Maximum pseudo-likelihood estimator for nearest-neighbours Gibbs point processes

> J.-M. Billiot, J.-F. Coeurjolly, R. Drouilhet University of Grenoble 2, France

> > June 2, 2006

number of points=266

Objective

number of points=472

< 差 ▶ < 差 ▶ 差 目目 の Q @

Outline

- Basic definition
- Existence conditions based on the energy function
- Description of some Gibbs models
- 2 Statistical model and inference method

3 Asymptotic results

- Consistency of the mple estimator
- Asymptotic normality of the mple estimator

4 Description of some examples and short simulation

ヨトイヨト

Outline

Gibbs point processes

- Basic definition
- Existence conditions based on the energy function
- Description of some Gibbs models
- 2 Statistical model and inference method

3 Asymptotic results

- Consistency of the mple estimator
- Asymptotic normality of the mple estimator

4 Description of some examples and short simulation

Point processes: definition and notation

Notation

- \mathcal{B}_b : set of bounded borelian of \mathbb{IR}^d .
- Ω_f, Ω, Ω_Λ: set of finite configurations of IR^d, set of configurations in IR^d, set of configurations in Λ ⊂ IR^d:
- Let $\Lambda \subset \mathbb{R}^d$ and $\varphi \in \Omega$, $\varphi_{\Lambda} := \varphi \cap \Lambda \in \Omega_{\Lambda}$

Point process in some bounded $\Lambda \subset \mathbb{R}^d$

A point process in Λ is a random variable Φ_{Λ} with values in Ω_{Λ} equipped with the smallest σ -field which make measurable all the maps $i_{\Delta} : \varphi \in \Omega_{\Lambda} \rightarrow |\varphi_{\Delta}|$ with $\Delta \subset \Lambda \in \mathcal{B}_b$.

3 1 - NQ (~

伺 ト イヨ ト イヨ ト

Useful notation

$$\oint_{\Lambda} d\varphi g(\varphi) := \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n g(\{x_1, \cdots, x_n\})$$

i.e. $\oint_{\Lambda} d\varphi$ means the summation over all configuration φ in Λ .

Poisson point process and Gibbs point process

We define:

 \rightarrow a poisson point process with intensity 1 in Λ with probability measure ${\it Q}_\Lambda$

$$Q_{\Lambda}(F) = \frac{1}{\exp(|\Lambda|)} \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n \mathbf{1}_F \left(\{x_1, \cdots, x_n\} \right)$$

▶ < ∃ ▶ < ∃ ▶ ∃ | ∃ < <</p>

Useful notation

$$\oint_{\Lambda} d\varphi g(\varphi) := \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n g(\{x_1, \cdots, x_n\})$$

i.e. $\oint_{\Lambda} d\varphi$ means the summation over all configuration φ in Λ .

Poisson point process and Gibbs point process

We define:

 \rightarrow a poisson point process with intensity 1 in Λ with probability measure ${\it Q}_\Lambda$

$$Q_{\Lambda}(F) = \frac{1}{\exp(|\Lambda|)} \oint_{\Lambda} d\varphi \mathbf{1}_{F}(\varphi)$$

同 ト イヨト イヨト ヨヨ のへつ

Useful notation

$$\oint_{\Lambda} d\varphi g(\varphi) := \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n g(\{x_1, \cdots, x_n\})$$

i.e. $\oint_{\Lambda} d\varphi$ means the summation over all configuration φ in Λ .

Poisson point process and Gibbs point process

We define:

 \rightarrow a Gibbs point process in Λ with probability measure ${\it P}_\Lambda$

$$P_{\Lambda}(F) = \frac{1}{Z_{\Lambda}} \oint_{\Lambda} d\varphi \mathbf{1}_{F}(\varphi) \exp\left(-V(\varphi)\right)$$

where $Z_{\Lambda} < +\infty$ as soon as $V(\varphi) > -K|\varphi|$ (i.e. $V(\cdot)$ is **stable**).

Useful notation

$$\oint_{\Lambda} d\varphi g(\varphi) := \sum_{n=0}^{+\infty} \frac{1}{n!} \int_{\Lambda} \cdots \int_{\Lambda} dx_1 \cdots dx_n g(\{x_1, \cdots, x_n\})$$

i.e. $\oint_{\Lambda} d\varphi$ means the summation over all configuration φ in Λ .

Poisson point process and Gibbs point process

We define:

 \to a Gibbs point process in ${\rm I\!R}^d$ with conditional probability measure $P_\Lambda(\cdot|\varphi^o)$ for all φ^o

$$P_{\Lambda}(F|\varphi^{o}) = \frac{1}{Z_{\Lambda}(\varphi^{o})} \oint_{\Lambda} d\varphi \mathbf{1}_{F}(\varphi) \exp\left(-V(\varphi|\varphi^{o}_{\Lambda^{c}})\right)$$

where $V(\varphi|\varphi^o_{\Lambda^c}) := V(\varphi \cup \varphi^o_{\Lambda^c}) - V(\varphi^o_{\Lambda^c})$ is the energy required to insert the points of φ in $\varphi^o_{\Lambda^c}$

Restricted to stationary Gibbs point processes based on energy function related to some graph $G_2(\varphi)$:

$$V(\varphi) = \sum_{k=1}^{K_{max}} \left\{ \sum_{\xi \in G_k(\varphi)} u^{(k)}(\xi;\varphi) \right\}$$

with $G_k(\varphi)$: set of cliques of order k of φ

satisfying the following Assumptions

E₁ $V(\cdot)$ is invariant by translation.

