Uncovering latent structure in valued graphs: A variational approach

S. Robin

Joint work with J.-J. Daudin, M. Mariadassou, F. Picard, C. Vacher

UMR AgroParisTech / INRA, Paris, Mathématique et Informatique Appliquées : www.agroparistech.fr/mia/

Research report: genome.jouy.inra.fr/ssb/preprint/

- SSB-RR-4.ermg.pdf + Stat. Comput., 18(2):173-83, Jun 2008.
- SSB-RR-10.valued-graphs.pdf

1 - Looking for structure in networks

Networks . . .

- Arise in many fields:
 - $\rightarrow\,$ Biology, Chemistry
 - $\rightarrow\,$ Physics, Internet.
- Represent an interaction pattern:
 - $\rightarrow \mathcal{O}(n^2)$ interactions
 - \rightarrow between n elements.
- Have a topology which:
 - \rightarrow reflects the structure / function relationship

From Barabási website

Uncovering structure in networks: A simple example

O

30

35

1.1 - Heterogeneity in random graphs

Nodes may have different connectivity behaviour.

Looking for connected sub-groups:

- Detection of cliques or groups of highly connected nodes: Gethor & Diehl, 04
- Edge betweenness: Girvan & Newman, 02
- Spectral clustering: Von Luxburg & al., 07

Model based:

- Underlying topology: *Hoff & al., 02* (Latent space)
- Mixture model *Nowicki & Snijders, 01* (Block structure), *Daudin & al., 08* (Mixture for graphs)
- General model for heterogeneous networks: *Bollobás al., 07* (Topological properties: Giant component, diameter, degree distribution = compound Poisson, *etc.*).
- General review on random graph models: Pattison & Robbins, 07
- S. Robin: Mixture model for valued graphs

1.2 - Inhomogeneous random graphs

General definition for binary graphs. (Bollobás al., 07)

- $n \mod (i = 1 \dots n)$
- n(n-1)/2 possible edges: $X_{ij} = \mathbb{I}\{i \sim j\}$
- Each *i* is characterised by a *latent variable* Z_i sampled in some space \mathcal{Z} with distribution α :

$$\{Z_i\}_i$$
 i.i.d., $Z_i \sim \alpha$

• Edge (i, j) is present with probability $\pi(Z_i, Z_j)$, where π is a *kernel function*:

$$\{X_{ij}\}_{i,j}$$
 independent given $\{Z_i\}_i, \qquad X_{ij} \sim \mathcal{B}[\pi(Z_i, Z_j)].$

Latent space:
$$\mathcal{Z} = \mathbb{R}^k$$
, $\pi(z, z') = \frac{\exp(a - |z - z'|)}{1 + \exp(a - |z - z'|)}$.
Mixture model: $\mathcal{Z} = \{1, \dots, Q\}$, $\pi(z, z') = \pi_{q\ell}$ for $z = q, z' = \ell$.

2 - Mixture model for valued graphs

Our approach

• is model based:

Mixture model

• deals with valued graphs:

 $X_{ij} \in \{0, 1\}, \mathbb{N}, \mathbb{R}, \mathbb{R}^d, etc.$

• and makes frequentist inference using a variational method:

Approximate maximum likelihood.

2.1 - Model

- $n \mod (i = 1 \dots n);$
- each node *i* belong to class *q* with probability α_q :

$$\{Z_i\}_i \text{ i.i.d.}, \qquad Z_i \sim \mathcal{M}(1; \boldsymbol{\alpha})$$

where $\boldsymbol{\alpha} = (\alpha_1, \dots \alpha_Q);$

• The values of the edges $\{X_{ij}\}_{i,j}$ are conditionally independent given the Z_i 's:

$$(X_{ij} \mid Z_i = q, Z_j = \ell) \sim f_{q\ell}(\cdot).$$

where $f_{q\ell}(\cdot)$ is some parametric distribution $f_{q\ell}(x) = f(x; \theta_{q\ell})$.

We denote:
$$\mathbf{Z} = \{Z_i\}_i$$
, $\mathbf{X} = \{X_{ij}\}_{i,j}$, $\boldsymbol{\theta} = \{\theta_{q\ell}\}_{q,\ell}$, $\boldsymbol{\gamma} = (\boldsymbol{\alpha}, \boldsymbol{\theta})$.

2.2 - Some distributions $f_{q\ell}$

Bernoulli $\mathcal{B}(\pi_{ql})$. Binary oriented or non-oriented *interaction graphs*: Relation network, protein-protein interaction, gene regulation.

