NON SERIAL DYNAMIC PROGRAMMING

Graphical models (CSP, MRF, Bayes nets...)

\square A set of variables $\quad X=\left\{X_{1}, \ldots, X_{n}\right\}$
\square A set of domains $\quad D=\left\{D_{1}, \ldots, D_{n}\right\}$
\square A set of functions Q
\square Each function $P_{S} \in Q$ involves a set of variables $S \subset X$
\square Primal graph (interaction graph)
\square One vertex per variable
\square Edge (A, B) if $P_{S} \in Q$ s.t. $\{A, B\} \subset S$

$$
P_{A F C}:=\left(2 F^{2}+7 A F C\right)
$$

Functions, combination

$\square P_{S}$ maps tuples of values of S to lelement of E
$\square E=\{0,1\} \quad$ relation (CSP, SAT)
$\square E=R^{+} \quad$ energy or potentials (MRF)
$\square E=[0,1] \quad$ probabilities (BN), fuzzy m.degree
\square Function combination by
\square Logical and relations (CSP, SAT)
$\square+, x \quad$ energy, potentials (MRF)
$\square x$, min probabilities (BN), fuzzy m.degree

A graphical model defines a joint function over X

Functions definition

\square Functions can be defined by:
\square Tables (discrete domains)
\square Analytic formulae

A	C	F
red	green	blue
blue	blue	blue
green	red	blueen

A	C	F	P(F\|A,C)
0	0	0	0.14
0	0	1	0.96
0	1	0	0.40
0	1	1	0.60
1	0	0	0.35
1	0	1	0.65
1	1	0	0.72
1	1	1	0.68

- General form

$$
P_{A C F}:=\quad(F=A+C)
$$

- Pseudo-boolean polynomials, weighted clauses (boolean domains)

$$
\begin{aligned}
& P_{A F C}:=(5 A F C+3(1-A) C) \\
P_{A F C}:= & := \\
& (\neg \mathrm{A} \vee \neg \mathrm{~F} \vee \neg \mathrm{C}, 5),(A \vee \neg C, 3)\}
\end{aligned}
$$

\square Arbitrary computer code

Marginalization, elimination

\square To extract synthetic information on the joint
$\Sigma_{x} \Pi_{1} p_{1} \square$ Sum, all variables: Z, \#SAT, \#CSP...
$\Sigma_{x-(x)} \Pi_{i} P_{i} \square$ Sum, all but one variables: Marginal probabilities
$v_{x} \wedge_{1} P_{i} \square$ Logical or (relations): CSP, SAT
max $_{x} \Pi_{i} p_{i} \square$ Min/Max : MAP (MRF), MPE (BN)

- Weighted CSP/SAT, Fuzzy CSP...

Idempotent elimination:
Non idempotent:

NP-complete decision problems \#P-complete problems

Various algorithmic approaches

\square Conditioning and backtrack search
\square Stochastic optimization/Sampling -...
\square Non serial dynamic programming exact approx
\square Variable elimination

- Block by block elimination
\square Cluster/Join tree elimination - message passing

Non Serial Dynamic Programming

\square Exploits scopes and distributivity recursively

$$
P(a, g=1)=\sum_{c, b, f, d, g=1} P(g \mid f) P(f \mid b, c) P(d \mid a, b) P(c \mid a) P(b \mid a) P(a)
$$

Symbolic computation (distributivity)

$$
\begin{aligned}
& P(a, g=1)= \sum_{c, b, f, d, g=1} P(g \mid f) P(f \mid b, c) P(d \mid a, b) P(c \mid a) P(b \mid a) P(a) \\
&= P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \sum_{d} P(d \mid b, a) \sum_{g=1} P(g \mid f) \\
& P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \sum_{f} P(f \mid b, c) \lambda_{G}(f) \sum_{d} P(d \mid b, a) \\
& \lambda_{G}(f)=\sum_{g=1} P(g \mid f) P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \lambda_{D}(a, b) \sum_{f} P(f \mid b, c) \lambda_{G}(f) \\
& \lambda_{D}(a, b)=\sum_{d} P(d \mid a, b) \\
& P(a) \sum_{c} P(c \mid a) \sum_{b} P(b \mid a) \lambda_{D}(a, b) \lambda_{F}(b, c) \\
& \lambda_{F}(b, c)=\sum_{f} P(f \mid b, c) \lambda_{G}(f) \quad P(c \mid a) \lambda_{B}(a, c) \\
& P(a) \lambda_{C}(a)
\end{aligned}
$$