E₂ Locality of the local energy: $\exists D > 0$ such that $V(0|\varphi) = V(0|\varphi \cap \mathcal{B}(0,D)).$ (can be replaced by a quasi-locality assumption) **E**₃ Stability of the local energy: $\exists K > 0$ such that

200

Restricted to stationary Gibbs point processes based on energy function related to some graph $G_2(\varphi)$:

$$V\left(arphi
ight)= heta\left|arphi
ight|+\sum_{\xi\in \mathcal{G}_{2}(arphi)}u(\xi;arphi),\qquad heta\in {\sf I\!R}$$

 \implies pairwise interaction point processes.

satisfying the following Assumptions

E₁ $V(\cdot)$ is invariant by translation.

E₂ Locality of the local energy: $\exists D > 0$ such that $V(0|\varphi) = V(0|\varphi \cap B(0,D))$. (can be replaced by a quasi-locality assumption) **E**₃ Stability of the local energy: $\exists K \ge 0$ such that

$$V\left(0|\varphi\right) \geq -K.$$

うくつ

Restricted to stationary Gibbs point processes based on energy function related to some graph $G_2(\varphi)$:

$$V\left(arphi
ight)= heta\left|arphi
ight|+\sum_{\xi\in \mathcal{G}_{2}(arphi)}u(||\xi||),\qquad heta\in {\sf IR}$$

 \implies pairwise interaction point processes.

satisfying the following Assumptions

E₁ $V(\cdot)$ is invariant by translation.

E₂ Locality of the local energy: $\exists D > 0$ such that $V(0|\varphi) = V(0|\varphi \cap B(0,D))$. (can be replaced by a quasi-locality assumption) **E**₃ Stability of the local energy: $\exists K \ge 0$ such that

$$V\left(0|\varphi\right) \geq -K.$$

200

Restricted to stationary Gibbs point processes based on energy function related to some graph $G_2(\varphi)$:

$$V\left(arphi
ight)= heta\left|arphi
ight|+\sum_{\xi\in G_{2}(arphi)}u(||\xi||),\qquad heta\in {
m IR}$$

 \implies pairwise interaction point processes.

satisfying the following Assumptions

$$E_1$$
 V (·) is invariant by translation.

E₂ Locality of the local energy: $\exists D > 0$ such that $V(0|\varphi) = V(0|\varphi \cap \mathcal{B}(0,D)).$

(can be replaced by a quasi-locality assumption).

E₃ Stability of the local energy: $\exists K \ge 0$ such that

$$V(0|\varphi) \geq -K.$$

 $) \land (\sim$

This framework includes

- models based on the usual complete graph G(φ) = P₂(φ) with pairwise interaction function satisfying a hard-core or inhibition condition and with finite range.
- models based on the (slightly modified) Delaunay graph $G_2(\varphi) = Del_{2,\beta}^{\beta_0}(\varphi)$ with pairwise interaction function bounded and with finite range.

Delaunay graph

Definition of $\mathit{Del}^{eta_0}_{2,eta}(arphi)$

Let $Del_3(\varphi)$ denote the "Delaunay triangles", let $\beta_0 \in [0, \pi/3[$ and let $\beta(\psi)$ denote the smallest angle of some triangle ψ . Then,

 $Del_{3,eta}^{eta_0}(arphi) = \{\psi \in Del_3(\psi), eta(\psi) \ge eta_0\}$ and $Del_{2,eta}^{eta_0} = \cup_{\psi \in Del_3^{eta_0}} \mathcal{P}_2(\psi)$

Slight abuse: for β_0 small enough, $Del_{2,\beta}^{\beta_0}(\varphi) \simeq Del_2(\varphi)$

ଚର୍ଚ

This framework includes

- models based on the usual complete graph $G(\varphi) = \mathcal{P}_2(\varphi)$ with pairwise interaction function satisfying a hard-core or inhibition condition and with finite range.
- models based on the (slightly modified) Delaunay graph $G_2(\varphi) = Del_{2,\beta}^{\beta_0}(\varphi)$ with pairwise interaction function bounded and with finite range.

Delaunay graph

Definition of $Del_{2,\beta}^{\beta_0}(\varphi)$

Let $Del_3(\varphi)$ denote the "Delaunay triangles", let $\beta_0 \in [0, \pi/3[$ and let $\beta(\psi)$ denote the smallest angle of some triangle ψ . Then,

$$\mathcal{D}el^{eta_0}_{3,eta}(arphi) = \{\psi \in \mathcal{D}el_3(\psi), eta(\psi) \geq eta_0\} \text{ and } \mathcal{D}el^{eta_0}_{2,eta} = \cup_{\psi \in \mathcal{D}el^{eta_0}_{3,eta}} \mathcal{P}_2(\psi)$$

Slight abuse: for β_0 small enough, $\left| \begin{array}{c} Del_{2,\beta}^{\beta_0}(\varphi) \simeq Del_2(\varphi) \right|$

Outline

Gibbs point processes

- Basic definition
- Existence conditions based on the energy function
- Description of some Gibbs models

2 Statistical model and inference method

3 Asymptotic results

- Consistency of the mple estimator
- Asymptotic normality of the mple estimator

Description of some examples and short simulation

ヨトイヨト

Parametrization of the function $u(\cdot)$

• Let $\theta \in \Theta$ where Θ is a compact of \mathbb{R}^{p+1} .

