# NON SERIAL DYNAMIC PROGRAMMING



for graphical models.

T. Schiex, <u>R. Sabbadin</u>

#### Graphical models (CSP, MRF, Bayes nets...)

- □ A set of variables  $X = \{X_1, ..., X_n\}$
- □ A set of domains  $D = \{D_1, ..., D\}$
- A set of functions

$$D = \{D_1, \dots, D_n\}$$

 $\blacksquare$  Each function  $\mathsf{P}_{\mathsf{S}} \in \mathsf{Q}$  involves a set of variables  $\mathsf{S} \subset \mathsf{X}$ 

Q

 $P_{AFC} := (2F^2 + 7AFC)$ 

 □ Primal graph (interaction graph)
 □ One vertex per variable
 □ Edge (A,B) if P<sub>S</sub> ∈ Q s.t. {A,B} ⊂ S



## Functions, combination

- $\square$  P<sub>S</sub> maps tuples of values of S to 1element of E
  - E = {0,1} relation (CSP, SAT)
  - E = R<sup>+</sup> energy or potentials (MRF)
  - E = [0,1] probabilities (BN), fuzzy m.degree
- Function combination by
  - Logical and relations (CSP, SAT)
  - +, x energy, potentials (MRF)
  - x, min probabilities (BN), fuzzy m.degree

A graphical model defines a joint function over X



# **Functions definition**

# Functions can be defined by:

Tables (discrete domains)

- Analytic formulae
  - General form

| Α     | С     | F     |
|-------|-------|-------|
| red   | green | blue  |
| blue  | red   | red   |
| blue  | blue  | green |
| green | red   | blue  |



$$P_{ACF} := (F = A + C)$$

Pseudo-boolean polynomials, weighted clauses

(boolean domains)

$$P_{AFC} := (5AFC + 3(1 - A)C)$$
$$P_{AFC} := \{(\neg A \lor \neg F \lor \neg C, 5), (A \lor \neg C, 3)\}$$

Arbitrary computer code



# Marginalization, elimination

To extract synthetic information on the joint

$$\begin{split} & \Sigma_{x} \Pi_{i} \mathsf{P}_{i} \ \square \ \mathsf{Sum}, \ \mathsf{all variables:} \ \mathsf{Z}, \ \#\mathsf{SAT}, \ \#\mathsf{CSP}... \\ & \Sigma_{x \cdot \{\mathsf{A}\}} \Pi_{i} \mathsf{P}_{i} \ \square \ \mathsf{Sum}, \ \mathsf{all but one variables:} \ \mathsf{Marginal probabilities} \\ & \lor_{x} \wedge_{i} \mathsf{P}_{i} \ \square \ \mathsf{Logical or} \ (\mathsf{relations}): \ \mathsf{CSP}, \ \mathsf{SAT} \\ & \mathsf{max}_{x} \Pi_{i} \mathsf{P}_{i} \ \square \ \mathsf{Min}/\mathsf{Max}: \ \mathsf{MAP} \ (\mathsf{MRF}), \ \mathsf{MPE} \ (\mathsf{BN}) \\ & \square \ \mathsf{Weighted} \ \mathsf{CSP}/\mathsf{SAT}, \ \mathsf{Fuzzy} \ \mathsf{CSP}... \end{split}$$

Idempotent elimination:NP-complete decision problemsNon idempotent:#P-complete problems



# Various algorithmic approaches

- Conditioning and backtrack search exact
- Stochastic optimization/Sampling approx

•••

- Non serial dynamic programming exact
  - Variable elimination
  - Block by block elimination
  - Cluster/Join tree elimination message passing



# Non Serial Dynamic Programming

Exploits scopes and distributivity recursively



$$P(a, g = 1) = \sum_{c, b, f, d, g = 1} P(g|f) P(f|b, c) P(d|a, b) P(c|a) P(b|a) P(a)$$



