informed structure (MWST, expert...)

3. Neighborhood operators
, addition of an edge
. deletion of an edge

- reversal of an edge
, k look-ahead
, optimal reinsertion

4. Meta-heuristics
, hill climbing (with restarts)
, tabu search

- simulated annealing
- MCMC
* genetic algorithms
- ...

3. Learning algorithms

Local Operators

> addition
> deletion
> reversal (deletion + addition on the same pair)
> swap (deletion + addition including an extra node)

Local Operators

- addition
> deletion
> reversal (deletion + addition on the same pair)
> swap (deletion + addition including an extra node)

Example:

Current situation

4
Target situation

$\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{1,} G_{3}\right)>0$

Local Operators

> addition

- deletion
> reversal (deletion + addition on the same pair)
> swap (deletion + addition including an extra node)
Example:

$$
\text { Deletion }\left(G_{1}, G_{3}\right) \quad G_{1} \quad \operatorname{Gdd}\left(G_{2}, G_{3}\right)
$$

Current situation

Target situation

$\Delta_{\text {score }} \operatorname{Add}\left(G_{2}, G_{3}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{1,}, G_{3}\right)>0$

Local Operators

- addition
- deletion
> reversal (deletion + addition on the same pair)
> swap (deletion + addition including an extra node)
Example:

$$
\begin{gathered}
\text { Deletion }\left(G_{1}, G_{3}\right) \\
\Delta_{\text {score }} \operatorname{Add}\left(G_{1}, G_{3}\right)>0
\end{gathered}
$$

Current situation

Target situation

$\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{1,} G_{3}\right)>0$

Local Operators

- addition
- deletion
- reversal (deletion + addition on the same pair)
> swap (deletion + addition including an extra node)
Example:

$$
\begin{gathered}
\text { Deletion }\left(G_{1,} G_{3}\right) \\
\Delta_{\text {score }} \operatorname{Add}\left(G_{1,} G_{3}\right)>0
\end{gathered}
$$

Current situation

Target situation

$\Delta_{\text {score }} \operatorname{Add}\left(G_{2}, G_{3}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{1,} G_{3}\right)>0$
$\operatorname{Swap}\left(G_{1,}, \boldsymbol{G}_{\mathbf{3},} G_{2}\right)$

$$
\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3}\right)-\Delta_{\text {score }} \operatorname{Add}\left(G_{1}, G_{3}\right)>0
$$

\rightarrow escape from some local maxima

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{\mathbf{3},}, G_{7}\right) ?
$$

Current situation

$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,}, \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,} G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2}, \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$

ISC Operator

(Iterative Swap Operator)

$$
\operatorname{Swap}\left(G_{2,} \boldsymbol{G}_{3}, G_{7}\right) ? \longrightarrow \operatorname{Cycle}\left\{G_{3}, G_{4}, G_{6}, G_{7}\right\}
$$

Current situation
$\Delta_{\text {score }} \operatorname{Add}\left(G_{7,}, G_{3} \mid G_{1}\right)>\Delta_{\text {score }} \operatorname{Add}\left(G_{2,}, G_{3} \mid G_{1}\right)>0$
While there exist a cycle and! STOP nISC operator

Comet Language

Is a

High level programming language
(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

Comet Language

Is a

High level programming language
To
Model optimization problems
Implement search procedures
(L.Michel and P.Van Hentenryck, 2002)
http://www.comet-online.org/

Comet Language

Is a

High level programming language
To
Model optimization problems
Implement search procedures
In domains of
Constraint programming
Constraint-Based Local search
(L.Michel and P.Van Hentenryck, 2002)
http://www.comet-online.org/

Comet Language

Is a

High level programming language
To
Model optimization problems
Implement search procedures
In domains of
Constraint programming
Constraint-Based Local search

Offering easy implementation for
Invariants
Objective functions
Constraints definition
Parallel programming
(L.Michel and P.Van Hentenryck, 2002) http://www.comet-online.org/