• Energy function described by:

$$V(\varphi; \boldsymbol{\theta}) = \theta_1 |\varphi| + \sum_{\xi \in G_2(\varphi)} u(||\xi||; \boldsymbol{\theta})$$

Local energy: energy to insert x in some configuration arphi

Parametrization of the function $u(\cdot)$

- Let $\theta \in \Theta$ where Θ is a compact of \mathbb{R}^{p+1} .
- Energy function described by:

$$V(\varphi; \boldsymbol{\theta}) = \theta_1 |\varphi| + \sum_{\xi \in G_2(\varphi)} u(||\xi||; \boldsymbol{\theta})$$

Local energy: energy to insert x in some configuration φ

$$V(x|\varphi;\boldsymbol{\theta}) = \theta_1 + \sum_{\xi \in G_2(\varphi \cup \{x\})} u(||\xi||;\boldsymbol{\theta}) - \sum_{\xi \in G_2(\varphi)} u(||\xi||;\boldsymbol{\theta}).$$

4 3 5 4 3 5

Parametrization of the function $u(\cdot)$

- Let $\theta \in \Theta$ where Θ is a compact of \mathbb{R}^{p+1} .
- Energy function described by:

$$V(\varphi; \boldsymbol{\theta}) = \theta_1 |\varphi| + \sum_{\xi \in G_2(\varphi)} u(||\xi||; \boldsymbol{\theta})$$

Local energy: energy to insert x in some configuration φ

$$V(x|\varphi; \theta) = \theta_1 + \sum_{y \in \varphi} u(||y - x||; \theta)$$
 when $G_2(\varphi) = \mathcal{P}_2(\varphi)$.

★ ∃ ► < ∃ ►</p>

Parametrization of the function $u(\cdot)$

- Let $\theta \in \Theta$ where Θ is a compact of \mathbb{R}^{p+1} .
- Energy function described by:

$$V(\varphi; \boldsymbol{\theta}) = \theta_1 |\varphi| + \sum_{\xi \in G_2(\varphi)} u(||\xi||; \boldsymbol{\theta})$$

Local energy: energy to insert x in some configuration φ

$$V(x|\varphi;\theta) = \theta_1 + \sum_{\substack{\xi \in G_2(\varphi \cup x) \setminus G_2(\varphi) \\ \text{positive contribution}}} u(||\xi||;\theta) - \sum_{\substack{\xi \in G_2(\varphi) \setminus G_2(\varphi \cup \{x\}) \\ \text{negative contribution}}} u(||\xi||;\theta),$$

for a general graph such as $G_2(\varphi) = Del_{2,\beta}^{\beta_0}(\varphi).$

Gibbs point processes Statistical model and inference method

Inhibition Delaunay Gibbs Process

Local energy: $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi)$

$$V_{2}^{+}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{+} \in G(\mathbf{0}\cup\varphi)\\\xi^{+}\notin G(\varphi)}} u\left(||\xi^{+}||;\theta\right)$$
$$V_{2}^{-}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{-} \in G(\varphi)\\\xi^{-}\notin G(\mathbf{0}\cup\varphi)}} u\left(||\xi^{-}||;\theta\right)$$

Local energy: $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = \theta_1 + V_2^+(\mathbf{0}|\varphi) - V_2^-(\mathbf{0}|\varphi)$

where

$$V_{2}^{+}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{+} \in G(\mathbf{0}\cup\varphi)\\\xi^{+}\notin G(\varphi)}} u\left(||\xi^{+}||;\theta\right)$$
$$V_{2}^{-}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{-} \in G(\varphi)\\\xi^{-}\notin G(\mathbf{0}\cup\varphi)}} u\left(||\xi^{-}||;\theta\right)$$

Local energy: $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = \theta_1 + V_2^+(\mathbf{0}|\varphi) - V_2^-(\mathbf{0}|\varphi)$

where

$$V_{2}^{+}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{+} \in G(\mathbf{0}\cup\varphi)\\\xi^{+}\notin G(\varphi)}} u\left(||\xi^{+}||;\theta\right)$$
$$V_{2}^{-}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{-} \in G(\varphi)\\\xi^{-}\notin G(\mathbf{0}\cup\varphi)}} u\left(||\xi^{-}||;\theta\right) = 0$$
when $G(\varphi) \subset G(\mathbf{0}\cup\varphi)$

Local energy:
$$V(\mathbf{0}|arphi) := V(\mathbf{0} \cup arphi) - \frac{V(arphi)}{V(arphi)} = heta_1 + V_2^+(\mathbf{0}|arphi) - V_2^-(\mathbf{0}|arphi)$$

when
$${\it G}_2(arphi)={\it Del}^{eta_0}_{2,eta}(arphi)$$

$$V_{2}^{+}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{+} \in G(\mathbf{0} \cup \varphi) \\ \xi^{+} \notin G(\varphi)}} u\left(||\xi^{+}||; \theta\right)$$
$$V_{2}^{-}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{-} \in G(\varphi) \\ \xi^{-} \notin G(\mathbf{0} \cup \varphi)}} u\left(||\xi^{-}||; \theta\right)$$

