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Inference in Bayesian networks

Variable eliminitation

Input : a set of CPTs P and a set of variables X

Output : P(X)

W← all the variables of the CPTs of P except X1

while W 6= ∅ do2

let Xj be a variable in W ; remove Xj from W3

let Q be the set of tables in P containing Xj4

compute table q =
∑

Xj

∏
f∈Q f5

P← (P\Q) ∪ {q}6

return table
∏

f∈P f7
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Dynamic Bayesian networks (dBNs)

Definition

Bayesian network that models a dynamic system (or a repetition of patterns) :

• Transition model :
p(Xt |Xt−1) = p(X1|X0)

=
∏n−1

i=0 p(X i
1|pa(X

i
1))

• Prior distribution :
p(X0) =

∏n−1
i=0 p(X i

0|pa(X
i
0))
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Dynamic Bayesian networks (dBNs)

Limitations
Bayesian network proposes a simplification of the dynamic modelisation :
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DBN triangulation issues

How to triangulate a dBN ?

A dBN is a Bayesian network ⇒ triangulation based inference algorithm.

1 Unroll the 2-TBN to any desired length T and moralize.

2 Apply any classical triangulation algorithm.
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Triangulation

Problems to fix
1 The dBN can be arbitrarily large,

2 Need to re-triangulate the dBN if its length changes,

3 The size of some cliques may be a function of T .
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Constrained triangulation : forward

How to provide a way to avoid re-triangulating the dBN ?

Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a
partial order.

The forward slice-by-slice elimination (F-SS) [darwiche, 2001]

Consists in eliminating a slice after an other from the past to the future.
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↪→ Backward interface : nodes with parents or spouses in the previous slice.
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General interface

...
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X 0
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X 1
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X 2
1 X 2

T

X 1
T

X 0
T

Slice 0 Slice 1 Slice 2 Slice T

• Transition model :
p(Xt |Xt−1) = p(X1|X0)

=
∏n−1

i=0 p(X i
1|pa(X

i
1))

• Prior distribution :
p(X0) =

∏n−1
i=0 p(X i

0|pa(X
i
0))
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Interface
Subset of nodes such that if they were removed they will disconnect the past from
the future in the moral graph of a dBN.
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Complexity for interface based ceo

Interface based Constrained elimination order (ceo)

Elimination order such that we enforce nodes to be eliminated with respect to a
partial order given by an interface.

1 Provide a way to avoid re-triangulating the dBN,

2 The size ω of the maximal clique is bounded :

Lower bound

...

I

t t + 1

Best case : clique of size |I |+ 1

Upper bound

...

I

t t + 1

Worst case : clique of size |I |+ S
(S : # nodes in a slice)
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How to improve the bounds ?
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ω = 2|I | + 1 = 3 ≤ ω = 3 ≤ |I | + N = 5

X 2
2

X 0
2

X 1
2

X 2
2

X 0
2

X 1
2

↪→ Looking for a smaller interface by extending the slice [bilmes et al, 2003]

[Chopin and Wuillemin, 2010]

1 Algorithm to find the optimal interface in polynomial time,

2 Deduce a ceo with better theoretical guarantee on cliques size.
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Modèles Probabilistes Complexes Models et Algorithms 10 / 39



How to improve the bounds ?

X 0
0

X 1
0

X 2
0

X 0
1

X 1
1

X 2
1 X 2

2

X 1
2

X 0
2X 0

0

X 1
0

X 2
0

X 0
1

X 1
1

X 2
1 X 2

2

X 0
2

X 1
2

ω = 2|I | + 1 = 3 ≤ ω = 3 ≤ |I | + N = 5

X 2
2

X 0
2

X 1
2

X 2
2

X 0
2

X 1
2

↪→ Looking for a smaller interface by extending the slice [bilmes et al, 2003]

[Chopin and Wuillemin, 2010]

1 Algorithm to find the optimal interface in polynomial time,

2 Deduce a ceo with better theoretical guarantee on cliques size.
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Relation to the Minimum s–t Cut problem

Theorem
Given a dBN of length T , finding a minimum interface is equivalent to solve the
minimum s–t cut problem

+∞ +∞
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⇒ Polynomial time algorithm to find the minimum interface in a dBN of length T
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Building the optimal elimination order

For wich value of T do we have the minimum interface ?

