Modèles Probabilistes Complexes Models et Algorithms

Pierre-Henri WUILLEMIN

Christophe Gonzales - Lionel Torti - Morgan Chopin

(prenom.nom@lip6.fr)

8 novembre 2011

Variable eliminitation

```
Input : a set of CPTs \mathbf{P} and a set of variables \mathbf{X}
Output : P(\mathbf{X})
```

 $\mathbf{1} \ \mathbf{W} \leftarrow \mathsf{all} \ \mathsf{the} \ \mathsf{variables} \ \mathsf{of} \ \mathsf{the} \ \mathsf{CPTs} \ \mathsf{of} \ \mathbf{P} \ \mathsf{except} \ \mathbf{X}$

2 while
$$\mathbf{W} \neq \emptyset$$
 do

3 let X_j be a variable in \mathbf{W} ; remove X_j from \mathbf{W}

4 let
$$\mathbf{Q}$$
 be the set of tables in \mathbf{P} containing X_j

compute table
$$q = \sum_{X_j} \prod_{f \in \mathbf{Q}} f$$

6
$$\mathbf{P} \leftarrow (\mathbf{P} \backslash \mathbf{Q}) \cup \{q\}$$

7 return table $\prod_{f \in \mathbf{P}} f$

- Transition model : $p(\mathbf{X}_t | \mathbf{X}_{t-1}) = p(\mathbf{X}_1 | \mathbf{X}_0)$ $= \prod_{i=0}^{n-1} p(X_1^i | pa(X_1^i))$
- Prior distribution : $p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i | pa(X_0^i))$

Bayesian network that models a dynamic system (or a repetition of patterns) :

• Transition model : $p(\mathbf{X}_t | \mathbf{X}_{t-1}) = p(\mathbf{X}_1 | \mathbf{X}_0)$ $= \prod_{i=0}^{n-1} p(X_1^i | pa(X_1^i))$

• Prior distribution : $p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i | pa(X_0^i))$

- Transition model : $p(\mathbf{X}_t | \mathbf{X}_{t-1}) = p(\mathbf{X}_1 | \mathbf{X}_0)$ $= \prod_{i=0}^{n-1} p(X_1^i | pa(X_1^i))$
- Prior distribution : $p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i| pa(X_0^i))$

Bayesian network proposes a simplification of the dynamic modelisation :

• Prior distribution :

$$p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i | pa(X_0^i))$$

Bayesian network proposes a simplification of the dynamic modelisation :

- Transition model : $p(\mathbf{X}_t | \mathbf{X}_{t-1}) = p(\mathbf{X}_1 | \mathbf{X}_0)$ $= \prod_{i=0}^{n-1} p(X_1^i | pa(X_1^i))$
- Prior distribution : $p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i| pa(X_0^i))$

Bayesian network proposes a simplification of the dynamic modelisation :

• Prior distribution :

$$p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i | pa(X_0^i))$$

Bayesian network proposes a simplification of the dynamic modelisation :

• Transition model : $p(\mathbf{X}_t | \mathbf{X}_{t-1}) = p(\mathbf{X}_1 | \mathbf{X}_0)$ $= \prod_{i=0}^{n-1} p(X_1^i | pa(X_1^i))$

• Prior distribution :

$$p(\mathbf{X}_0) = \prod_{i=0}^{n-1} p(X_0^i | pa(X_0^i))$$

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

• Unroll the 2-TBN to any desired length T and moralize.

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

Problems to fix

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

Problems to fix

The dBN can be arbitrarily large,

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

Problems to fix

- The dBN can be arbitrarily large,
- Need to re-triangulate the dBN if its length changes,

How to triangulate a dBN?

A dBN is a Bayesian network \Rightarrow triangulation based inference algorithm.

- Unroll the 2-TBN to any desired length T and moralize.
- Apply any classical triangulation algorithm.

Problems to fix

- The dBN can be arbitrarily large,
- Need to re-triangulate the dBN if its length changes,
- The size of some cliques may be a function of T.

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [dereviene, 2001]

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) [basedite, 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The forward slice-by-slice elimination (F-SS) (provided 2001

Consists in eliminating a slice after an other from the past to the future.

 \hookrightarrow *Backward interface* : nodes with parents or spouses in the previous slice.

