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Point processes: definition and notation

Notation

Bb: set of bounded borelian of IRd .

Ωf , Ω, ΩΛ: set of finite configurations of IRd , set of
configurations in IRd , set of configurations in Λ ⊂ IRd :

Let Λ ⊂ IRd and ϕ ∈ Ω, ϕΛ := ϕ ∩ Λ ∈ ΩΛ

Point process in some bounded Λ ⊂ IRd

A point process in Λ is a random variable ΦΛ with values in ΩΛ

equipped with the smallest σ-field which make measurable all the
maps i∆ : ϕ ∈ ΩΛ → |ϕ∆| with ∆ ⊂ Λ ∈ Bb.
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Useful notation

∮
Λ

dϕ g(ϕ) :=
+∞∑
n=0

1

n!

∫
Λ
· · ·

∫
Λ

dx1 · · · dxn g ({x1, · · · , xn})

i.e.
∮
Λ dϕ means the summation over all configuration ϕ in Λ.

Poisson point process and Gibbs point process

We define:
→ a poisson point process with intensity 1 in Λ with probability
measure QΛ

QΛ(F ) =
1

exp(|Λ|)

+∞∑
n=0

1

n!

∫
Λ
· · ·

∫
Λ
dx1 · · · dxn1F ({x1, · · · , xn})
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Useful notation

∮
Λ

dϕ g(ϕ) :=
+∞∑
n=0

1

n!

∫
Λ
· · ·

∫
Λ

dx1 · · · dxn g ({x1, · · · , xn})

i.e.
∮
Λ dϕ means the summation over all configuration ϕ in Λ.

Poisson point process and Gibbs point process

We define:
→ a Gibbs point process in Λ with probability measure PΛ

PΛ(F ) =
1

ZΛ

∮
Λ

dϕ1F (ϕ) exp (−V (ϕ))

where ZΛ < +∞ as soon as V (ϕ) > −K |ϕ| (i.e. V (·) is stable).
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Useful notation

∮
Λ

dϕ g(ϕ) :=
+∞∑
n=0

1

n!

∫
Λ
· · ·

∫
Λ

dx1 · · · dxn g ({x1, · · · , xn})

i.e.
∮
Λ dϕ means the summation over all configuration ϕ in Λ.

Poisson point process and Gibbs point process

We define:
→ a Gibbs point process in IRd with conditional probability
measure PΛ(·|ϕo) for all ϕo

PΛ(F |ϕo) =
1

ZΛ(ϕo)

∮
Λ

dϕ1F (ϕ) exp
(
−V (ϕ|ϕo

ΛC )
)

where V (ϕ|ϕo
ΛC ) := V (ϕ ∪ ϕo

ΛC )− V (ϕo
ΛC ) is the energy required

to insert the points of ϕ in ϕo
ΛC
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Framework (of the presentation)

Restricted to stationary Gibbs point processes based on energy
function related to some graph G2(ϕ):

V (ϕ) =
Kmax∑
k=1

 ∑
ξ∈Gk (ϕ)

u(k)(ξ;ϕ)


with Gk(ϕ): set of cliques of order k of ϕ

satisfying the following Assumptions

E1 V (·) is invariant by translation.

E2 Locality of the local energy: ∃D > 0 such that
V (0|ϕ) = V (0|ϕ ∩ B(0,D)) .

(can be replaced by a quasi-locality assumption).

E3 Stability of the local energy: ∃K ≥ 0 such that

V (0|ϕ) ≥ −K .
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This framework includes

models based on the usual complete graph G (ϕ) = P2(ϕ) with
pairwise interaction function satisfying a hard-core or inhibition
condition and with finite range.

models based on the (slightly modified) Delaunay graph

G2(ϕ) = Delβ0

2,β(ϕ) with pairwise interaction function bounded and
with finite range.