Multinomial $\mathcal{M}(\boldsymbol{\pi}_{ql})$. Labelled edges:

Social networks ('friend', 'lover', colleague'), Directed graphs with correlated edges ('', ' \rightarrow ', ' \leftarrow ', ' \leftrightarrow ').

Poisson $\mathcal{P}(\lambda_{ql})$. The edge value is a *count*:

Number of co-publications of two authors, Number of times two species were observed in the same place, Number of alleles shared by two species.

Gaussian $\mathcal{N}(\mu_{q\ell}, \sigma^2)$. *Traffic intensity*: Airport network, Electric network.

Linear regression. If *covariates* y_{ij} are available for each couple of nodes:

$$X_{ij} = \mathbf{y}_{ij}\boldsymbol{\beta}_{q\ell} + E_{ij}, \qquad \{E_{ij}\}_{i,j} \text{ independent, } E_{ij} \sim \mathcal{N}(0,\sigma^2).$$

3 - Variational inference

3.1 - Maximum Likelihood Inference

Likelihoods. The log-likelihood of the complete dataset (\mathbf{X}, \mathbf{Z}) is

$$\log \mathbb{P}(\mathbf{Z}, \mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta}) = \log \mathbb{P}(\mathbf{Z}; \boldsymbol{\alpha}) + \log \mathbb{P}(\mathbf{X} | \mathbf{Z}; \boldsymbol{\theta})$$
$$= \sum_{i} \sum_{q} Z_{iq} \log \alpha_{q} + \sum_{i \neq j} \sum_{q, \ell} Z_{iq} Z_{j\ell} \log f_{q\ell}(X_{ij}).$$

The log-likelihood of the observed dataset (\mathbf{X}) is

$$\log \mathbb{P}(\mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta}) = \sum_{\mathbf{Z}} \log \mathbb{P}(\mathbf{Z}, \mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta})$$

and cannot be evaluated since \mathbf{Z} may take Q^n different values.

Most popular solution: E-M algorithm.

E-M algorithm. To achieve the E-step, we need to calculate the conditional distribution of the unobserved data given the observed ones: $\log \mathbb{P}(\mathbf{Z}|\mathbf{X})$.

Due to intricate dependencies this distribution is *intractable*:

Dependency graph (oriented)

Moral graph (parents are married)

Edge X_{ij} only depends on its two parents Z_1 and Z_2

Conditional on the edges, labels Z_i 's all depend on each others

 \Rightarrow All edges are actually 'neighbours' (unlike in Bayesian networks).

3.2 - Variational strategy

Variational trick: Maximise a lower bound of the incomplete likelihood

$$\mathcal{J}(R_{\mathbf{X}}, \boldsymbol{\alpha}, \boldsymbol{\theta}) = \log \mathbb{P}(\mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta}) - KL[R_{\mathbf{X}}(\cdot), \mathbb{P}(\cdot | \mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta})]$$

where

- *KL* denotes the Kullback-Leibler divergence
- $R_{\mathbf{X}}$ is some distribution for \mathbf{Z} .

Thanks to the definition of KL, we get for any $R_{\mathbf{X}}$ (*Jaakkola*, 00)

$$\begin{aligned} \mathcal{J}(R_{\mathbf{X}}, \boldsymbol{\alpha}, \boldsymbol{\theta}) &= \log \mathbb{P}(\mathbf{X}) - \sum_{\mathbf{Z}} \log[R_{\mathbf{X}}(\mathbf{Z})] R_{\mathbf{X}}(\mathbf{Z}) + \sum_{\mathbf{Z}} \log[P(\mathbf{Z}|\mathbf{X})] R_{\mathbf{X}}(\mathbf{Z}) \\ &= \mathcal{H}(R_{\mathbf{X}}) + \sum_{\mathbf{Z}} R_{\mathbf{X}}(\mathbf{Z}) \log \mathbb{P}(\mathbf{X}, \mathbf{Z}; \boldsymbol{\alpha}, \boldsymbol{\theta}) \end{aligned}$$

where $\mathcal{H}(R_{\mathbf{X}})$ stands for the entropy of distribution $R_{\mathbf{X}}$.