How to provide a way to avoid re-triangulating the $\mathsf{dBN}\,?$

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) plansing 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) plansing 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) plansing 2001

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) provide 2001

Constrained triangulation : backward

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) provide 2001

Consists in eliminating a slice after an other from the future to the past :

Constrained triangulation : backward

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) provide 2001

Consists in eliminating a slice after an other from the future to the past :

Constrained triangulation : backward

How to provide a way to avoid re-triangulating the dBN?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order.

The backward slice-by-slice elimination (B-SS) parameter 2000

Consists in eliminating a slice after an other from the future to the past :

 \hookrightarrow Forward interface : nodes with children in the next slice.

Interface

Subset of nodes such that if they were removed they will disconnect the past from the future in the moral graph of a dBN.

Interface based Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a partial order given by an interface.

Provide a way to avoid re-triangulating the dBN,

Interface based Constrained elimination order (ceo)

- Provide a way to avoid re-triangulating the dBN,
- 2 The size ω of the maximal clique is bounded :

Interface based Constrained elimination order (ceo)

- Provide a way to avoid re-triangulating the dBN,
- 2 The size ω of the maximal clique is bounded :

Interface based Constrained elimination order (ceo)

- Provide a way to avoid re-triangulating the dBN,
- 2 The size ω of the maximal clique is bounded :

Interface based Constrained elimination order (ceo)

- Provide a way to avoid re-triangulating the dBN,
- 2 The size ω of the maximal clique is bounded :

Interface based Constrained elimination order (ceo)

- Provide a way to avoid re-triangulating the dBN,
- 2 The size ω of the maximal clique is bounded :

 \hookrightarrow Looking for a smaller interface by extending the slice [bilmes et al, 2003]

 \hookrightarrow Looking for a smaller interface by extending the slice [bilmes et al, 2003]

 \hookrightarrow Looking for a smaller interface by extending the slice [bilmes et al, 2003]

• Algorithm to find the optimal interface in polynomial time,

 \hookrightarrow Looking for a smaller interface by extending the slice [bilmes et al, 2003]

Algorithm to find the optimal interface in polynomial time,
Deduce a *ceo* with better theoretical guarantee on cliques size.

 \hookrightarrow Looking for a smaller interface by extending the slice [bilmes et al, 2003]

Algorithm to find the optimal interface in polynomial time,
Deduce a *ceo* with better theoretical guarantee on cliques size.

Relation to the MINIMUM s-t CUT problem

Theorem

Given a dBN of length T, finding a minimum interface is equivalent to solve the minimum s-t cut problem

Relation to the MINIMUM s-t CUT problem

Theorem

Given a dBN of length T, finding a minimum interface is equivalent to solve the minimum s-t cut problem

Relation to the MINIMUM s-t CUT problem

Theorem

Given a dBN of length T, finding a minimum interface is equivalent to solve the minimum s-t cut problem

 \Rightarrow Polynomial time algorithm to find the minimum interface in a dBN of length \mathcal{T} |

For wich value of T do we have the minimum interface?

For wich value of T do we have the minimum interface? \hookrightarrow Proceed by iteratively solving the min *s*-*t* cut problem and increasing the length T

For wich value of T do we have the minimum interface? \hookrightarrow Proceed by iteratively solving the min *s*-*t* cut problem and increasing the length T

For wich value of T do we have the minimum interface? \hookrightarrow Proceed by iteratively solving the min *s*-*t* cut problem and increasing the length T

Theorem

At most O(h) iterations where h is the number of nodes in a slice.

Building the elimination order

Building the elimination order

Building the elimination order

Better lower bound

Best case : clique of size $|I^*| + 1$

Better upper bound

Worst case : clique of size $|I^*| + S$ (S : # nodes in a slice)

Experimental results - Classical dBNs

Experimental results - Classical dBNs

Maximum clique size :

Fig.	B-SS	F-SS	$\operatorname{Min-Elim}$
С	3.16	3.03	3.03
В	5.54	5.54	5.54
D	1.38	3.00	1.38
A	2.07	3.45	2.07
E	3.46	3.23	3.00

Experimental results – Classical dBNs

Maximum clique size :

Fig.	B-SS	F-SS	$\operatorname{Min-Elim}$
С	3.16	3.03	3.03
В	5.54	5.54	5.54
D	1.38	3.00	1.38
A	2.07	3.45	2.07
E	3.46	3.23	3.00