↪→ Proceed by iteratively solving the min s–t cut problem and increasing the
length T

Equality = STOP!

Iteration 1 Iteration 2 Iteration 3
Optimal solution

X0
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0

X1
0 X1

0

X2
0

X0
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X1
1

X2
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X0
0 X0

0

X1
0

X2
0

X1
1

X2
1 X2

2

X1
2

X0
2X0

1

s t s t s t

T = 0
|I | = 3

T = 1
|I | = 1

T = 2
|I | = 1

Theorem

At most O(h) iterations where h is the number of nodes in a slice.
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Better upper bound

Worst case : clique of size |I ∗|+ S
(S : # nodes in a slice)
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Experimental results – Classical dBNs

B

D E

CA

Maximum clique size :
Fig. b-ss f-ss Min-Elim
C 3.16 3.03 3.03
B 5.54 5.54 5.54
D 1.38 3.00 1.38
A 2.07 3.45 2.07
E 3.46 3.23 3.00

Mean clique size :
Fig. b-ss f-ss Min-Elim
C 3.46 3.46 3.46
B 5.54 5.54 5.54
D 1.39 3.46 1.39
A 2.08 3.46 2.08
E 4.16 3.46 3.46
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Experimental results – Random dBNs

Results on randomly generated dBNs

1 5 variables per slices

2 Cardinalities chosen uniformly between 2 and 8

3 DBNs unrolled 500 time steps
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Experimental results – Random dBNs

Results on randomly generated dBNs

1 15 variables per slices

2 Cardinalities chosen uniformly between 2 and 8

3 DBNs unrolled 500 time steps
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Motivation

prnt1_st

prnt1_pap prnt1_ink

pow_st

cmp1_st cmp1_ex

cmp1_prnt

cmp2_st cmp2_ex

cmp2_prnt

prnt2_st

prnt2_pap prnt2_ink

Large-scale Bayesian networks “undesirable” features :
design cost
maintenance cost
inference times

=⇒ often inadequate for large scale applications
[Mahoney & Laskey, 96], [Pfeffer et al., 99]

=⇒ Bayesian network extensions
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Bayes net extensions

First-order logic extensions (e.g., MLN)

[Jaeger, 97], [Kersting & De Raedt, 01]

Entity-Relationship extensions (e.g., MEBN)

[Heckerman et al., 04], [Laskey, 08]

Object-Oriented extensions (e.g., PRM)

[Koller & Pfeffer, 97], [Mahoney & Laskey, 96]

our goal : design complex PGM and speed-up inference in PRMs
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Probabilistic Relational Models (Pfeffer, 2000)

PRMs are an extension of object-oriented Bayesian Networks
(Pfeffer & Koller, 1997) and (Bangsø & Wuillemin, 2000).
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Modèles Probabilistes Complexes Models et Algorithms 18 / 39



(1) Reinforcing the object-oriented aspect of PRMs
([ANR SKOOB, Wuillemin, Torti), 07-10])

BWPrinter

works

hasInkhasPaper

ColorPrinter

hasInk

magenta yellow cyanblack

{OK, broken, malfunctioning}

{OK, NOK}

works

works

Computer

exists
printer

can print

printers

state_works

hasPaper

{OK, NOK}

Enhanced class inheritance

A subclass can :

add attributes,

change an attribute CPT,

add references,

Subtype attribute.
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(2) Interface and multiple inheritance

Interface implementation

An interface is only defined by a set of attributes types and references.

This implies the absence of a DAG or attribute’s CPT in the interface
definition.

Any class implementing an interface guarantees the existence of the
interface’s attributes and references.

Printer
<<interface>>

Equipement
<<interface>>

Mobile
<<interface>>

BWPrinter ColorPrinter MyMobile
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Modèles Probabilistes Complexes Models et Algorithms 20 / 39



(2) Interface and multiple inheritance

Printer
<<interface>>

Equipement
<<interface>>

Mobile
<<interface>>

BWPrinter ColorPrinter MyMobile

ColorPrinter

works

hasInkhasPaper

magenta yellow cyanblack MyMobileBWPrinter

works

hasInkhasPaper

works

receptionbattery
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System : the printer example

A Class Dependency Graph.
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Applications

The SKOOB ANR project

SKOOB is a consortium of industrials, research laboratories and experts
which focus on the use of probabilistic graphical models in reliability and risk
management.

