Approximation variationnelle pour des HMM multivariés en vue de la détection de CNV chez le mais

Xiaoqiang WANG, Emilie Lebarbier, Julie Aubert \& Stéphane Robin

UMR de Génétique Végétale INRA/Paris Sud/CNRS \& UMR Mathématiques et Informatiques Appliquées INRA/AgroParisTech

MSTGA, May 17 2013, Toulouse

AgroParisTech

(1) Introduction

- Biological context
- Methodology
- Problems
(2) Multivariate HIMM analysis for dependency structure I
- Model
- Inference
- Simulation
- Application
(3) Multivariate HMM analysis for genetic dependency structure II
- Model
- Inference
- Simulation
(4) Conclusion

Context

- Copy Number Variant (CNV)
- Alterations of the number of copies of one or more sections of the DNA in genome
- Technology : Comparative Genomic Hybridization (CGH)
- CGH in its principle

Chromosome 1

Chromosome 2

Context

CGH: CNV (Test/Reference)

Test DNA

Signal at position $t: Y(t)$

- X: Genomic position
- Y: log2 ($\#$ Test / \sharp Reference)
- Objectif: Classify the genomic regions as, -1 ("deleted"), 0 ("normal"), 1 ("amplified").

Methodology

- Notations
- Hidden status : $\left\{S_{t}\right\} \sim M C(\pi), \quad \pi_{k \ell}=\mathbb{P}\left(S_{t}=\ell \mid S_{t-1}=k\right)$
- Observed data : $\left\{Y_{t}\right\}$ are independent conditionally to \boldsymbol{S}.
- Model

$$
Y_{t}=\sum_{k} S_{t}^{k} \mu_{k}+\varepsilon_{t}
$$

where $S_{t}^{k}=\mathbb{1}_{\left\{S_{t}=k\right\}}, \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.

- HMM denoted by $\theta=(m, \boldsymbol{\pi}, \gamma)$
- m : initial state distribution
- π : transition probability for Markov chain $\left(S_{t}\right)$
- γ : parameter in emission probability, i.e., $\gamma=\left(\mu, \sigma^{2}\right)$

Methodology

- Graphical representation

- Complete likelihood

$$
\begin{aligned}
\mathbb{P}(\boldsymbol{Y}, \boldsymbol{S}) & =\mathbb{P}(\boldsymbol{S}) \mathbb{P}(\boldsymbol{Y} \mid \boldsymbol{S}) \\
& =\left\{\prod_{k} m_{k}^{S_{1}^{k}} \prod_{t>1} \prod_{k, \ell} \pi_{k \ell}^{S_{t-1}^{k} S_{t}^{\ell}}\right\}\left\{\prod_{t} \prod_{\ell} \phi\left(Y_{t} ; \gamma_{k}\right)^{S_{t}^{\ell}}\right\}
\end{aligned}
$$

- Objectif : Infer $\boldsymbol{S} \mid \boldsymbol{Y}$
- Inference : E-M algorithm
- E-step: calculate $\mathbb{P}(S \mid Y)$ by Forward-Backward
- M-step: estimate $\theta=\arg \max _{\theta} \mathbb{E}[\log \mathbb{P}(S, Y) \mid Y]$

Question: Dependency structure I

C/B

C

Question?

- Perform a joint analysis taking into account the dependency structure due to the experiments
- Detect CNV for lines through their comparisons

Question: Genetic dependency structure II

- The lines are genetically correlated, e.g., $\operatorname{cor}(\mathrm{A}, \mathrm{B})=0.8$ $\operatorname{cor}(\mathrm{A}, \mathrm{C})=0.2$ $\operatorname{cor}(\mathrm{B}, \mathrm{C})=0.2$

Question?

- Perform a joint analysis taking into account the genetic dependency structure among lines A, B and C
(1) Introduction
- Biological context
- Methodology
- Problems
(2) Multivariate HMM analysis for dependency structure I
- Model
- Inference
- Simulation
- Application
(3) Multivariate HMM analysis for genetic dependency structure II
- Model
- Inference
- Simulation
(4) Conclusion

Multivariate HMM Model

- Notations
- I: number of lines; \boldsymbol{M} : number of comparisons;
- Y_{t} : observation ;
- $S_{i, t}$: hidden status and $S_{i, t}^{q}=\mathbb{1}_{\left\{S_{i, t}=q\right\}}$
- Model

$$
\underset{M \times 1}{Y_{t}}=\underset{M \times I}{D} \underset{I \times 1}{D} \quad \eta_{t}+\varepsilon_{t},
$$

- $\eta_{t}=\left(\eta_{1, t}, \ldots, \eta_{l, t}\right)^{T}$ with $\eta_{i, t}=\sum_{q} \mu_{q} S_{i, t}^{q}$,
- D : design matrix, e.g.,

$$
\left(\begin{array}{l}
Y_{\mathrm{B} / \mathrm{A}} \\
Y_{\mathrm{C} / \mathrm{B}} \\
Y_{\mathrm{A} / \mathrm{C}}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
\eta_{\mathrm{A}} \\
\eta_{\mathrm{B}} \\
\eta_{\mathrm{C}}
\end{array}\right)
$$