Mean clique size :

Fig.	B-SS	F-SS	$\operatorname{Min-Elim}$
С	3.46	3.46	3.46
В	5.54	5.54	5.54
D	1.39	3.46	1.39
A	2.08	3.46	2.08
E	4.16	3.46	3.46

Experimental results - Random dBNs

Results on randomly generated dBNs

- **0 5** variables per slices
- Cardinalities chosen uniformly between 2 and 8
- OBNs unrolled 500 time steps

Mean clique size

Experimental results - Random dBNs

Results on randomly generated dBNs

- **1** variables per slices
- Cardinalities chosen uniformly between 2 and 8
- OBNs unrolled 500 time steps

Mean clique size

Experimental results – Random dBNs

Results on randomly generated dBNs

- 15 variables per slices
- Cardinalities chosen uniformly between 2 and 8
- OBNs unrolled 500 time steps

Mean clique size

Motivation

• Large-scale Bayesian networks "undesirable" features :

• Large-scale Bayesian networks "undesirable" features : • design cost

• Large-scale Bayesian networks "undesirable" features :

• design cost

maintenance cost

• Large-scale Bayesian networks "undesirable" features :

- design cost
- maintenance cost
- Inference times

[Mahoney & Laskey, 96], [Pfeffer et al., 99]

16 / 39

Models et Algorithms

• Large-scale Bayesian networks "undesirable" features :

- design cost
- maintenance cost
- inference times
- \implies often inadequate for large scale applications

Modèles Probabilistes Complexes

[Mahoney & Laskey, 96], [Pfeffer et al., 99]

16 / 39

Models et Algorithms

• Large-scale Bayesian networks "undesirable" features :

- design cost
- maintenance cost
- inference times
- \implies often inadequate for large scale applications

Modèles Probabilistes Complexes

• First-order logic extensions (e.g., MLN)

[Jaeger, 97], [Kersting & De Raedt, 01]

• First-order logic extensions (e.g., MLN)

[Jaeger, 97], [Kersting & De Raedt, 01]

• Entity-Relationship extensions (e.g., MEBN)

[Heckerman et al., 04], [Laskey, 08]

• First-order logic extensions (e.g., MLN)

```
[Jaeger, 97], [Kersting & De Raedt, 01]
```

• Entity-Relationship extensions (e.g., MEBN)

[Heckerman et al., 04], [Laskey, 08]

• Object-Oriented extensions (e.g., PRM)

[Koller & Pfeffer, 97], [Mahoney & Laskey, 96]

• First-order logic extensions (e.g., MLN)

```
[Jaeger, 97], [Kersting & De Raedt, 01]
```

• Entity-Relationship extensions (e.g., MEBN)

[Heckerman et al., 04], [Laskey, 08]

• Object-Oriented extensions (e.g., PRM)

[Koller & Pfeffer, 97], [Mahoney & Laskey, 96]

our goal : design complex PGM and speed-up inference in PRMs

PRMs are an extension of object-oriented Bayesian Networks (Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).

PRMs are an extension of object-oriented Bayesian Networks (Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).

PRMs are an extension of object-oriented Bayesian Networks (Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).

- Classes are BNs fragments.
- Nodes are called attributes.

PRMs are an extension of object-oriented Bayesian Networks (Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).

PRMs in 4 definitions

- Classes are BNs fragments.
- Nodes are called attributes.
- Reference between classes are used to define dependencies between different fragment.

PRMs are an extension of object-oriented Bayesian Networks (Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).

PRMs in 4 definitions

- Classes are BNs fragments.
- Nodes are called attributes.
- Reference between classes are used to define dependencies between different fragment.

• Classes are instantiated in a system.

(1) Reinforcing the object-oriented aspect of PRMs (more second variant, term or m)

(1) Reinforcing the object-oriented aspect of PRMs (more second variants and main)

(1) Reinforcing the object-oriented aspect of PRMs (more second variants and main)

(1) Reinforcing the object-oriented aspect of PRMs (1000 accord volume (2000 area)

(1) Reinforcing the object-oriented aspect of PRMs (non-second volume to a m)

(1) Reinforcing the object-oriented aspect of PRMs (non-second volume to a m)

Interface implementation

• An interface is only defined by a set of attributes types and references.