S. Robin: Mixture model for valued graphs

Choice of $R_{\mathbf{X}}$. $R_{\mathbf{X}}$ approximates the conditional distribution $\mathbb{P}(\mathbf{Z}|\mathbf{X})$. We want it to be

• tractable (e.g. factorised):

$$R_{\mathbf{X}}(\mathbf{Z}) = \prod_{i} h(\mathbf{Z}_{i}, \boldsymbol{\tau}_{i})$$

where $h(\cdot, \boldsymbol{\tau})$ denotes the multinomial distribution;

• as close to $\mathbb{P}(\mathbf{Z}|\mathbf{X})$ as possible:

$$\widehat{\boldsymbol{\tau}} = \arg\min KL[R_{\mathbf{X}}(\cdot), \mathbb{P}(\cdot|\mathbf{X}; \boldsymbol{\alpha}, \boldsymbol{\theta})].$$

We get

$$\mathcal{J}(R_{\mathbf{X}}, \boldsymbol{\alpha}, \boldsymbol{\theta}) = -\sum_{i} \sum_{q} \tau_{iq} \log \tau_{iq} + \sum_{i} \sum_{q} \tau_{iq} \log \alpha_{q} + \sum_{i \neq j} \sum_{q, \ell} \tau_{iq} \tau_{j\ell} \log f_{q\ell}(X_{ij}).$$

The τ_i 's are interpreted as approximate posterior probabilities $\mathbb{P}\{Z_i = q | \mathbf{X}\}$; S. Robin: Mixture model for valued graphs

3.3 - Estimation algorithm

The optimisation of $\mathcal{J}(R_{\mathbf{X}}, \boldsymbol{\alpha}, \boldsymbol{\theta})$ is achieved via two alternative steps.

M-step: Maximises $\mathcal{J}(R_{\mathbf{X}}, \boldsymbol{\alpha}, \boldsymbol{\theta})$ w.r.t. $\boldsymbol{\alpha}, \boldsymbol{\theta} = (\boldsymbol{\alpha}, \boldsymbol{\theta})$ given $\boldsymbol{\tau}$. We get

$$\widehat{\alpha}_{q} = \frac{1}{n} \sum_{i} \tau_{iq}, \qquad \widehat{\theta}_{q\ell} = \arg \max_{\theta_{q\ell}} \sum_{i \neq j} \tau_{iq} \tau_{j\ell} \log f(X_{ij}; \theta_{q\ell}).$$

Pseudo E-step: Finds the optimal τ given (α, θ) . We end up with a *fix point relation*.

• Oriented graphs:

$$\log \widehat{\tau}_{iq} = \mathsf{cst} + \log \alpha_q + \sum_{j \neq i} \sum_{\ell} \widehat{\tau}_{j\ell} \left[\log f(X_{ij}; \theta_{q\ell}) \log f(X_{ji}; \theta_{\ell q}) \right].$$

• Non-oriented graphs:

$$\log \widehat{\tau}_{iq} = \mathsf{cst} + \log \alpha_q + \sum_{j \neq i} \sum_{\ell} \widehat{\tau}_{j\ell} \log f(X_{ij}; \theta_{q\ell}).$$

3.4 - Model selection

Penalised likelihood. Standard criteria, such as BIC or AIC are based on the log-likelihood of observed data $\log \mathbb{P}(\mathbf{X})$, so they can not be used here.

Integrated Classification Likelihood (ICL). The ICL criterion (*Biernacki & al., 00*) is an approximation of the complete-data integrated log-likelihood:

$$\log \mathbb{P}(\mathbf{X}, \mathbf{Z} | m_Q) = \int \log \mathbb{P}(\mathbf{X}, \mathbf{Z} | \boldsymbol{\gamma}, m_Q) g(\boldsymbol{\gamma} | m_Q) d\boldsymbol{\gamma},$$

where $\log \mathbb{P}(\mathbf{X}, \mathbf{Z} | \boldsymbol{\gamma}, m_Q)$ is the log-likelihood of model m_Q with Q classes.

We get

$$ICL(m_Q) = \max_{\boldsymbol{\gamma}} \log \mathbb{P}(\mathbf{X}, \widehat{\mathbf{Z}} | \boldsymbol{\gamma}, m_Q) - \frac{1}{2} \{ P_Q \log[n(n-1)] - (Q-1)\log(n) \} \}$$

where P_Q denotes the number of parameters in θ and $\hat{\mathbf{Z}}$ can be replaced by $\hat{\boldsymbol{\tau}}$ or by the Maximum A posteriori (MAP) prediction of \mathbf{Z} .

4 - Applications

4.1 - Metabolic network of *E. coli*

Dataset.

- The network is made of 605 reaction (nodes) and 1782 edges (*V Lacroix & M.-F. Sagot, INRIA*).
- Reactions i and j are connected if the compound of i is the substrate of j.
- Because most reactions are reversible, the network is not oriented.
- The only information about edges is terms of presence/absence.

