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Graphical models (CSP, MRF, Bayes nets…)

 A set of variables  

 A set of domains

 A set of functions Q

 Each function PS  Q involves a set of variables S  X

 Primal graph (interaction graph)

One vertex per variable

 Edge (A,B) if PS  Q 

s.t. {A,B}  S
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Functions, combination

 PS maps tuples of values of S to 1element of E

 E= {0,1} relation (CSP, SAT)

 E= R+ energy or potentials (MRF)

 E= [0,1] probabilities (BN), fuzzy m.degree

 Function combination by  

 Logical and relations (CSP, SAT)

 +, x energy, potentials (MRF)

 x, min probabilities (BN), fuzzy m.degree

A graphical model defines a joint function over X



Functions definition

 Functions can be defined by:

 Tables (discrete domains)

 Analytic formulae

General form

 Pseudo-boolean polynomials, weighted clauses

(boolean domains)

 Arbitrary computer code 
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Marginalization, elimination

 To extract synthetic information on the joint

 Sum, all variables: Z, #SAT, #CSP…

 Sum, all but one variables: Marginal probabilities

 Logical or (relations): CSP, SAT

Min/Max : MAP (MRF), MPE (BN)

Weighted CSP/SAT, Fuzzy CSP…

Idempotent elimination: NP-complete decision problems

Non idempotent: #P-complete problems
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maxXj Pj
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Various algorithmic approaches

 Conditioning and backtrack search exact

 Stochastic optimization/Sampling approx

 …

 Non serial dynamic programming exact

 Variable elimination

 Block by block elimination

 Cluster/Join tree elimination – message passing



Non Serial Dynamic Programming

 Exploits scopes and distributivity recursively
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Symbolic computation (distributivity)

• At most 3 variables involved

• Cubic time/space only



Main properties

 Replacing two functions by their combination

preserves the problem

 If f is the only function involving variable A, 

replacing f by the function

preserves the marginal
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Variable elimination
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 One less variable

 Less cost functions

 Same marginal



Variable elimination

 Fix a variable ordering

 Successively eliminate variables

 The function at the end is your result

 The complexity depends on

 The primal graph (interaction) structure

 The variable ordering chosen

 Space/time exponential in the largest # of neighbors



For a fixed ordering

 Play the « elimination game » on the primal graph

 Remove variable

 Do not compute extra functions, just add edges

 Repeat…

 Remember the largest # of forward neighbors

This number is called the induced width of the ordering
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Elimination order influence

 {f(x,r), f(x,z), …, f(x,y)}

 Order: r, z, …, y, x

x

r z y…
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Elimination order influence

 {f(x,r), f(x,z), …, f(x,y)}

 Order: r, z, …, y, x

x

r z y…
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Elimination order influence

 {f(x), f(x,z), …, f(x,y)}

 Order:    z, …, y, x

x

z y…
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Elimination order influence

 {f(x), f(x,z), …, f(x,y)}

 Order:    z, …, y, x

x

z y…



Elimination order influence

 {f(x), f(x), f(x,y)}

 Order:    y, x

x

y…
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Elimination order influence

 {f(x), f(x), f(x,y)}

 Order:    y, x

x

y…



19

Elimination order influence

 {f(x), f(x), f(x)}

 Order:    x

x
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Elimination order influence

 {f(x), f(x), f(x)}

 Order:    x

x
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Elimination order influence

 {f()}

 Order:
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Elimination order influence

 {f(x,r), f(x,z), …, f(x,y)}

 Order: x, y, z, …, r

x

r z y…
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Elimination order influence

 {f(x,r), f(x,z), …, f(x,y)}

 Order: x, y, z, …, r

x

r z y…
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Elimination order influence

 {f(r,z,…,y)}

 Order: y, z, r

r z y…
CLIQUE



Graph induced width

 The induced width w* of a graph is its minimum 
induced width (over all orders)

 Existence of an order with bounded induced
wwidth is NP-complete

 Trees have w* =1 (topological ordering)

 (m,n) grids have w* ~ min(m,n) (left-right ordering)

 Linear algorithm tells if a graph has w* ≤ k (fixed) 
(Bodlaender, 1992)



Caracterizing graphs with w* = k

 A k-tree is either:

 A clique of k vertices

Obtained by adding a vertex connected to all 
vertices of a k-clique in an existing k-tree

 A graph with induced width k can be embedded
in a k-tree (is a partial k-tree).



Variants of NSDP (exact computations)

 Eliminate block by block (Bertelé, Brioschi, 1972)

 Same worst-case time complexity

 Improved space complexity

 Related to tree decompositions (Bodlaender 1994)

 Forward-Backward/ In-out variants

 Computes all variable marginals in two passes

 Cluster-tree elimination, Shenoy/Shafer, Spiegelhalter…

 Tree-search based

 Recursive conditioning (Darwiche 2001)

 AND/OR search (Dechter, Mateescu, 2007)

 Backtrack Tree Decomposition (Jégou, Terrioux, 2003)



Historical perspective

 Davis et Putnam (1960) satisfaction

 Peeling (Elston Stewart 1971) integration

 Non serial DP (Bertelé, Brioschi, 1972) optimization

 Acyclic schemes in databases (Beeri et al, 1983) satisfaction

 Directional resolution, adapt. consistency (Dechter 1987) satisfaction

 Pearl poly-tree alg. (Pearl 1988) integration

 Lauritzen/Spiegelhalter (1988) integration

 Shenoy and Shafer (1988-91) algebraic

 Bucket elimination (Dechter 1999) general

 The Generalized Distributive Law (Aji, McEliece, 2000) algebraic

 Factor graphs and… (Kschishang et al., 2001) algebraic



Approximation & NSDP

 Mini-buckets (Dechter 1997, 2001)

 Splits the set       into subsets of bounded size, each

processed separately

 Provides approximation with upper, lower bounds.

 Graph decomposition (Favier, de Givry, Jégou 2009)

 Process each « component » and combine the results

(ignoring interactions)

 Provides bounds (#CSP)

iF



Conclusion

 Non serial DP is a widely used approach for solving

discrete optimization/integration problems

 Worst case exp time/space by induced width

 Also applies to mixed eliminations (influence 

diagrams, PFU networks) but elimination order is

more constrained

 Can be used to provide approximate results
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