- An interface is only defined by a set of attributes types and references.
- This implies the absence of a DAG or attribute's CPT in the interface definition.

- An interface is only defined by a set of attributes types and references.
- This implies the absence of a DAG or attribute's CPT in the interface definition.
- Any class implementing an interface guarantees the existence of the interface's attributes and references.

- An interface is only defined by a set of attributes types and references.
- This implies the absence of a DAG or attribute's CPT in the interface definition.
- Any class implementing an interface guarantees the existence of the interface's attributes and references.

System : the printer example

• SKOOB is a consortium of industrials, research laboratories and experts which focus on the use of probabilistic graphical models in reliability and risk management.

- SKOOB is a consortium of industrials, research laboratories and experts which focus on the use of probabilistic graphical models in reliability and risk management.
- It has also lead to the definition of a declarative object oriented language for the specification of PRMs (the SKOOL language).

- SKOOB is a consortium of industrials, research laboratories and experts which focus on the use of probabilistic graphical models in reliability and risk management.
- It has also lead to the definition of a declarative object oriented language for the specification of PRMs (the SKOOL language).
- The enhancement presented here have been implemented in two different prototypes.

- SKOOB is a consortium of industrials, research laboratories and experts which focus on the use of probabilistic graphical models in reliability and risk management.
- It has also lead to the definition of a declarative object oriented language for the specification of PRMs (the SKOOL language).
- The enhancement presented here have been implemented in two different prototypes.
- All of which have been successfully used by experts to represent different complex systems.

- SKOOB is a consortium of industrials, research laboratories and experts which focus on the use of probabilistic graphical models in reliability and risk management.
- It has also lead to the definition of a declarative object oriented language for the specification of PRMs (the SKOOL language).
- The enhancement presented here have been implemented in two different prototypes.
- All of which have been successfully used by experts to represent different complex systems.
- The models we created required the modification of the PRM framework presented here.

Inference in PRM
• Any system can be transformed in a Bayesian Network (called a grounded network).

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].
- It is possible to use Bayesian Networks state-of-the-art inference algorithms.

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].
- It is possible to use Bayesian Networks state-of-the-art inference algorithms.

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].
- It is possible to use Bayesian Networks state-of-the-art inference algorithms.

- It is easy to produce very large scale systems :
 - naive grounded networks use too much memory;

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].
- It is possible to use Bayesian Networks state-of-the-art inference algorithms.

- It is easy to produce very large scale systems :
 - naive grounded networks use too much memory;
 - intelligent grounded networks would be redundant.

- Any system can be transformed in a Bayesian Network (called a grounded network).
- The generation algorithm is polynomial [Pfeffer, 2000].
- It is possible to use Bayesian Networks state-of-the-art inference algorithms.

- It is easy to produce very large scale systems :
 - naive grounded networks use too much memory;
 - intelligent grounded networks would be redundant.
- Faster inference!

Relational skeleton

• Each class in a PRM defines a pattern repeated in each of its instances.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.
- Eliminating such attributes creates an identical potential in each instance.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.
- Eliminating such attributes creates an identical potential in each instance.
- SVE uses this principle to prevent redundant computations.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.
- Eliminating such attributes creates an identical potential in each instance.
- SVE uses this principle to prevent redundant computations.
- It does not require the generation of a grounded network.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.
- Eliminating such attributes creates an identical potential in each instance.
- SVE uses this principle to prevent redundant computations.
- It does not require the generation of a grounded network.
- However, it works only if the inner attributes are not observed.

- Each class in a PRM defines a pattern repeated in each of its instances.
- In each class, some attributes can be eliminated before others.
- Eliminating such attributes creates an identical potential in each instance.
- SVE uses this principle to prevent redundant computations.
- It does not require the generation of a grounded network.
- However, it works only if the inner attributes are not observed.

Once inner attributes are eliminated, SVE proceeds with a **bottom-up** elimination of each instance.

Probability P(C)?

Elimination at class level : performed only once !

It works only if the inner attributes are not observed. Only internal variables can be eliminated at class level !