Results

- The ICL criterion applied to a mixture with Bernoulli edge values select $\widehat{Q}=21$ classes.
- Groups 1 to 20 gather reactions involving all the *same compound* either as a substrate or as a product.
- A compound (chorismate, pyruvate, ATP,*etc*) can be associated to each group. S. Robin: Mixture model for valued graphs

Dot-plot representation.

- Classes 1 and 16 constitute a single clique corresponding to a single compound (pyruvate),
- They are split into two classes because they *interact differently with classes* 7 (CO2) and 10 (AcetylCoA)
- Connectivity matrix (sample):

q,ℓ	1	7	10	16
1	1.0			
7	.11	.65		
10	.43		.67	
16	1.0	.01	ϵ	1.0

Adjacency matrix (zoom on the *first 20 classes*)

4.2 - Gene regulations in A. Thaliana

Dataset. *Partial correlations* between the expression levels of 800 genes in various conditions (*Opgen-Rhein & Strimmer, 06*).

Dot-plot. Dot size = absolute correlation, Color = sign (-, +).

Results.

- Using a Gaussian model, we get $\widehat{Q} = 7$ classes.
- Groups are made of positively correlated genes.
- Between group correlations are weaker than within-group correlation and have different signs (see classes 3/4 with class 7).
- Total computational time for Q = 1..15 classes on a standard PC: 1h.

4.3 - Fungus - Tree interactions

Dataset. Interactions between 154 fungi and 51 trees European species. Fungus f is connected to tree t if it has been collected on it (*Data from C. Vacher, INRA*).

Projected graphs. For each species we define the projected graph:

for trees $X_{tt'}$ = Number of common fungi,

for fungi $X_{ff'}$ = Number of common trees.

Poisson model. For both species, we assume that the intensities have Poisson distributions: $X \sim \mathcal{P}(\lambda_{q\ell})$.

Number of classes. The ICL criterion selects

- 5 classes for trees
- and 6 classes for fungi.

Fungus network

- A group of generalist fungi is detected.
- Others are more specific.

Tree network

- Trees are mainly clustered according to the number of fungi they host.
- Tree groups are less contrasted.

Crossed clusterings

The comparison of the two clusterings exhibits *specific correspondences* between groups of fungi (rows) and trees (columns).

Work in progress. Compare these groups according to their phyla, the time of their introduction in Europe, *etc.*.

Biclustering. A direct clustering could be performed on the interaction matrix Fungi \times Tree. The method proposed by *Govaert & Nadif (05)* also relies on a variational approach.

5 - Discussion & Work in progress

Inference for heterogeneous valued graphs

- Mixture models constitutes a natural way to describe heterogeneity in a network.
- The variational approach is a general and efficient alternative to MCMC algorithms.

Applications of the mixture model

- 'Realistic' heterogeneous networks can be simulated according to mixture models with given parameters.
- Once fitted to a given network, the mixture model allows to detect unexpetedly frequent motifs in biological (binary) networks (see *5.1*).

Extension

• The variational approach does not provide any measure of the precision of the estimates.

 \rightarrow A variational Bayes approach would provide the (approximate) posterior distribution of the parameters (see 5.2).

S. Robin: Mixture model for valued graphs

5.1 - Mixture model as a null model for heterogeneous networks

Looking for over-represented motifs in *E. coli* transcriptional network.

Strategy proposed by *Shen-Orr & al, 02*.

- 1. Count the number of occurrences $N_{\text{obs}}(\mathbf{m})$;
- 2. Resample a large number of random networks similar to *E.coli*'s one (using the edge swapping algorithm);
- 3. Estimate $\mathbb{E}N(\mathbf{m})$ and $\mathbb{V}N(\mathbf{m})$;
- 4. Derive a *p*-value implicitly based on a Gaussian approximation.

Direct computation using heterogenous models

Exact moments. For several heterogeneous models (mixture, – EDD), we can get the exact formula for the mean $\mathbb{E}N$ and variance $\mathbb{V}N$ of the count (*Picard & al., 07*).

Distribution. Based on theoretical results (Erdös) and an analogy with sequence motifs, we fit a *compound Poisson* distribution to derive a *p*-value.

Motif	$N_{\sf obs}({f m})$	λ	$\frac{1}{(1-a)}$	p-value
	14 113	25.5	514.9	$3.36 10^{-1}$
	75	10.4	6.2	$2.87 10^{-1}$
•••	98 697	11.9	7543.2	$3.46 10^{-1}$
	112 490	11.4	7812.0	$1.85 10^{-1}$
•••	1 058	5.9	82.9	9.3410^{-3}
	3 535	6.4	428.7	2.2210^{-1}
	79	2.9	11.5	$2.56 10^{-2}$
	0	0.1	1.1	1.00

Results for *E. coli*'s network. 2 motifs appear to be unexpectedly frequent.

