
1

Uncovering latent structure in valued graphs:

A variational approach

S. Robin

Joint work with J.-J. Daudin, M. Mariadassou, F. Picard, C. Vacher

UMR AgroParisTech / INRA, Paris, Mathématique et Informatique Appliquées :
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1 - Looking for structure in networks

Networks . . .

• Arise in many fields:

→ Biology, Chemistry
→ Physics, Internet.

• Represent an interaction pattern:

→ O(n2) interactions
→ between n elements.

• Have a topology which:

→ reflects the structure / function
relationship

From Barabási website
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Uncovering structure in networks: A simple example
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1.1 - Heterogeneity in random graphs

Nodes may have different connectivity behaviour.

Looking for connected sub-groups:

• Detection of cliques or groups of highly connected nodes: Gethor & Diehl, 04

• Edge betweenness: Girvan & Newman, 02

• Spectral clustering: Von Luxburg & al., 07

Model based:

• Underlying topology: Hoff & al., 02 (Latent space)

• Mixture model Nowicki & Snijders, 01 (Block structure), Daudin & al., 08
(Mixture for graphs)

• General model for heterogeneous networks: Bollobás al., 07 (Topological
properties: Giant component, diameter, degree distribution = compound
Poisson, etc.).

• General review on random graph models: Pattison & Robbins, 07
S. Robin: Mixture model for valued graphs
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1.2 - Inhomogeneous random graphs

General definition for binary graphs. (Bollobás al., 07)

• n nodes (i = 1 . . . n)

• n(n− 1)/2 possible edges: Xij = I{i ∼ j}

• Each i is characterised by a latent variable Zi sampled in some space Z with
distribution α:

{Zi}i i.i.d., Zi ∼ α

• Edge (i, j) is present with probability π(Zi, Zj), where π is a kernel function:

{Xij}i,j independent given {Zi}i, Xij ∼ B[π(Zi, Zj)].

Latent space: Z = R
k, π(z, z′) =

exp(a− |z − z′|)

1 + exp(a− |z − z′|)
.

Mixture model: Z = {1, . . . , Q}, π(z, z′) = πqℓ for z = q, z′ = ℓ.
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2 - Mixture model for valued graphs

Our approach

• is model based:
Mixture model

• deals with valued graphs:

Xij ∈ {0, 1}, N, R, Rd, etc.

• and makes frequentist inference using a variational method:

Approximate maximum likelihood.
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2.1 - Model

• n nodes (i = 1 . . . n);

• each node i belong to class q with probability αq:

{Zi}i i.i.d., Zi ∼M(1; α)

where α = (α1, . . . αQ);

• The values of the edges {Xij}i,j are conditionally independent given the Zi’s:

(Xij | Zi = q, Zj = ℓ) ∼ fqℓ(·).

where fqℓ(·) is some parametric distribution fqℓ(x) = f(x; θqℓ).

We denote: Z = {Zi}i, X = {Xij}i,j, θ = {θqℓ}q,ℓ, γ = (α, θ).

S. Robin: Mixture model for valued graphs
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2.2 - Some distributions fqℓ

Bernoulli B(πql). Binary oriented or non-oriented interaction graphs:
Relation network, protein-protein interaction, gene regulation.

MultinomialM(πql). Labelled edges:
Social networks (’friend’, ’lover’, colleague’), Directed graphs with correlated edges
(’ ’, ’→’, ’←’, ’↔’).

Poisson P(λql). The edge value is a count:
Number of co-publications of two authors, Number of times two species were
observed in the same place, Number of alleles shared by two species.

Gaussian N (µqℓ, σ
2). Traffic intensity:

Airport network, Electric network.

Linear regression. If covariates yij are available for each couple of nodes:

Xij = yijβqℓ + Eij, {Eij}i,j independent, Eij ∼ N (0, σ2).