It has also lead to the definition of a declarative object oriented language for
the specification of PRMs (the SKOOL language).

The enhancement presented here have been implemented in two different
prototypes.

All of which have been successfully used by experts to represent different
complex systems.

The models we created required the modification of the PRM framework
presented here.
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Inference in PRM

Grounded Bayesian Networks

Any system can be transformed in a Bayesian Network (called a grounded
network).

The generation algorithm is polynomial [Pfeffer, 2000].

It is possible to use Bayesian Networks state-of-the-art inference algorithms.

Why do we want to infer in PRM ?

It is easy to produce very large scale systems :

naive grounded networks use too much memory ;
intelligent grounded networks would be redundant.

Faster inference !
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Structured Value Elimination [Pfeffer, 2000]

What is structural information ?
Each class in a PRM defines a pattern repeated in each of its instances.

In each class, some attributes can be eliminated before others.

Eliminating such attributes creates an identical potential in each instance.

SVE uses this principle to prevent redundant computations.

It does not require the generation of a grounded network.

However, it works only if the inner attributes are not observed.

Once inner attributes are eliminated, SVE proceeds with a bottom-up elimination
of each instance.
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Structured Inference

Probability P(C ) ?
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Elimination at class level : performed only once !

It works only if the inner attributes are not observed.
Only internal variables can be eliminated at class level !
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D-Separation in PRMs ([Torti and Wuillemin, 2010])

Figure: Different configurations
due to evidence.

Integrating D-Separation in SVE

Following SVE bottom-up elimination
order :

1 Recursive calls are made on each
reverse slot chain.

2 If at least one reverse slot chain is
active :

1 Activate any required slot chains.
2 Either compute the inner node

elimination or retrieve any existing
computation.

Generalized BayesBall rule
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Experimental results

The example used for our experimentations

We used the printer example with the following parameters :

different number of computers per room ;
different number of printers per room ;
different number of evidences.

The examples we used have a 1400 to 24000 attributes.
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Efficiency of D-Separation
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Increasing the number of computers
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Increasing the number of printers
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Only internal variables can be eliminated at class level

Construction by experts =⇒ genericity and design patterns.

=⇒ For instance : in genealogy, relations only between parents and children.

ρ

class C

class D

B C D

A B

A B C D

Solution : create compound classes : dynamic classes

compound class E

C DA B C DA B
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Substitution rule
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Rule
One random variable can only belong to one instance.
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Optimal dynamic classes [Torti, Gonzales and Wuillemin, 2011]

Proposition

The following problem is NP-hard :

Instance : a PRM, an integer K ≥ 0

Question : does there exist a set of dynamic classes / substitutions s.t. the
number of operations performed by structured inference is ≤ K ?

remains NP-hard even when classical inference is polynomial

Modèles Probabilistes Complexes Models et Algorithms 35 / 39



Optimal dynamic classes [Torti, Gonzales and Wuillemin, 2011]

Proposition

The following problem is NP-hard :

Instance : a PRM, an integer K ≥ 0

Question : does there exist a set of dynamic classes / substitutions s.t. the
number of operations performed by structured inference is ≤ K ?

remains NP-hard even when classical inference is polynomial
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Approximate algorithm

Boundary graph

Relational skeleton
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=⇒ find frequent patterns in the boundary graph
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Search tree

Mining frequent subgraphs

[Inokuchi et al, 05], [Kuramochi and Karypis, 01], [Yan and Han, 02]

Variant of the gSpan algorithm :

Node = (dynamic class, set of instances)

Possible substitutions (Rule 1) : Max Independence Set
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Another pruning rule

Efficiency Pruning Rule

Prune nodes/classes whose substitutions do not speed-up
inference.

Gain estimation by dynamic programming

=⇒ α-value : α > 0⇐⇒ class unattractive

search tree not monotonically α-decreasing !

Rule applied : prune subtree whenever α > 0
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