Main properties

\square Replacing two functions by their combination preserves the problem
\square If f is the only function involving variable A, replacing f by the function

$$
\lambda_{A}(\ldots)=\sum_{a} f(A, \ldots)
$$

preserves the marginal

Variable elimination

$\square X_{i}$, a variable
$\square F_{i}$, cost functions involving it
$\square O_{i}$, other variables in F_{i}
$\lambda_{X_{i}}(\ldots)=\sum_{a \in D_{i}} \prod_{f \in F_{i}} f(a, \ldots)$

\square Eliminate X_{i} and F_{i}
\square Add $\lambda_{X_{i}}$ to F
\square One less variable
\square Less cost functions
\square Same marginal

Variable elimination

\square Fix a variable ordering
\square Successively eliminate variables
\square The function at the end is your result
\square The complexity depends on
\square The primal graph (interaction) structure
\square The variable ordering chosen
\square Space/time exponential in the largest \# of neighbors

For a fixed ordering

\square Play the " elimination game " on the primal graph

- Remove variable
\square Do not compute extra functions, just add edges
\square Repeat...
\square Remember the largest \# of forward neighbors

This number is called the induced width of the ordering

Elimination order influence

$\{f(x, r), f(x, z), \ldots, f(x, y)\}$
\square Order: r, z, \ldots, y, x

INPA

Elimination order influence

$\square\{f(x, r), f(x, z), \ldots, f(x, y)\}$
\square Order: r, z, \ldots, y, x

INPA

Elimination order influence

$\square\{f(x), f(x, z), \ldots, f(x, y)\}$
\square Order: $\quad z, \ldots, y, x$

Elimination order influence

$\square\{f(x), f(x, z), \ldots, f(x, y)\}$
\square Order: $\quad z, \ldots, y, x$

INPA

Elimination order influence

$\square\{f(x), f(x), f(x, y)\}$
\square Order: $\quad y, x$

INPA

Elimination order influence

$\{f(\mathrm{x}), \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{x}, \mathrm{y})\}$
\square Order: $\quad y, x$

IRA

Elimination order influence

$\square\{f(x), f(x), f(x)\}$
\square Order: $\quad x$

Elimination order influence

$\square\{f(x), f(x), f(x)\}$
\square Order: x

IRPA

Elimination order influence

$\square\{f()\}$
\square Order:

INPA

Elimination order influence

$\square\{f(x, r), f(x, z), \ldots, f(x, y)\}$
\square Order: x, y, z, \ldots, r

INPA

Elimination order influence

$\square\{f(x, r), f(x, z), \ldots, f(x, y)\}$
\square Order: x, y, z, \ldots, r

IRPA

Elimination order influence

$\square\{f(r, z, \ldots, y)\}$
\square Order: y, z, r

Graph induced width

\square The induced width w^{*} of a graph is its minimum induced width (over all orders)
\square Existence of an order with bounded induced wwidth is NP-complete
\square Trees have $\mathrm{w}^{*}=1$
$\square(m, n)$ grids have $w^{*} \sim \min (m, n)$
(topological ordering)
\square Linear algorithm tells if a graph has $w^{*} \leq k$ (fixed) (Bodlaender, 1992)

Caracterizing graphs with $\mathrm{w}^{*}=\mathrm{k}$

\square A k-tree is either:
\square A clique of k vertices
\square Obtained by adding a vertex connected to all vertices of a k-clique in an existing k-tree

\square A graph with induced width k can be embedded in a k-tree (is a partial k-tree).