S. Robin: Mixture model for valued graphs
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3 - Variational inference

3.1 - Maximum Likelihood Inference

Likelihoods. The log-likelihood of the complete dataset (X,Z) is

log P(Z,X; α,θ) = log P(Z; α) + log P(X|Z;θ)

=
∑

i

∑

q

Ziq log αq +
∑

i 6=j

∑

q,ℓ

ZiqZjℓ log fqℓ(Xij).

The log-likelihood of the observed dataset (X) is

log P(X; α,θ) =
∑

Z

log P(Z,X;α, θ)

and cannot be evaluated since Z may take Qn different values.

Most popular solution: E-M algorithm.
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E-M algorithm. To achieve the E-step, we need to calculate the conditional
distribution of the unobserved data given the observed ones: log P(Z|X).

Due to intricate dependencies this distribution is intractable:

Dependency graph (oriented) Moral graph (parents are married)

Edge Xij only depends on its two
parents Z1 and Z2

Conditional on the edges, labels Zi’s
all depend on each others

Z
1
   

X
12

Z
2
   

X
23

Z
3
   

X
13

Z
1
   

X
12

Z
2
   

X
23

Z
3
   

X
13

⇒ All edges are actually ’neighbours’ (unlike in Bayesian networks).
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3.2 - Variational strategy

Variational trick: Maximise a lower bound of the incomplete likelihood

J (RX, α,θ) = log P(X; α,θ)−KL[RX(·), P(·|X;α,θ)]

where

• KL denotes the Kullback-Leibler divergence

• RX is some distribution for Z.

Thanks to the definition of KL, we get for any RX (Jaakkola, 00)

J (RX, α,θ) = log P(X)−
∑

Z

log[RX(Z)]RX(Z) +
∑

Z

log[P (Z|X)]RX(Z)

= H(RX) +
∑

Z

RX(Z) log P(X,Z; α,θ)

where H(RX) stands for the entropy of distribution RX.
S. Robin: Mixture model for valued graphs
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Choice of RX. RX approximates the conditional distribution P(Z|X). We want it
to be

• tractable (e.g. factorised):

RX(Z) =
∏

i

h(Zi, τ i)

where h(·, τ ) denotes the multinomial distribution;

• as close to P(Z|X) as possible:

τ̂ = arg minKL[RX(·), P(·|X;α, θ)].

We get

J (RX, α,θ) = −
∑

i

∑

q

τiq log τiq+
∑

i

∑

q

τiq log αq+
∑

i 6=j

∑

q,ℓ

τiqτjℓ log fqℓ(Xij).

The τi’s are interpreted as approximate posterior probabilities P{Zi = q|X};
S. Robin: Mixture model for valued graphs
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3.3 - Estimation algorithm

The optimisation of J (RX, α,θ) is achieved via two alternative steps.

M-step: Maximises J (RX, α,θ) w.r.t. α, θ = (α,θ) given τ . We get

α̂q =
1

n

∑

i

τiq, θ̂qℓ = arg max
θqℓ

∑

i 6=j

τiqτjℓ log f(Xij; θqℓ).

Pseudo E-step: Finds the optimal τ given (α, θ). We end up with a fix point
relation.

• Oriented graphs:

log τ̂iq = cst + log αq +
∑

j 6=i

∑

ℓ

τ̂jℓ [log f(Xij; θqℓ) log f(Xji; θℓq)] .

• Non-oriented graphs:

log τ̂iq = cst + log αq +
∑

j 6=i

∑

ℓ

τ̂jℓ log f(Xij; θqℓ).

S. Robin: Mixture model for valued graphs



14

3.4 - Model selection

Penalised likelihood. Standard criteria, such as BIC or AIC are based on the
log-likelihood of observed data log P(X), so they can not be used here.

Integrated Classification Likelihood (ICL). The ICL criterion (Biernacki & al., 00)
is an approximation of the complete-data integrated log-likelihood:

log P(X,Z|mQ) =

∫
log P(X,Z|γ, mQ)g(γ|mQ)dγ,

where log P(X,Z|γ,mQ) is the log-likelihood of model mQ with Q classes.