According to the permutation-based strategy, all of them are significantly overrepresented!

5.2 - Variational Bayes approach

Beal & Ghahramani (2003) propose a

- variational
- Bayes
- E-M algorithm

to deal with for incomplete data models in the exponential family context.

1 - Variational approximation. Denoting $\pmb{\theta}$ the set of parameters, for any distribution Q, we have

$$\log P(\mathbf{X}) \geq \int Q(\mathbf{Z}, \boldsymbol{\theta}) \log \frac{P(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta})}{Q(\mathbf{Z}, \boldsymbol{\theta})} d\mathbf{Z} d\boldsymbol{\theta} =: \mathcal{F}(\mathbf{X}, Q).$$

2 - Optimal approximate distribution. If we choose $Q = Q_{\theta}Q_{z}$, the optimal Q_{z} and Q_{θ} must satisfy

$$Q_{\mathbf{Z}}(\mathbf{Z}) \propto \exp \int Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \log P(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta},$$

 $Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \propto \exp \int Q_{\mathbf{Z}}(\mathbf{Z}) \log P(\mathbf{X}, \mathbf{Z}, \boldsymbol{\theta}) \mathrm{d}\mathbf{Z}.$

This can be viewed as a *mean field* approximation.

3 - Exponential family. Suppose the complete likelihood belongs to the exponential family is and that parameter prior is conjugate

$$P(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) = f(\mathbf{X}, \mathbf{Z})g(\boldsymbol{\theta}) \exp\{\phi(\boldsymbol{\theta})'\mathbf{u}(\mathbf{X}, \mathbf{Z})\},\$$

$$P(\boldsymbol{\theta}|\boldsymbol{\eta},\boldsymbol{\nu}) = h(\boldsymbol{\eta},\boldsymbol{\nu})g(\boldsymbol{\theta})^{\boldsymbol{\eta}}\exp\{\boldsymbol{\phi}(\boldsymbol{\theta})'\boldsymbol{\nu}\}.$$

Variational Bayes E-M algorithm

The optimal approximate conditional distribution Q_{θ} and Q_{z} must satisfy

$$Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \propto g(\boldsymbol{\theta})^{\tilde{\eta}} \exp\{\phi(\boldsymbol{\theta})'\tilde{\boldsymbol{\nu}}\}, \qquad \qquad \tilde{\eta} = \eta + 1,$$

- $\overline{\mathbf{u}}(\mathbf{X}) = \int Q_{\mathbf{Z}}(\boldsymbol{\theta}) \mathbf{u}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}; \qquad \qquad \tilde{\boldsymbol{\nu}} = \boldsymbol{\nu} + \overline{\mathbf{u}}(\mathbf{X}, \mathbf{Z}),$
- $Q_{\mathbf{Z}}(\mathbf{Z}) \propto f(\mathbf{X}, \mathbf{Z}) \exp\left\{\overline{\phi}' \mathbf{u}(\mathbf{X}, \mathbf{Z})\right\}, \qquad \overline{\phi} = \int Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \phi(\boldsymbol{\theta}) d\boldsymbol{\theta}.$

Iterative algorithm. The variational Bayes E-M algorithm consists in alternative updates of Q_{θ} ('E-step') and $Q_{\mathbf{Z}}$ ('M-step'):

E-step:
$$Q_{\boldsymbol{\theta}}^{t+1}(\boldsymbol{\theta}) = h(\tilde{\eta}, \tilde{\boldsymbol{\nu}}^t)g(\boldsymbol{\theta})^{\tilde{\eta}}\exp\{[\boldsymbol{\phi}(\boldsymbol{\theta})]'\tilde{\boldsymbol{\nu}}^t\};$$

M-step: $Q_{\mathbf{Z}}^{t+1}(\mathbf{Z}) \propto f(\mathbf{X}, \mathbf{Z})\exp\{\left[\overline{\boldsymbol{\phi}}^{t+1}\right]'\mathbf{u}(\mathbf{X}, \mathbf{Z})\}$

٠

Application to mixture in networks?

Interest.

- Get 'confidence intervals' for the parameter;
- Still avoids costly MCMC algorithms.

Problems.

- The approximate distribution $Q_{\mathbf{Z}}$ still needs to be restricted (e.g. $Q_{\mathbf{Z}} = \prod_{i} Q_{\mathbf{Z}_{i}}$);
- Initialisation (same as E-M);
- Uniqueness of the fix point?
- The *intrinsic identifiability problem* of mixture models...