Delaunay graph

Definition of Delβ0

2,β(ϕ)

Let Del3(ϕ) denote the“Delaunay triangles”, let β0 ∈ [0, π/3[ and let
β(ψ) denote the smallest angle of some triangle ψ. Then,

Delβ0

3,β(ϕ) = {ψ ∈ Del3(ψ), β(ψ) ≥ β0} and Delβ0

2,β = ∪
ψ∈Del

β0
3,β

P2(ψ)

Slight abuse: for β0 small enough, Delβ0

2,β(ϕ) ' Del2(ϕ)
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Model parametrization (1)

Parametrization of the function u(·)

Let θ ∈ Θ where Θ is a compact of IRp+1.

Energy function described by:

V (ϕ;θ) = θ1|ϕ|+
∑

ξ∈G2(ϕ)

u(||ξ||;θ)

Local energy: energy to insert x in some configuration ϕ
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Model parametrization (1)

Parametrization of the function u(·)

Let θ ∈ Θ where Θ is a compact of IRp+1.

Energy function described by:

V (ϕ;θ) = θ1|ϕ|+
∑

ξ∈G2(ϕ)

u(||ξ||;θ)

Local energy: energy to insert x in some configuration ϕ

V (x |ϕ;θ) = θ1 +
∑

ξ∈G2(ϕ∪{x})

u(||ξ||;θ)−
∑

ξ∈G2(ϕ)

u(||ξ||;θ).
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Model parametrization (1)

Parametrization of the function u(·)

Let θ ∈ Θ where Θ is a compact of IRp+1.

Energy function described by:

V (ϕ;θ) = θ1|ϕ|+
∑

ξ∈G2(ϕ)

u(||ξ||;θ)

Local energy: energy to insert x in some configuration ϕ

V (x |ϕ;θ) = θ1 +
∑
y∈ϕ

u(||y − x ||;θ) when G2(ϕ) = P2(ϕ).
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Model parametrization (1)

Parametrization of the function u(·)

Let θ ∈ Θ where Θ is a compact of IRp+1.

Energy function described by:

V (ϕ;θ) = θ1|ϕ|+
∑

ξ∈G2(ϕ)

u(||ξ||;θ)

Local energy: energy to insert x in some configuration ϕ

V (x |ϕ;θ) = θ1 +
∑

ξ∈G2(ϕ∪x)\G2(ϕ)

u(||ξ||;θ)

︸ ︷︷ ︸
positive contribution

−
∑

ξ∈G2(ϕ)\G2(ϕ∪{x})

u(||ξ||;θ)

︸ ︷︷ ︸
negative contribution

,

for a general graph such as G2(ϕ) = Delβ0

2,β(ϕ).
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Inhibition Delaunay Gibbs Process

Local energy:
V (0|ϕ) := V (0 ∪ ϕ)− V (ϕ)

0

V +
2 (0|ϕ) =

∑
ξ+∈G(0∪ϕ)

ξ+ /∈G(ϕ)

u
(
||ξ+||;θ

)

V−
2 (0|ϕ) =

∑
ξ−∈G(ϕ)

ξ− /∈G(0∪ϕ)

u
(
||ξ−||;θ

)
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Inhibition Delaunay Gibbs Process

Local energy:
V (0|ϕ) := V (0 ∪ ϕ)− V (ϕ) = θ1 + V +

2 (0|ϕ)− V−
2 (0|ϕ)

0

where

V +
2 (0|ϕ) =

∑
ξ+∈G(0∪ϕ)

ξ+ /∈G(ϕ)

u
(
||ξ+||;θ

)

V−
2 (0|ϕ) =

∑
ξ−∈G(ϕ)

ξ− /∈G(0∪ϕ)

u
(
||ξ−||;θ

)
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Inhibition Delaunay Gibbs Process

Local energy:
V (0|ϕ) := V (0 ∪ ϕ)− V (ϕ) = θ1 + V +

2 (0|ϕ)− V−
2 (0|ϕ)

0

where

V +
2 (0|ϕ) =

∑
ξ+∈G(0∪ϕ)

ξ+ /∈G(ϕ)

u
(
||ξ+||;θ

)

V−
2 (0|ϕ) =

∑
ξ−∈G(ϕ)

ξ− /∈G(0∪ϕ)

u
(
||ξ−||;θ

)
= 0

when G (ϕ) ⊂ G (0 ∪ ϕ)
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Inhibition Delaunay Gibbs Process
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Model parametrization (2)

Particular case : exponential family

u(||ξ||;θ) =

p+1∑
i=2

θiui (||ξ||).