We get

ICL(mQ) = max
γ

log P(X, Ẑ|γ, mQ)−
1

2
{PQ log[n(n− 1)]− (Q− 1) log(n)} .

where PQ denotes the number of parameters in θ and Ẑ can be replaced by τ̂ or
by the Maximum A posteriori (MAP) prediction of Z.

S. Robin: Mixture model for valued graphs
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4 - Applications

4.1 - Metabolic network of E. coli

Dataset.

• The network is made of 605 reaction (nodes) and 1782 edges (V Lacroix &
M.-F. Sagot, INRIA).

• Reactions i and j are connected if the compound of i is the substrate of j.

• Because most reactions are reversible, the network is not oriented.

• The only information about edges is terms of presence/absence.

Results

• The ICL criterion applied to a mixture with Bernoulli edge values select Q̂ = 21
classes.

• Groups 1 to 20 gather reactions involving all the same compound either as a
substrate or as a product.

• A compound (chorismate, pyruvate, ATP,etc) can be associated to each group.
S. Robin: Mixture model for valued graphs
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Dot-plot representation.

• Classes 1 and 16 constitute a single
clique corresponding to a single
compound (pyruvate),

• They are split into two classes
because they interact differently with
classes 7 (CO2) and 10 (AcetylCoA)

• Connectivity matrix (sample):

q, ℓ 1 7 10 16
1 1.0
7 .11 .65
10 .43 .67
16 1.0 .01 ǫ 1.0

Adjacency matrix
(zoom on the first 20 classes)

S. Robin: Mixture model for valued graphs
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4.2 - Gene regulations in A. Thaliana

Dataset. Partial correlations between the expression levels of 800 genes in various
conditions (Opgen-Rhein & Strimmer, 06).

Dot-plot. Dot size = absolute
correlation, Color = sign (−, +).

Results.
• Using a Gaussian model, we get Q̂ =

7 classes.

• Groups are made of positively
correlated genes.

• Between group correlations are
weaker than within-group correlation
and have different signs (see classes
3/4 with class 7).

• Total computational time for Q =
1..15 classes on a standard PC: 1h.

S. Robin: Mixture model for valued graphs
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4.3 - Fungus - Tree interactions

Dataset. Interactions between 154 fungi and 51 trees European species. Fungus f
is connected to tree t if it has been collected on it (Data from C. Vacher, INRA).

Projected graphs. For each species we define the projected graph:

for trees Xtt′ = Number of common fungi,

for fungi Xff ′ = Number of common trees.

Poisson model. For both species, we assume that the intensities have Poisson
distributions: X ∼ P(λqℓ).

Number of classes. The ICL criterion selects

• 5 classes for trees

• and 6 classes for fungi.

S. Robin: Mixture model for valued graphs
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Fungus network
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• A group of generalist fungi is
detected.

• Others are more specific.

Tree network
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• Trees are mainly clustered
according to the number of fungi
they host.

• Tree groups are less contrasted.
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Crossed clusterings

The comparison of the two clusterings exhibits
specific correspondences between groups of fungi
(rows) and trees (columns).

Work in progress. Compare these groups according to
their phyla, the time of their introduction in Europe,
etc..

Biclustering. A direct clustering could be performed
on the interaction matrix Fungi × Tree. The method
proposed by Govaert & Nadif (05) also relies on a
variational approach.

0 20 40

0

50

100

150

nz = 543
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5 - Discussion & Work in progress
Inference for heterogeneous valued graphs

• Mixture models constitutes a natural way to describe heterogeneity in a network.

• The variational approach is a general and efficient alternative to MCMC
algorithms.

Applications of the mixture model

• ’Realistic’ heterogeneous networks can be simulated according to mixture models
with given parameters.

• Once fitted to a given network, the mixture model allows to detect unexpetedly
frequent motifs in biological (binary) networks (see 5.1).

Extension

• The variational approach does not provide any measure of the precision of the
estimates.
→ A variational Bayes approach would provide the (approximate) posterior
distribution of the parameters (see 5.2).