• • = • • = •

三日 のへで

Local energy: $V(\mathbf{0}|\varphi) := V(\mathbf{0} \cup \varphi) - V(\varphi) = \theta_1 + V_2^+(\mathbf{0}|\varphi) - V_2^-(\mathbf{0}|\varphi)$

when
$$\mathit{G}_{2}(arphi)=\mathit{Del}_{2,eta}^{eta_{0}}(arphi)$$

$$V_{2}^{+}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{+} \in G(\mathbf{0}\cup\varphi)\\\xi^{+}\notin G(\varphi)}} u\left(||\xi^{+}||;\theta\right)$$
$$V_{2}^{-}(\mathbf{0}|\varphi) = \sum_{\substack{\xi^{-} \in G(\varphi)\\\xi^{-}\notin G(\mathbf{0}\cup\varphi)}} u\left(||\xi^{-}||;\theta\right)$$

↓ ∃ ↓ ↓ ∃ | ∃ ↓ ∩ Q ()

Gibbs point processes Statistical model and inference method

Inhibition Delaunay Gibbs Process

J.-M. Billiot, J.-F. Coeurjolly, R. Drouilhet University of Grenobl MPLE for nearest-neighbours Gibbs point processes

三日 のへで

(* * 문 * * 문 *)

Particular case : exponential family

$$u(||\xi||;\boldsymbol{\theta}) = \sum_{i=2}^{p+1} \theta_i u_i(||\xi||).$$

⇒ Exponential energy function: $V(\varphi; \theta) = \theta^T \mathbf{u}(\varphi)$, where $\mathbf{u}(\cdot) = (u_1(\cdot), \dots, u_{p+1}(\cdot))$ with

$$u_1(arphi) = |arphi|$$
 and $u_i(arphi) = \sum_{\xi \in G_2(arphi)} u_i(||\xi||).$

 $\implies \text{Exponential local energy function: } V(x|\varphi;\theta) = \theta^T \mathbf{u}(x|\varphi),$ with

 $\mathsf{u}(x|\varphi) = \mathsf{u}(\varphi \cup \{x\}) - \mathsf{u}(\varphi).$

<ロ> <回> <回> <三> <三> <三> <三> <三</p>

Particular case : exponential family

$$u(||\xi||;\boldsymbol{\theta}) = \sum_{i=2}^{p+1} \theta_i u_i(||\xi||).$$

Exponential energy function: $V(\varphi; \theta) = \theta^T \mathbf{u}(\varphi)$, where $\mathbf{u}(\cdot) = (u_1(\cdot), \dots, u_{p+1}(\cdot))$ with

$$u_1(arphi) = |arphi|$$
 and $u_i(arphi) = \sum_{\xi \in G_2(arphi)} u_i(||\xi||).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のQ@

 $\implies \text{Exponential local energy function: } V(x|\varphi;\theta) = \theta^T \mathbf{u}(x|\varphi),$ with $\mathbf{u}(x|\varphi) = \mathbf{u}(\varphi \cup \{x\}), \quad \mathbf{u}(\varphi)$

Particular case : exponential family

$$u(||\xi||;\boldsymbol{\theta}) = \sum_{i=2}^{p+1} \theta_i u_i(||\xi||).$$

 $\implies \text{Exponential energy function: } V(\varphi; \theta) = \theta^T \mathbf{u}(\varphi), \text{ where } \mathbf{u}(\cdot) = (u_1(\cdot), \dots, u_{p+1}(\cdot)) \text{ with }$

$$u_1(\varphi) = |\varphi|$$
 and $u_i(\varphi) = \sum_{\xi \in G_2(\varphi)} u_i(||\xi||).$

 $\implies \text{Exponential local energy function: } V(x|\varphi; \theta) = \theta^T \mathbf{u}(x|\varphi),$ with

$$\mathbf{u}(x|\varphi) = \mathbf{u}(\varphi \cup \{x\}) - \mathbf{u}(\varphi).$$

▲冊▶ ▲■▶ ▲■▶ ■目 のQ@

Main example: multi-Strauss pairwise interaction function

Let $d_1 < d_2 < \ldots < d_{p+1}$ some **fixed** realnumbers. Define for $i = 2, \ldots, p+1$,

 $u_i(||\xi||) = \mathbf{1}(||\xi|| \in]d_{i-1}, d_i]).$

Thus, for our two Gibbs models

$$V(\varphi; \boldsymbol{\theta}) = \theta_1 |\varphi| + \sum_{i=2}^{p+1} \theta_i u_i(\varphi),$$

where $u_i(\varphi)$ is interpreted as

- (when $G_2(\varphi) = \mathcal{P}_2(\varphi)$) the number of points of φ in the class of distances $]d_{i-1}, d_i]$.
- (when $G_2(\varphi) = Del_{2,\beta}^{\beta_0}(\varphi)$) the number of Delaunay edges of φ in the class of distances $]d_{i-1}, d_i]$.

An example

An example

$$m{ heta} = (1,2,4), \ m{ extbf{d}} = (0,20,80)$$

 $G_2(\varphi) = \mathcal{P}_2(\varphi)$

$$\mathit{G}_{2}(arphi) = \mathit{Del}_{2,eta}^{eta_{0}}(arphi)$$

Small 213 (0.6%), Medium 15 (0%), Large 35017 (99.4%)

Small 415 (30.3%), Medium 64 (4.7%), Large 891 (65%)

Inference method

Data

- Realization of a p.p. with energy function V (·; θ^{*}) in some domain Λ ⊂ IR^d satisfying Assumptions E₁ to E₃.
- θ^* true parameter to be estimated, P_{θ^*} associated Gibbs measure.