=⇒ Exponential energy function: V (ϕ;θ) = θTu(ϕ), where

u(·) = (u1(·), . . . , up+1(·)) with

u1(ϕ) = |ϕ| and ui (ϕ) =
∑

ξ∈G2(ϕ)

ui (||ξ||).

=⇒ Exponential local energy function: V (x |ϕ;θ) = θTu(x |ϕ) ,

with
u(x |ϕ) = u(ϕ ∪ {x})− u(ϕ).
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Main example: multi-Strauss pairwise interaction function

Let d1 < d2 < . . . < dp+1 some fixed realnumbers. Define for
i = 2, . . . , p + 1,

ui (||ξ||) = 1 (||ξ|| ∈]di−1, di ]) .

Thus, for our two Gibbs models

V (ϕ;θ) = θ1|ϕ|+
p+1∑
i=2

θiui (ϕ),

where ui (ϕ) is interpreted as

(when G2(ϕ) = P2(ϕ)) the number of points of ϕ in the class
of distances ]di−1, di ].

(when G2(ϕ) = Delβ0

2,β(ϕ)) the number of Delaunay edges of
ϕ in the class of distances ]di−1, di ].
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An example

θ = (1, 2, 4), d = (0, 20, 80)

G2(ϕ) = P2(ϕ) G2(ϕ) = Delβ0

2,β(ϕ)
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Inference method

Data

Realization of a p.p. with energy function V (·;θ?) in some
domain Λ ⊂ IRd satisfying Assumptions E1 to E3.

θ? true parameter to be estimated, Pθ? associated Gibbs
measure.

Usual parametric methods

maximum likelihood estimator: drawback= computation of
the normalizing constant.

maximum pseudo-likelihood estimator (Besag (1968), Jensen
and Møller (1991), . . . )

Takacs-Fiksel estimator (based on the refined Campbell
theorem): competitive with respect to the MPLE.
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Pseudo-likelihood function (Jensen and Møller (1991))

PLΛ (ϕ;θ) = exp

(
−

∫
Λ

exp (−V (x |ϕ;θ)) dx

) ∏
x∈ϕΛ

exp (−V (x |ϕ \ x ;θ)) .

Log-pseudo-likelihood function

LPLΛ (ϕ;θ) = −
∫

Λ

exp (−V (x |ϕ;θ)) dx −
∑
x∈ϕΛ

V (x |ϕ \ x ;θ)

Different contributions to asympt. results (when G2(ϕ) = P2(ϕ))

Jensen and Møller (1991): consistency of the MPLE, exponential
family.

Jensen and Kunsch (1994): asymptotic normality of the MPLE,
exponential family θ = (z , β)

Mase (1995, 1999): consistency and asymptotic normality,
θ = (z , β) Ruelle’s class of superstable pairwise interaction p.p.
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Asymptotic results - Introduction

Definition of the estimator

Define

Un(θ) = − 1

|Λn|
LPLΛn (ϕ;θ)

Maximum pseudo-likelihood estimator:

θ̂n(ϕ) = argmaxθ∈Θ LPLΛn (ϕ;θ) = argminθ∈Θ Un(θ)

Lemma

Under certain Assumptions, Un(·) defines a contrast function:
there exists a function K (·,θ?) such that Pθ?-a.s.
Un(θ)− Un(θ

?) → K (θ,θ?), where K (·,θ?) is a positive function
and is zero if and only if θ = θ?.

=⇒ results on minimum contrast estimators (Guyon (1992))
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Consistency of the MPLE: assumptions - general case

C1 (Λn)n≥1 is a regular sequence of domains such that Λn → IR2

as n → +∞.

C2 For all θ ∈ Θ,
V (0|·;θ) ∈ L1(Pθ?).

C3 For all θ ∈ Θ \ θ?,

Pθ?