S. Robin: Mixture model for valued graphs
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5.1 - Mixture model as a null model for heterogeneous
networks

Looking for over-represented motifs in E. coli
transcriptional network.

Strategy proposed by Shen-Orr & al, 02.

1. Count the number of occurrences Nobs(m);

2. Resample a large number of random networks
similar to E.coli’s one (using the edge swapping
algorithm);

3. Estimate EN(m) and VN(m);

4. Derive a p-value implicitly based on a Gaussian
approximation.

S. Robin: Mixture model for valued graphs
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Direct computation using heterogenous models

Exact moments. For several
heterogeneous models (mixture,
EDD), we can get the exact formula
for the mean EN and variance VN
of the count (Picard & al., 07).

Distribution. Based on theoretical
results (Erdös) and an analogy with
sequence motifs, we fit a compound
Poisson distribution to derive a p-
value.

Motif Nobs(m) λ
1

(1 − a)
p-value

14 113 25.5 514.9 3.36 10−1

75 10.4 6.2 2.87 10−1

98 697 11.9 7 543.2 3.46 10−1

112 490 11.4 7 812.0 1.85 10−1

1 058 5.9 82.9 9.34 10−3

3 535 6.4 428.7 2.22 10−1

79 2.9 11.5 2.56 10−2

0 0.1 1.1 1.00

Results for E. coli’s network. 2 motifs appear to be unexpectedly frequent.

According to the permutation-based strategy, all of them are significantly over-
represented!
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5.2 - Variational Bayes approach

Beal & Ghahramani (2003) propose a

• variational

• Bayes

• E-M algorithm

to deal with for incomplete data models in the exponential family context.

1 - Variational approximation. Denoting θ the set of parameters, for any distribution
Q, we have

log P (X) ≥

∫
Q(Z,θ) log

P (X,Z,θ)

Q(Z,θ)
dZdθ =: F(X, Q).

S. Robin: Mixture model for valued graphs
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2 - Optimal approximate distribution. If we choose Q = QθQZ, the optimal QZ

and Qθ must satisfy

QZ(Z) ∝ exp

∫
Qθ(θ) log P (X,Z, θ)dθ,

Qθ(θ) ∝ exp

∫
QZ(Z) log P (X,Z,θ)dZ.

This can be viewed as a mean field approximation.

3 - Exponential family. Suppose the complete likelihood belongs to the exponential
family is and that parameter prior is conjugate

P (X,Z|θ) = f(X,Z)g(θ) exp{φ(θ)′u(X,Z)},

P (θ|η, ν) = h(η, ν)g(θ)η exp{φ(θ)′ν}.

S. Robin: Mixture model for valued graphs
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Variational Bayes E-M algorithm

The optimal approximate conditional distribution Qθ and QZ must satisfy

Qθ(θ) ∝ g(θ)η̃ exp{φ(θ)′ν̃}, η̃ = η + 1,

u(X) =
∫

QZ(θ)u(X,Z)dZ; ν̃ = ν + u(X,Z),

QZ(Z) ∝ f(X,Z) exp
{

φ
′
u(X,Z)

}
, φ =

∫
Qθ(θ)φ(θ)dθ.

Iterative algorithm. The variational Bayes E-M algorithm consists in alternative
updates of Qθ (’E-step’) and QZ (’M-step’):

E-step: Qt+1

θ
(θ) = h(η̃, ν̃t)g(θ)η̃ exp{[φ(θ)]′ν̃t};

M-step: Qt+1
Z (Z) ∝ f(X,Z) exp

{[
φ

t+1
]′

u(X,Z)

}
.

S. Robin: Mixture model for valued graphs
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Application to mixture in networks?

Interest.

• Get ’confidence intervals’ for the parameter;

• Still avoids costly MCMC algorithms.

Problems.

• The approximate distribution QZ still needs to be restricted (e.g. QZ =
∏

i QZi
);

• Initialisation (same as E-M);

• Uniqueness of the fix point?

• The intrinsic identifiability problem of mixture models...

S. Robin: Mixture model for valued graphs