Jsual parametric methods

- maximum likelihood estimator: drawback= computation of the normalizing constant.
- maximum pseudo-likelihood estimator (Besag (1968), Jensen and Møller (1991), ...)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三目目 つくべ

 Takacs-Fiksel estimator (based on the refined Campbell theorem): competitive with respect to the MPLE.

Inference method

Data

- Realization of a p.p. with energy function V (·; θ^{*}) in some domain Λ ⊂ IR^d satisfying Assumptions E₁ to E₃.
- θ^* true parameter to be estimated, P_{θ^*} associated Gibbs measure.

Usual parametric methods

- maximum likelihood estimator: drawback= computation of the normalizing constant.
- maximum pseudo-likelihood estimator (Besag (1968), Jensen and Møller (1991), ...)

• Takacs-Fiksel estimator (based on the refined Campbell theorem): competitive with respect to the MPLE.

• Pseudo-likelihood function (Jensen and Møller (1991))

$$PL_{\Lambda}(\varphi;\boldsymbol{\theta}) = \exp\left(-\int_{\Lambda} \exp\left(-V\left(x|\varphi;\boldsymbol{\theta}\right)\right) dx\right) \prod_{x \in \varphi_{\Lambda}} \exp\left(-V\left(x|\varphi \setminus x;\boldsymbol{\theta}\right)\right).$$

Log-pseudo-likelihood function

$$LPL_{\Lambda}(\varphi; \theta) = -\int_{\Lambda} \exp\left(-V\left(x|\varphi; \theta\right)\right) dx - \sum_{x \in \varphi_{\Lambda}} V\left(x|\varphi \setminus x; \theta\right)$$

Different contributions to asympt. results (when $G_2(\varphi) = \mathcal{P}_2(\varphi)$)

- Jensen and Møller (1991): consistency of the MPLE, exponential family.
- Jensen and Kunsch (1994): asymptotic normality of the MPLE, exponential family $\theta = (z, \beta)$
- Mase (1995, 1999): consistency and asymptotic normality, $\theta = (z, \beta)$ Ruelle's class of superstable pairwise interaction p.p.

Outline

Gibbs point processes

- Basic definition
- Existence conditions based on the energy function
- Description of some Gibbs models
- 2 Statistical model and inference method

3 Asymptotic results

- Consistency of the mple estimator
- Asymptotic normality of the mple estimator

4) Description of some examples and short simulation

ヨトィヨト

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ 臣 目目 のへで

Asymptotic results - Introduction

Definition of the estimator

Define

$$U_n(oldsymbol{ heta}) = -rac{1}{|\Lambda_n|} LPL_{\Lambda_n}(arphi;oldsymbol{ heta})$$

Maximum pseudo-likelihood estimator:

$$\widehat{oldsymbol{ heta}}_n(arphi) = {
m argmax}_{oldsymbol{ heta}\inoldsymbol{\Theta}} \ LPL_{oldsymbol{\Lambda}_n}\left(arphi;oldsymbol{ heta}
ight) = {
m argmin}_{oldsymbol{ heta}\inoldsymbol{\Theta}} \ U_n(oldsymbol{ heta})$$

▲御▶▲≡▶▲≡▶ ≡|= ∽♀∾

Asymptotic results - Introduction

Definition of the estimator

Define

$$U_n(oldsymbol{ heta}) = -rac{1}{|\Lambda_n|} LPL_{\Lambda_n}(arphi;oldsymbol{ heta})$$

Maximum pseudo-likelihood estimator:

$$\widehat{\boldsymbol{\theta}}_n(\varphi) = \operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} LPL_{\boldsymbol{\Lambda}_n}\left(\varphi; \boldsymbol{\theta}\right) = \operatorname{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} U_n(\boldsymbol{\theta})$$

Lemma

Under certain Assumptions, $U_n(\cdot)$ defines a contrast function: there exists a function $K(\cdot, \theta^*)$ such that P_{θ^*} -a.s. $U_n(\theta) - U_n(\theta^*) \to K(\theta, \theta^*)$, where $K(\cdot, \theta^*)$ is a positive function and is zero if and only if $\theta = \theta^{\star}$.

Asymptotic results - Introduction

Definition of the estimator

Define

$$U_n(\boldsymbol{ heta}) = -rac{1}{|\Lambda_n|} LPL_{\Lambda_n}(arphi; \boldsymbol{ heta})$$

Maximum pseudo-likelihood estimator:

$$\widehat{\boldsymbol{\theta}}_n(\varphi) = \operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} LPL_{\boldsymbol{\Lambda}_n}\left(\varphi; \boldsymbol{\theta}\right) = \operatorname{argmin}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} U_n(\boldsymbol{\theta})$$

Lemma

Under certain Assumptions, $U_n(\cdot)$ defines a contrast function: there exists a function $K(\cdot, \theta^*)$ such that P_{θ^*} -a.s. $U_n(\theta) - U_n(\theta^*) \to K(\theta, \theta^*)$, where $K(\cdot, \theta^*)$ is a positive function and is zero if and only if $\theta = \theta^{\star}$.