 $\ensuremath{\operatorname{FIGURE}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

 $\ensuremath{\operatorname{Figure}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

 $\ensuremath{\operatorname{FIGURE}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

 $\ensuremath{\operatorname{FIGURE}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

 $\ensuremath{\operatorname{Figure}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.
D-Separation in PRMs (monomorphic and)

 $\ensuremath{\operatorname{FIGURE}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

Following SVE bottom-up elimination order :

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

D-Separation in PRMs (monomorphic and)

 $\ensuremath{\operatorname{Figure}}$: Different configurations due to evidence.

Integrating D-Separation in SVE

Following SVE bottom-up elimination order :

- Recursive calls are made on each reverse slot chain.
- If at least one reverse slot chain is active :
 - Activate any required slot chains.
 - Either compute the inner node elimination or retrieve any existing computation.

Generalized BayesBall rule

The example used for our experimentations

- We used the printer example with the following parameters :
 - different number of computers per room;
 - different number of printers per room;
 - different number of evidences.
- The examples we used have a 1400 to 24000 attributes.

Efficiency of D-Separation

Increasing the number of computers

Increasing the number of printers

 \bullet Construction by experts \Longrightarrow genericity and design patterns.

- \bullet Construction by experts \Longrightarrow genericity and design patterns.
- \Longrightarrow For instance : in genealogy, relations only between parents and children.

 \bullet Construction by experts \Longrightarrow genericity and design patterns.

 \Longrightarrow For instance : in genealogy, relations only between parents and children.

 \bullet Construction by experts \Longrightarrow genericity and design patterns.

 \Longrightarrow For instance : in genealogy, relations only between parents and children.

 \bullet Construction by experts \Longrightarrow genericity and design patterns.

 \Longrightarrow For instance : in genealogy, relations only between parents and children.

• Solution : create compound classes : dynamic classes

 \bullet Construction by experts \Longrightarrow genericity and design patterns.

 \Longrightarrow For instance : in genealogy, relations only between parents and children.

• Solution : create compound classes : dynamic classes

Substitution rule

Rule

One random variable can only belong to one instance.

Substitution rule

Rule

One random variable can only belong to one instance.

Substitution rule

Rule

One random variable can only belong to one instance.

Proposition

The following problem is NP-hard :

Instance : a PRM, an integer $K \ge 0$

Question : does there exist a set of dynamic classes / substitutions s.t. the number of operations performed by structured inference is $\leq K$?

Proposition

The following problem is NP-hard :

Instance : a PRM, an integer $K \ge 0$

Question : does there exist a set of dynamic classes / substitutions s.t. the number of operations performed by structured inference is $\leq K$?

remains NP-hard even when classical inference is polynomial

Approximate algorithm

Boundary graph

Relational skeleton

Approximate algorithm

Boundary graph

\Rightarrow find frequent patterns in the boundary graph

Modèles Probabilistes Complexes

• Mining frequent subgraphs

[Inokuchi et al, 05], [Kuramochi and Karypis, 01], [Yan and Han, 02]

Search tree

Mining frequent subgraphs

[Inokuchi et al, 05], [Kuramochi and Karypis, 01], [Yan and Han, 02]

• Variant of the gSpan algorithm :

1 edge 2 edges 3 edges 4 edges

• Node = (dynamic class, set of instances)

Search tree

Mining frequent subgraphs

[Inokuchi et al, 05], [Kuramochi and Karypis, 01], [Yan and Han, 02]

• Variant of the gSpan algorithm :

• Node = (dynamic class, set of instances)

Mining frequent subgraphs

[Inokuchi et al, 05], [Kuramochi and Karypis, 01], [Yan and Han, 02]

• Variant of the gSpan algorithm :

• Node = (dynamic class, set of instances)

• Possible substitutions (Rule 1) : Max Independence Set

Efficiency Pruning Rule

 $\label{eq:prune nodes} Prune \ nodes/classes \ whose \ substitutions \ do \ not \ speed-up \ inference.$

Efficiency Pruning Rule

 $\label{eq:prune nodes} Prune \ nodes/classes \ whose \ substitutions \ do \ not \ speed-up \ inference.$

• Gain estimation by dynamic programming

 $\implies \alpha$ -value : $\alpha > 0 \iff$ class unattractive

search tree not monotonically α -decreasing!

 ${\bullet}\, {\sf Rule} \ {\sf applied} \ : \ {\sf prune} \ {\sf subtree} \ {\sf whenever} \ \alpha > 0$