# Symbolic computation (distributivity)

$$\begin{split} P(a,g=1) &= \sum_{c,b,f,d,g=1} P(g|f)P(f|b,c)P(d|a,b)P(c|a)P(b|a)P(a) \\ &= P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\sum_{f} P(f|b,c)\sum_{d} P(d|b,a)\sum_{g=1} P(g|f) \\ \lambda_{G}(f) &= \sum_{g=1} P(g|f) \\ \lambda_{D}(a,b) \stackrel{'}{=} \sum_{d} P(d|a,b) \\ P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_{D}(a,b)\sum_{f} P(f|b,c)\lambda_{G}(f) \\ \lambda_{F}(b,c) &= \sum_{f} P(f|b,c)\lambda_{G}(f) \\ P(a)\sum_{c} P(c|a)\sum_{b} P(b|a)\lambda_{D}(a,b)\lambda_{F}(b,c) \\ P(a)\sum_{c} P(c|a)\lambda_{B}(a,c) \\ P(a)\lambda_{C}(a) \\ \stackrel{\bullet \text{At most 3 variables involved}}{\bullet \text{Cubic time/space only}} \end{split}$$

## Main properties

Replacing two functions by their combination preserves the problem

□ If *f* is the only function involving variable *A*, replacing *f* by the function  $\lambda_A(...) = \sum_a f(A,...)$ preserves the marginal



# Variable elimination

- $\square X_i$ , a variable
- $\square F_i \text{, cost functions involving it}$  $\square O_i \text{, other variables in } F_i$

$$\lambda_{X_i}(\ldots) = \sum_{a \in D_i} \prod_{f \in F_i} f(a, \ldots)$$



Eliminate X<sub>i</sub> and F<sub>i</sub>
Add  $\lambda_{X_i}$  to F

- One less variable
- Less cost functions
- Same marginal

# Variable elimination

- Fix a variable ordering
- Successively eliminate variables
- The function at the end is your result
- The complexity depends on
  - The primal graph (interaction) structure
  - The variable ordering chosen
  - Space/time exponential in the largest # of neighbors



# For a fixed ordering

- Play the « elimination game » on the primal graph
  - Remove variable
  - Do not compute extra functions, just add edges
  - Repeat...
  - Remember the largest # of forward neighbors

This number is called the induced width of the ordering



 $\Box \{f(x,r), f(x,z), ..., f(x,y)\}$ □ Order: r, z, ..., y, x





 $\Box \{ f(x,r), f(x,z), ..., f(x,y) \}$ □ Order: **r**, z, ..., y, x









 $\Box$  {f(x), f(x,z), ..., f(x,y)} □ Order: **z**, ..., y, x





# {f(x), f(x), f(x,y)} Order: y, x





#### □ {f(x), f(x), f(x,y)} □ Order: y, x





#### □ {f(x), f(x), f(x)} □ Order: x





#### □ {f(x), f(x), f(x)} □ Order: x





□ {f()} □ Order:



 $\Box \{f(x,r), f(x,z), ..., f(x,y)\}$ □ Order: x, y, z, ..., r





 $\Box$  {f(x,r), f(x,z), ..., f(x,y)} □ Order: **x**, y, z, ..., r











# Graph induced width

The induced width w\* of a graph is its minimum induced width (over all orders)

- Existence of an order with bounded induced wwidth is NP-complete
- □ Trees have w<sup>\*</sup> = 1

(topological ordering)

- $\Box (m,n) \text{ grids have } w^* \sim \min(m,n) \qquad \text{(left-right ordering)}$
- □ Linear algorithm tells if a graph has w<sup>\*</sup> ≤ k (fixed) (Bodlaender, 1992)



# Caracterizing graphs with $w^* = k$

- $\square$  A k-tree is either:
  - $\square$  A clique of k vertices
  - Obtained by adding a vertex connected to all vertices of a k-clique in an existing k-tree



A graph with induced width k can be embedded in a k-tree (is a partial k-tree).