 \implies results on minimum contrast estimators (Guyon (1992))

Consistency of the MPLE: assumptions - general case

- C_1 $(\Lambda_n)_{n\geq 1}$ is a regular sequence of domains such that $\Lambda_n \to \mathbb{IR}^2$ as $n \to +\infty$.
- C_2 For all $\theta \in \Theta$,

$$V(0|\cdot; \boldsymbol{ heta}) \in L^1(P_{\boldsymbol{ heta}^{\star}}).$$

C₃ For all $\theta \in \Theta \setminus \theta^{\star}$,

$$P_{\boldsymbol{\theta}^{\star}}\Big(\left\{\varphi, \ V\left(0|\varphi; \boldsymbol{\theta}\right) \neq V\left(0|\varphi; \boldsymbol{\theta}^{\star}\right)\right\}\Big) > 0$$

C^{${}_{4}$} For all $\theta, \theta' \in \Theta$, there exists c > 0 such that $P_{\theta^{\star}}$ -a.s.

$$|V(0|\Phi; \theta) - V(0|\Phi; \theta')| \le ||\theta - \theta'||^c g(0, \Phi)$$

where $g(\cdot, \cdot)$ is a function such that for all x, $g(0, \Phi) = g(x, \Phi_x)$ and such that $g(0, \cdot) \in L^1(P_{\theta^*})$.

A B A B A B B B A Q A

Consistency of the MPLE: assumptions - exponential case

Conditions C_2 and C_4 (resp. $C_3)$ can be replaced by $C_{2,4}^{exp}$ (resp. $C_3^{exp})$ where

 $C_{2.4}^{exp}$ There exists $\varepsilon > 0$ such that for all i = 1, ..., p + 1

$$u_i(0|\cdot) \in L^{1+\varepsilon}(P_{\theta^*}).$$

C₃^{exp}

Identifiability condition : There exists A_1, \ldots, A_{p+1} , p+1 disjoint events of Ω such that $P_{\theta^*}(A_i) > 0$ and such that for all $\varphi_1, \ldots, \varphi_{p+1} \in A_1 \times \cdots \times A_{p+1}$ the $(p+1) \times (p+1)$ matrix with entries $u_j(0|\varphi_i)$ is constant and invertible.

同 ト イヨト イヨト ヨヨ のへつ

Consistency: statement of the result

Proposition (consistency)

Assume P_{θ^*} stationary, then under Assumptions C_1 to C_4 in the general case or under Assumptions C_1 , $C_{2,4}^{exp}$ and C_3^{exp} in the exponential case, we have P_{θ^*} -almost surely, as $n \to +\infty$,

$$\widehat{\boldsymbol{ heta}}_n(\Phi)
ightarrow \boldsymbol{ heta}^{\star}$$

Fools

- Glötz Theorem, refined Campbell theorem.
- General ergodic theorems obtained by Nguyen and Zessin (1979).
- General result concerning the consistency of minimum contrast estimators obtained by Guyon (1992).

4 3 5 4 3 5

Consistency: statement of the result

Proposition (consistency)

Assume P_{θ^*} stationary, then under Assumptions C_1 to C_4 in the general case or under Assumptions C_1 , $C_{2,4}^{exp}$ and C_3^{exp} in the exponential case, we have P_{θ^*} -almost surely, as $n \to +\infty$,

$$\widehat{\boldsymbol{ heta}}_n(\Phi)
ightarrow \boldsymbol{ heta}^\star$$

Tools

- Glötz Theorem, refined Campbell theorem.
- General ergodic theorems obtained by Nguyen and Zessin (1979).
- General result concerning the consistency of minimum contrast estimators obtained by Guyon (1992).

Gibbs point processes Statistical model and inference method / Consistency of the mple estimator Asymptotic normality of the

Asymptotic normality: assumptions - general case (1)

N₁ The point process is observed in a domain $\Lambda_n \oplus D = \bigcup_{x \in \Lambda_n} \mathcal{B}(x, D)$, where $\Lambda_n \subset \mathbb{R}^2$ can de decomposed into $\bigcup_{i \in I_n} \Lambda_{(i)}$ where for $i = (i_1, i_2)$

$$\Lambda_{(i)} = \left\{ z \in \mathbb{IR}^2, \widetilde{D}\left(i_j - \frac{1}{2}\right) \le z_j \le \widetilde{D}\left(i_j - \frac{1}{2}\right), j = 1, 2 \right\}$$

for some $\widetilde{D} > 0$. As $n \to +\infty$, we also assume that $\Lambda_n \to IR^2$ such that $|\Lambda_n| \to +\infty$ and $\frac{|\partial \Lambda_n|}{|\Lambda_n|} \to 0$

N₂ $V(0|:; \theta)$ is twice times differentiable in $\theta = \theta^*$ and for all j, k = 1, ..., p + 1, there exists $\varepsilon > 0$ such that the variables

$$\frac{\partial V}{\partial \theta_j} \left(0 | \cdot ; \boldsymbol{\theta}^\star \right)^{3 + \varepsilon} \text{ and } \frac{\partial^2 V}{\partial \theta_j \partial \theta_k} \left(0 | \cdot ; \boldsymbol{\theta}^\star \right) \ \in L^1(P_{\boldsymbol{\theta}^\star})$$

A B A B A B B B A A A

The matrix

Asymptotic normality: assumptions - general case (2)

 N_3

$$\underline{\boldsymbol{\Sigma}}(\widetilde{D}, \boldsymbol{\theta}^{\star}) = \widetilde{D}^{-2} \sum_{|i| \leq \left[\frac{D}{D}\right]+1} \mathbf{E}_{\boldsymbol{\theta}^{\star}} \left(\mathsf{LPL}_{\Lambda_0}^{(1)}(\Phi; \boldsymbol{\theta}^{\star}) \, \mathsf{LPL}_{\Lambda_i}^{(1)}(\Phi; \boldsymbol{\theta}^{\star})^T \right)$$

is symmetric and definite positive.