Hill-climbing implementation in Comet

Invariant
 Incremental variable

\rightarrow update when is modified
\rightarrow modify

Experimentation

DREAM5 systems genetics challenge (November 2010, New York) Objective: recover gene regulatory network from $\stackrel{\text { Gene expressions }}{ }$
> Genetic data
Our gold network
> 2000 nodes (1000 genes / 1000 genetic markers)
> 1983 edges
Simulated population of 300 individuals

Gold standard network

Experimentation

DREAM5 systems genetics challenge (November 2010, New York)
Objective: recover gene regulatory network from $\stackrel{\text { Gene expressions }}{ }$
> Genetic data
Our gold network
> 2000 nodes (1000 genes / 1000 genetic markers)

- 1983 edges

Simulated population of 300 individuals

- Discretization of data (max. 4 classes)
»Pre-filtering candidate parents under condition
$\Delta \operatorname{Add}($ Parent, Target $)>0$
ح Limit number of parents : 6

Gold standard network

Results (1/4)

> 1000 runs of hill climbing algorithm
> Initialized with random networks (2 parents max)
> 5 operator configurations: \times Addition + Deletion

* Addition + Deletion + Reversal
* Addition + Deletion + Swap
\times Addition + Deletion + Reversal + Swap
* Addition ${ }^{2}+$ Deletion + Reversal ${ }^{2}+$ Swap $^{2} \quad\left({ }^{2}: n I S C\right)$

	$\mathrm{A}+\mathrm{D}$	$\mathrm{A}+\mathrm{D}+\mathrm{R}$	$\mathrm{A}+\mathrm{D}+\mathrm{S}$	$\mathrm{A}+\mathrm{D}+\mathrm{R}+\mathrm{S}$	$\mathrm{A}^{2}+\mathrm{D}+\mathrm{R}^{2}+\mathrm{S}^{2}$
BDeu scores > mean > deviation	-359580 169.3	-359430 168.5	-357990 92.9	-357850 91.0	-357460 55.2
Mean time (in seconds)	17.9	27.0	$\mathbf{2 7 . 6}$	32.3	$\mathbf{1 4 9 . 2}$

Results (2/4)

> 1 run of hill climbing algorithm
> Initialized with random networks (2 parents max)
> 1 operator configurations: * Addition ${ }^{2}+$ Deletion + Reversal ${ }^{2}+$ Swap 2

Number of applied operators by type during the search

Results (3/4)

- 1000 runs of hill climbing algorithm
, 2 starting configurations: × empty network
x random networks (2 parents max)
> 2 operator configurations: × Addition + Deletion + Reversal
× Addition ${ }^{2}+$ Deletion + Reversal ${ }^{2}+$ Swap $^{2} \quad$ (${ }^{2}:$ nISC)

6. Experimentation

15/17

Results (4/4)

> 1000 runs of hill climbing algorithm
> Initialized with random networks (2 parents max)
> 5 configurations: \times Addition + Deletion + Reversal

* Addition + Deletion + Swap
* Addition ${ }^{2}+$ Deletion + Reversal ${ }^{2}+$ Swap $^{2} \quad\left({ }^{2}: n I S C\right)$
* Addition* + Deletion + Reversal* + Swap* (*:ISC)
\times Tabu search with Addition + Deletion + Reversal (10 000 operations, tabuu list size :100)

	$\mathrm{A}+\mathrm{D}+\mathrm{R}$	$\mathrm{A}+\mathrm{D}+\mathrm{S}$	$\mathrm{A}^{2}+\mathrm{D}+\mathrm{R}^{2}+\mathrm{S}^{2}$	$\mathrm{~A}^{*}+\mathrm{D}+\mathrm{R}^{*}+\mathrm{S}^{*}$	Tabu
BDeu scores \& mean \& deviation	-359430 168.5	-357990 92.9	-357460 55.2	-357450 54.5	-359150 160.4
Mean time (in seconds)	27.0	$\mathbf{2 7 . 6}$	$\mathbf{1 4 9 . 2}$	373.1	291.5

Conclusion \& Perspectives

We
> Propose a new Iterative Swap Operator breaking cycles

- Improve BDeu scores of learned networks with this operator
- Compare initial structure effect

TODO list:
> try other meta-heuristics
> tune Tabu parameters
, improve time efficiency of ISC operator

Question time!

Vandel Jimmy
END