(
{ϕ, V (0|ϕ;θ) 6= V (0|ϕ;θ?)}

)
> 0

C4 For all θ,θ′ ∈ Θ, there exists c > 0 such that Pθ?−a.s.

|V (0|Φ; θ)− V
(
0|Φ; θ′

)
| ≤ ||θ − θ′||cg(0,Φ)

where g(·, ·) is a function such that for all x ,
g(0,Φ) = g(x ,Φx) and such that g(0, ·) ∈ L1(Pθ?).
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Consistency of the MPLE: assumptions - exponential case

Conditions C2 and C4 (resp. C3) can be replaced by Cexp
2,4 (resp.

Cexp
3 ) where

Cexp
2,4 There exists ε > 0 such that for all i = 1, . . . , p + 1

ui (0|·) ∈ L1+ε(Pθ?).

Cexp
3 Identifiability condition : There exists A1, . . . ,Ap+1,

p + 1 disjoint events of Ω such that Pθ?(Ai ) > 0 and
such that for all ϕ1, . . . , ϕp+1 ∈ A1 × · · · × Ap+1 the
(p +1)× (p +1) matrix with entries uj(0|ϕi ) is constant
and invertible.
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Consistency: statement of the result

Proposition (consistency)

Assume Pθ? stationary, then under Assumptions C1 to C4 in the
general case or under Assumptions C1, Cexp

2,4 and Cexp
3 in the

exponential case, we have Pθ?−almost surely, as n → +∞,

θ̂n(Φ) → θ?

Tools

Glötz Theorem, refined Campbell theorem.

General ergodic theorems obtained by Nguyen and Zessin
(1979).

General result concerning the consistency of minimum
contrast estimators obtained by Guyon (1992).
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Asymptotic normality: assumptions - general case (1)

N1 The point process is observed in a domain
Λn ⊕ D = ∪x∈ΛnB(x ,D), where Λn ⊂ IR2 can de decomposed
into ∪i∈InΛ(i) where for i = (i1, i2)

Λ(i) =

{
z ∈ IR2, D̃

(
ij −

1

2

)
≤ zj ≤ D̃

(
ij −

1

2

)
, j = 1, 2

}
for some D̃ > 0. As n → +∞, we also assume that Λn → IR2

such that |Λn| → +∞ and
|∂Λn|
|Λn|

→ 0

N2 V (0|·;θ) is twice times differentiable in θ = θ? and for all
j , k = 1, . . . , p + 1, there exists ε > 0 such that the variables

∂V

∂θj
(0|·;θ?)3+ε and

∂2V

∂θj∂θk
(0|·;θ?) ∈ L1(Pθ?)
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Asymptotic normality: assumptions - general case (2)

N3 The matrix

Σ(D̃,θ?) = D̃−2
∑

|i|≤[ DeD ]+1

Eθ?

(
LPL

(1)
Λ0

(Φ; θ?)LPL
(1)
Λi

(Φ; θ?)
T
)

is symmetric and definite positive.

The vector LPL
(1)
Λi

(ϕ;θ) is defined for j = 1, . . . , p + 1 by(
LPL

(1)
Λi

(ϕ;θ)
)

j
=

∫
Λ(i)

∂V

∂θj
(x |ϕ;θ) exp (−V (x |ϕ;θ)) dx −

∑
x∈ϕΛ(i)

∂V

∂θj
(x |ϕ \ x ;θ) .

N4 ∀y ∈ IRp+1 \ {0}

Pθ?

({
ϕ, yTV(1)(0|ϕ;θ?) 6= 0

})
> 0,

where for i = 1, . . . , p + 1, (V(1)(0|ϕ;θ?))i = ∂V
∂θi

(0|ϕ;θ?).
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Asymptotic normality: assumptions - general case (3)

N5 There exists a neighborhood W of θ? such that V (·;θ) is
twice times continuously differentiable for all
j , k = 1, . . . , p + 1, we have∣∣∣∣∂V

∂θj
(0|Φ; θ)− ∂V

∂θj
(0|Φ; θ?)

∣∣∣∣ ≤ ||θ − θ?||c1 h1(0,Φ),

and∣∣∣∣ ∂2V

∂θj∂θk
(0|Φ; θ)− ∂2V

∂θj∂θk
(0|Φ; θ?)