The vector
$$\mathbf{LPL}_{\Lambda_{i}}^{(1)}(\varphi; \theta)$$
 is defined for $j = 1, ..., p+1$ by
 $\left(\mathbf{LPL}_{\Lambda_{i}}^{(1)}(\varphi; \theta)\right)_{j} = \int_{\Lambda_{(i)}} \frac{\partial V}{\partial \theta_{j}}(x|\varphi; \theta) \exp\left(-V\left(x|\varphi; \theta\right)\right) dx - \sum_{x \in \varphi_{\Lambda_{(i)}}} \frac{\partial V}{\partial \theta_{j}}(x|\varphi \setminus x; \theta).$

$$\begin{split} \mathbf{N}_{\mathbf{4}} \ \forall \mathbf{y} \in \mathsf{IR}^{p+1} \setminus \{\mathbf{0}\} \\ P_{\boldsymbol{\theta}^{\star}} \left(\left\{ \varphi, \ \mathbf{y}^{\mathsf{T}} \mathbf{V}^{(1)}(\mathbf{0}|\varphi; \boldsymbol{\theta}^{\star}) \neq \mathbf{0} \right\} \right) > \mathbf{0}, \end{split}$$

where for i = 1, ..., p + 1, $(\mathbf{V}^{(1)}(0|\varphi; \boldsymbol{\theta}^{\star}))_i = \frac{\partial V}{\partial \theta_i} (0|\varphi; \boldsymbol{\theta}^{\star}).$

Gibbs point processes Statistical model and inference method / Consistency of the mple estimator Asymptotic normality of the

Asymptotic normality: assumptions - general case (3)

N₅ There exists a neighborhood \mathcal{W} of θ^* such that $V(\cdot; \theta)$ is twice times continuously differentiable for all j, k = 1, ..., p + 1, we have

$$\left|\frac{\partial V}{\partial \theta_j}\left(0|\Phi;\boldsymbol{\theta}\right) - \frac{\partial V}{\partial \theta_j}\left(0|\Phi;\boldsymbol{\theta}^\star\right)\right| \leq ||\boldsymbol{\theta} - \boldsymbol{\theta}^\star||^{c_1} h_1(0,\Phi),$$

and

$$\left|\frac{\partial^2 V}{\partial \theta_j \partial \theta_k} \left(0|\Phi; \boldsymbol{\theta}\right) - \frac{\partial^2 V}{\partial \theta_j \partial \theta_k} \left(0|\Phi; \boldsymbol{\theta}^\star\right)\right| \leq ||\boldsymbol{\theta} - \boldsymbol{\theta}^\star||^{c_2} h_2(0, \Phi),$$

with $c_1, c_2 > 0$ and $h_1(\cdot, \cdot), h_2(\cdot, \cdot)$ two functions such that, for all $x, h_i(0, \Phi) = h_i(x, \Phi_x)$ and such that $h_1(0, \cdot)^2$ and $h_2(0, \cdot) \in L^1(P_{\theta^*})$.

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ● ●

Asymptotic normality: assumptions - exponential case

Assumptions N_2 and N_5 (resp. $N_4)$ can be replaced by $N_{2,5}^{exp}$ (resp. $N_4^{exp})$ where

 $\begin{array}{ll} \mathsf{N}_{\mathbf{2},\mathbf{5}}^{\mathsf{exp}} \ \ \mathsf{For} \ i=1,\ldots,p+1, & \text{there exists } \varepsilon>0 \ \text{such that} \\ u_i(0|\cdot) \in L^{3+\varepsilon}(P_{\theta^\star}). \\ \mathsf{N}_{\mathbf{4}}^{\mathsf{exp}} \ \ = \mathbf{C}_{\mathbf{3}}^{\mathsf{exp}} \end{array}$

Asymptotic normality: statement of the result

Proposition (asymptotic normality)

Assume P_{θ^*} stationary, then under Assumptions N₁ to N₅ in the general case or under Assumptions $N_1 N_{25}^{exp} C_3^{exp}$ and N_3 in the exponential case, we have, for any fixed \tilde{D} fixed

$$|\Lambda_n|^{1/2} \, \underline{\widehat{\Sigma}}_n(\widetilde{D},\widehat{\theta}_n)^{-1/2} \, \underline{\mathsf{U}}_n^{(2)}(\widehat{\theta}_n) \, \left(\widehat{\theta}_n - \boldsymbol{\theta}^\star\right) \to \mathcal{N}\left(0,\underline{\mathsf{I}}_{p+1}\right),$$

where for some θ and some finite configuration φ

$$\underline{\widehat{\boldsymbol{\Sigma}}}_{n}(\widetilde{D},\boldsymbol{\theta}) = |\boldsymbol{\Lambda}_{n}|^{-1}\widetilde{D}^{-2}\sum_{i\in I_{n}}\sum_{|j-i|\leq \left[\frac{D}{D}\right]+1,j\in I_{n}} \mathsf{LPL}_{\boldsymbol{\Lambda}_{i}}^{(1)}(\varphi;\boldsymbol{\theta}) \,\mathsf{LPL}_{\boldsymbol{\Lambda}_{j}}^{(1)}(\varphi;\boldsymbol{\theta})^{T}$$