## Variants of NSDP (exact computations)

#### Eliminate block by block (Bertelé, Brioschi, 1972)

- Same worst-case time complexity
- Improved space complexity
- Related to tree decompositions (Bodlaender 1994)

#### Forward-Backward/ In-out variants

- Computes all variable marginals in two passes
- Cluster-tree elimination, Shenoy/Shafer, Spiegelhalter...

#### Tree-search based

- **Recursive conditioning** (Darwiche 2001)
- AND/OR search (Dechter, Mateescu, 2007)
- Backtrack Tree Decomposition (Jégou, Terrioux, 2003)

# Historical perspective

| Davis et Putnam (1960)                                    | satisfaction |
|-----------------------------------------------------------|--------------|
| Peeling (Elston Stewart 1971)                             | integration  |
| Non serial DP (Bertelé, Brioschi, 1972)                   | optimization |
| Acyclic schemes in databases (Beeri et al, 1983)          | satisfaction |
| Directional resolution, adapt. consistency (Dechter 1987) | satisfaction |
| Pearl poly-tree alg. (Pearl 1988)                         | integration  |
| Lauritzen/Spiegelhalter (1988)                            | integration  |
| Shenoy and Shafer (1988-91)                               | algebraic    |
| Bucket elimination (Dechter 1999)                         | general      |
| The Generalized Distributive Law (Aji, McEliece, 2000)    | algebraic    |
| Factor graphs and (Kschishang et al., 2001)               | algebraic    |



# **Approximation & NSDP**

- □ Mini-buckets (Dechter 1997, 2001)
  - Splits the set  $F_i$  into subsets of bounded size, each processed separately
  - Provides approximation with upper, lower bounds.

- □ Graph decomposition (Favier, de Givry, Jégou 2009)
  - Process each « component » and combine the results (ignoring interactions)
  - Provides bounds (#CSP)



# Conclusion

- Non serial DP is a widely used approach for solving discrete optimization/integration problems
- Worst case exp time/space by induced width
- Also applies to mixed eliminations (influence diagrams, PFU networks) but elimination order is more constrained
- Can be used to provide approximate results



# Bibliography

- Favier, A. de Givry, S. Jégou. Exploiting problem structure for solution counting. Proc. of CP 2009. Lisbon, Portugal.
- Dechter, R. Mini-buckets: a general scheme for generating approximations in automated reasoning. Proc. IJCAI 1997.
- Kask, K. & Dechter, R. A general scheme for automatic generation of serach heuristics from specification dependencies. Artificial Intelligence, 2001.
- Beeri, C. et al. On the desirability of acyclic database schemes. Journal of the ACM. 1983
- Lauritzen, SL. & Spiegelhalter, DJ. Local computations with probabilities on graphical strucures and their application to expert systems. JRSS B, 1988.
- Bodlaender, H. A linear time algorithm for finding tree-decompositions of small treewidth.
   Proc. ACM symposium on Theory of computing. 1993.
- Bodlaender, H. A tourist guide through treewidth. Develompments in Theoretical Computer Science, 1994.
- Bertelé, U. & Brioschi, F. Non Serial Dynamic Programming, Academic Press, 1972.
- Davis, Putnam, A computing procedure for quantification theory, Journal of the ACM, 1960.

# Bibliography

- Darwiche, A. Recursive conditioning. Artificial Intelligence. 2001
- Dechter, A. Bucket elimination: a unifying framework for reasoning. Artificial Intelligence. 1999
- Kschischang FR. factor graphs and the sum-product algorithm. IEEE Trans. Information Theory.
   2001
- Aji, SM. & McEliece, RJ. The Ggeneralized distributive law. IEEE Trans. Information Theory. 2000.
- Elston, RC. & Stewart, J. A general model for the genetic analysis of pedigree data. Human heredity. 1971
- Dechter, R. & Pearl, J. Network-based heuristics for constraint-satisfaction. Artificial Intelligence. 1987
- Shafer, GR. & Shenoy P., Local cmputations in hypertrees. Working paper 1988-91. Univ. Kansas Technical Report.
- Dechter, R., Mateescu, R. AND/OR search spaces for graphical models. Artificial Intelligence.
   2007.