∣∣∣∣ ≤ ||θ − θ?||c2 h2(0,Φ),

with c1, c2 > 0 and h1(·, ·), h2(·, ·) two functions such that, for
all x , hi (0,Φ) = hi (x ,Φx) and such that h1(0, ·)2 and
h2(0, ·) ∈ L1(Pθ?).
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Asymptotic normality: assumptions - exponential case

Assumptions N2 and N5 (resp. N4) can be replaced by Nexp
2,5 (resp.

Nexp
4 ) where

Nexp
2,5 For i = 1, . . . , p + 1, there exists ε > 0 such that

ui (0|·) ∈ L3+ε(Pθ?).

Nexp
4 = Cexp

3
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Asymptotic normality: statement of the result

Proposition (asymptotic normality)

Assume Pθ? stationary, then under Assumptions N1 to N5 in the general
case or under Assumptions N1 Nexp

2,5 Cexp
3 and N3 in the exponential case,

we have, for any fixed D̃ fixed

|Λn|1/2 Σ̂n(D̃, θ̂n)
−1/2 Un

(2)(θ̂n)
(
θ̂n − θ?

)
→ N

(
0, Ip+1

)
,

where for some θ and some finite configuration ϕ

Σ̂n(D̃,θ) = |Λn|−1D̃−2
∑
i∈In

∑
|j−i|≤[ DeD ]+1,j∈In

LPL
(1)
Λi

(ϕ;θ)LPL
(1)
Λj

(ϕ;θ)
T

Tools

Asympt. normality for minimum contrast estimators (Guyon
(1992)).

Central Limit Theorem obtained by Jensen and Künsch (1994).
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A useful corollary

A particular class of exponential family

M There exists K1,K2 > 0 such that for any finite
configuration ϕ, we have for all x

−K1 ≤ ui (x |ϕ) ≤ K2, for i = 1, . . . , p + 1.

Assumption M =⇒ Cexp
2,4 and Nexp

2,5 .

Corollary

Assume Pθ? stationary, then under Assumption M and Cexp
3 , the

consistency is valid. And in addition under Assumption N3 the
asymptotic normality is ensured.
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Back to the multi-Strauss pairwise interaction p.p.

V (ϕ;θ) = θ1|ϕ|+
p+1∑
i=2

θi
∑

ξ∈Del
β0
2,β(ϕ)

1(||ξ|| ∈]di−1, di ]).

Assumption M, Cexp
3 and N3

Assumption M: proved in Bertin, Billiot and Drouilhet (1999).

Assumption Cexp
3 : verified by considering particular sets of

configurations of two points in a domain
∆ = {z ∈ IR2,−D ≤ zi ≤ D, i = 1, 2}.
Assumption N3: verified for this model by using an inequality
obtained by Jensen and Künsch and then by considering
particular sets of configurations of tree points in ∪|i |≤1Λ(i).
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Short simulation study

Parameters

θ? = (0, 2, 4), d = (0, 20, 80)

m = 5000 replications generated in the domain [−600, 600]2.
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Short simulation study

Parameters

θ? = (0, 2, 4), d = (0, 20, 80)

m = 5000 replications generated in the domain [−600, 600]2.

Estimations of θ?
2 Estimations of θ?

3

Domain Λn Mean (Std Dev.) Mean of Estim. (Std Dev.)

[−250, 250]2 2.068 0.104 4.382 0.786
[−350, 350]2 2.049 0.071 4.223 0.551
[−450, 450]2 2.041 0.056 4.144 0.436
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Perspectives

concerning the multi-Strauss pairwise interaction point
process based on the Delaunay graph: automatic estimation
of the different di , i = 1, . . . , p + 1.

A larger simulation study is needed:
1 to compare models based on the Delaunay graph and the

complete graph.
2 to investigate other nearest-neighbour models, models based

on cliques of order larger than 2, marked nearest-neighbour
Gibbs point processes,. . .

Nonparametric estimation of the pairwise interaction function
for nearest-neighbour Gibbs point processes.
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