Asymptotic normality: statement of the result

Proposition (asymptotic normality)

Assume P_{θ^*} stationary, then under Assumptions N₁ to N₅ in the general case or under Assumptions $N_1 N_{25}^{exp} C_3^{exp}$ and N_3 in the exponential case, we have, for any fixed \tilde{D} fixed

$$|\Lambda_n|^{1/2} \, \underline{\widehat{\Sigma}}_n(\widetilde{D},\widehat{\theta}_n)^{-1/2} \, \underline{\mathsf{U}}_n^{(2)}(\widehat{\theta}_n) \, \left(\widehat{\theta}_n - \boldsymbol{\theta}^\star\right) \to \mathcal{N}\left(0,\underline{\mathsf{I}}_{p+1}\right)$$

where for some θ and some finite configuration φ

$$\widehat{\underline{\boldsymbol{\Sigma}}}_{n}(\widetilde{D},\boldsymbol{\theta}) = |\Lambda_{n}|^{-1}\widetilde{D}^{-2}\sum_{i\in I_{n}}\sum_{|j-i|\leq \left[\frac{D}{\widetilde{D}}\right]+1, j\in I_{n}} \mathsf{LPL}_{\Lambda_{i}}^{(1)}(\varphi;\boldsymbol{\theta}) \,\mathsf{LPL}_{\Lambda_{j}}^{(1)}(\varphi;\boldsymbol{\theta})^{\mathsf{T}}$$

Tools

- Asympt. normality for minimum contrast estimators (Guyon (1992)).
- Central Limit Theorem obtained by Jensen and Künsch (1994).

Outline

Gibbs point processes

- Basic definition
- Existence conditions based on the energy function
- Description of some Gibbs models
- 2 Statistical model and inference method

3 Asymptotic results

- Consistency of the mple estimator
- Asymptotic normality of the mple estimator

4 Description of some examples and short simulation

ヨトイヨト

A useful corollary

A particular class of exponential family

M There exists $K_1, K_2 > 0$ such that for any finite configuration φ , we have for all x

$$-\mathcal{K}_1 \leq u_i(x|arphi) \leq \mathcal{K}_2, \qquad ext{ for } i=1,\ldots,p+1$$

Assumption
$$M \Longrightarrow C^{exp}_{2,4}$$
 and $N^{exp}_{2,5}$

Corollary

Assume P_{θ^*} stationary, then under Assumption **M** and C_3^{exp} , the consistency is valid. And in addition under Assumption **N**₃ the asymptotic normality is ensured.

- 3 b - 4 3 b

Back to the multi-Strauss pairwise interaction p.p.

$$V\left(arphi;oldsymbol{ heta}
ight)= heta_1|arphi|+\sum_{i=2}^{p+1} heta_i\sum_{\xi\in Del^{eta_0}_{2,eta}(arphi)}oldsymbol{1}(||\xi||\in]d_{i-1},d_i]).$$

Assumption M, C_3^{exp} and N_3

- Assumption M: proved in Bertin, Billiot and Drouilhet (1999).
- Assumption C₃^{exp}: verified by considering particular sets of configurations of two points in a domain
 Δ = {z ∈ IR², −D ≤ z_i ≤ D, i = 1, 2}.
- Assumption N₃: verified for this model by using an inequality obtained by Jensen and Künsch and then by considering particular sets of configurations of tree points in U_{|i|<1}Λ_(i).

Short simulation study

Parameters

•
$$\theta^{\star} = (0, 2, 4)$$
, $\mathbf{d} = (0, 20, 80)$

• m = 5000 replications generated in the domain $[-600, 600]^2$.

Short simulation study

Parameters

• m = 5000 replications generated in the domain $[-600, 600]^2$.

	Estimations of θ_2^{\star}		Estimations of θ_3^{\star}	
Domain Λ_n	Mean	(Std Dev.)	Mean of Estim.	(Std Dev.)
$[-250, 250]^2$	2.068	0.104	4.382	0.786
$[-350, 350]^2$	2.049	0.071	4.223	0.551
$[-450, 450]^2$	2.041	0.056	4.144	0.436

• = • • = •

= 200

Perspectives

- concerning the multi-Strauss pairwise interaction point process based on the Delaunay graph: automatic estimation of the different d_i , i = 1, ..., p + 1.
- A larger simulation study is needed:
 - to compare models based on the Delaunay graph and the complete graph.
 - to investigate other nearest-neighbour models, models based on cliques of order larger than 2, marked nearest-neighbour Gibbs point processes,...
- Nonparametric estimation of the pairwise interaction function for nearest-neighbour Gibbs point processes.

Delaunay graph, delaunay triangulation

Back

Delaunay graph, delaunay triangulation

Back

ъ

Delaunay graph, delaunay triangulation

▲ Back

= 200