Variants of NSDP (exact computations)

\square Eliminate block by block (Bertelé, Brioschi, 1972)
\square Same worst-case time complexity

- Improved space complexity
\square Related to tree decompositions (Bodlaender 1994)
\square Forward-Backward/ In-out variants
\square Computes all variable marginals in two passes
\square Cluster-tree elimination, Shenoy/Shafer, Spiegelhalter...
\square Tree-search based
\square Recursive conditioning (Darwiche 2001)
\square AND/OR search (Dechter, Mateescu, 2007)
\square Backtrack Tree Decomposition (Jégou, Terrioux, 2003)

Historical perspective

\square Davis et Putnam (1960)
satisfaction
\square Peeling (Elston Stewart 1971)
integration
\square Non serial DP (Bertelé, Brioschi, 1972)
\square Acyclic schemes in databases (Beeri et al, 1983)
\square Directional resolution, adapt. consistency (Dechter 1987)
\square Pearl poly-tree alg. (Pearl 1988)
optimization
satisfaction

- Lauritzen/Spiegelhalter (1988)
\square Shenoy and Shafer (1988-91)
\square Bucket elimination (Dechter 1999)
- The Generalized Distributive Law (Aii, Mcliece, 2000)
\square Factor graphs and... (Kschishang et al., 2001)
satisfaction
integration
integration
algebraic
general
algebraic
algebraic

Approximation \& NSDP

\square Mini-buckets (Dechter 1997, 2001)
\square Splits the set F_{i} into subsets of bounded size, each processed separately
\square Provides approximation with upper, lower bounds.
\square Graph decomposition (Favier, de Givry, fegou 2009)
\square Process each « component ॥ and combine the results (ignoring interactions)
\square Provides bounds (\#CSP)

Conclusion

\square Non serial DP is a widely used approach for solving discrete optimization/integration problems
\square Worst case exp time/space by induced width
\square Also applies to mixed eliminations (influence diagrams, PFU networks) but elimination order is more constrained
\square Can be used to provide approximate results

Bibliography

\square Favier, A. de Givry, S. Jégou. Exploiting problem structure for solution counting. Proc. of CP 2009. Lisbon, Portugal.
$\square \quad$ Dechter, R. Mini-buckets: a general scheme for generating approximations in automated reasoning. Proc. IJCAI 1997.
\square Kask, K. \& Dechter, R. A general scheme for automatic generation of serach heuristics from specification dependencies. Artificial Intelligence, 2001.
\square Beeri, C. et al. On the desirability of acyclic database schemes. Journal of the ACM. 1983
$\square \quad$ Lauritzen, SL. \& Spiegelhalter, DJ. Local computations with probabilities on graphical strucures and their application to expert systems. JRSS B, 1988.
$\square \quad$ Bodlaender, H. A linear time algorithm for finding tree-decompositions of small treewidth. Proc. ACM symposium on Theory of computing. 1993.
\square Bodlaender, H. A tourist guide through treewidth. Develompments in Theoretical Computer Science, 1994.
\square Bertelé, U. \& Brioschi, F. Non Serial Dynamic Programming, Academic Press, 1972.
$\square \quad$ Davis, Putnam, A computing procedure for quantification theory, Journal of the ACM, 1960.

Bibliography

$\square \quad$ Darwiche, A. Recursive conditioning. Artificial Intelligence. 2001
\square Dechter, A. Bucket elimination: a unifying framework for reasoning. Artificial Intelligence. 1999
\square Kschischang FR. factor graphs and the sum-product algorithm. IEEE Trans. Information Theory. 2001
$\square \quad$ Aii, SM. \& McEliece, RJ. The Ggeneralized distributive law. IEEE Trans. Information Theory. 2000.
\square Elston, RC. \& Stewart, J. A general model for the genetic analysis of pedigree data. Human heredity. 1971
\square Dechter, R. \& Pearl, J. Network-based heuristics for constraint-satisfaction. Artificial Intelligence. 1987
\square Shafer, GR. \& Shenoy P., Local cmputations in hypertrees. Working paper 1988-91. Univ. Kansas Technical Report.
\square Dechter, R., Mateescu, R. AND/OR search spaces for graphical models. Artificial Intelligence. 2007.