- $\varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2} I_{M}\right)$

Multivariate HMM Model

- Graphical representation

$-S_{1, t}$: hidden status at position t for line 1, e.g. -1, 0, 1 .
- $Y_{(1,2), t}$: observation of $\log 2(\sharp$ line $1 / \sharp$ line 2$)$ at position t.
- Inference
- Small I : Exact inference by E-M algorithm
- Big I : Approximate inference by variational E-M algorithm

Inference when I is small

- For example

$$
\begin{aligned}
& \left(S_{1, t}, S_{2, t}\right)=(1,1) \Leftrightarrow S_{t}=1 \\
& \left(S_{1, t}, S_{2, t}\right)=(1,2) \Leftrightarrow S_{t}=2
\end{aligned}
$$

Inference when I is large

- Question : $\mathbb{P}\left(S_{t} \mid Y\right)$ can not be computed when I is large, e.g, if $I=10$ and $Q=3, S_{t}$ has $3^{10}=59049$ status to be considered.
- Solution : $\tilde{\mathbb{P}}(S) \cong \mathbb{P}(S \mid Y)$
- Reminder : Kullback-Leibler divergence

$$
K L[\tilde{\mathbb{P}}(S) \| \mathbb{P}(S \mid Y)]=\int \tilde{\mathbb{P}}(S) \log \frac{\tilde{\mathbb{P}}(S)}{\mathbb{P}(S \mid Y)} d S
$$

- KL is always non-negative
- Null iff $\tilde{\mathbb{P}}=\mathbb{P}$

$$
\tilde{\mathbb{P}}(S)=\arg \min _{\tilde{\mathbb{P}} \in \mathcal{D}} K L[\tilde{\mathbb{P}}(S) \| \mathbb{P}(S \mid Y)]
$$

Inference when I is large

- Graphical representation

Distribution: $\mathbb{P}(S, Y)$

Distribution: $\tilde{\mathbb{P}}(S)$

$$
\prod_{t} \mathbb{P}\left(S_{t} \mid S_{t-1}\right) \mathbb{P}\left(Y_{t} \mid S_{t}\right)
$$

$$
\prod_{i} \prod_{t} \tilde{\mathbb{P}}\left(S_{i, t} \mid S_{i, t-1}\right)
$$

- Key : find $\tilde{\mathbb{P}}\left(S_{i, t} \mid S_{i, t-1}\right)$ to break the dependency

Inference when I is large

Proposition

Let denote $p_{\text {itgr }}=\tilde{\mathbb{P}}\left(S_{i, t}=r \mid S_{i, t-1}=q\right)$, then we obtain a set of fixed point equations for $p_{\text {itgr }}$:

$$
\begin{aligned}
& p_{i t q r} \propto \pi_{q r} \prod_{j \in m^{-}(i), v} \phi\left(Y_{(i, j), t} ; \mu_{r v}, \sigma^{2}\right)^{\mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{j, t}^{v}\right)} \\
& \quad \times \prod_{j \in m^{+}(i), u} \phi\left(Y_{(j, i), t} ; \mu_{u r}, \sigma^{2}\right)^{\mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{j, t}^{u}\right)}
\end{aligned}
$$

where π is the transition probability and ϕ emission probability.

- Inference by variational E-M algorithm

Inference when I is large

- Variational E-step: find

$$
\tilde{\mathbb{P}}^{(h)}(S)=\arg \min _{\tilde{\mathbb{P}} \in \mathcal{P}} K L\left[\tilde{\mathbb{P}}(S) \| \mathbb{P}\left(S \mid Y, \theta^{(h)}\right)\right]
$$

where $\mathcal{P}=\left\{\tilde{\mathbb{P}}(S) \mid \tilde{\mathbb{P}}(S) \propto \prod_{i} \prod_{t} \tilde{\mathbb{P}}\left(S_{i, t} \mid S_{i, t-1}\right)\right\}$

- Variational M-step: estimate $\theta=\left(m, \pi, \mu, \sigma^{2}\right)$ as

$$
\hat{\theta}^{(h+1)}=\arg \max _{\theta} \mathbb{E}_{\tilde{\mathbb{P}}(h)}[\log \mathbb{P}(Y, S \mid \theta)]
$$

- $\hat{m}_{q}, \hat{\pi}_{q r}$

$$
\hat{m}_{q} \propto \sum_{i} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, 1}^{q}\right) \quad \hat{\pi}_{q r} \propto \sum_{i, t} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t-1}^{q} S_{i, t}^{r}\right)
$$

- $\hat{\mu}, \hat{\sigma^{2}}$

$$
\left(\hat{\mu}, \hat{\sigma^{2}}\right)=\arg \max _{\mu, \sigma^{2}} \sum_{t,(i, j)} \sum_{q, r} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t}^{q}\right) \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{j, t}^{r}\right) \log \phi\left(Y_{(i, j), t} ; \mu_{q r}, \sigma^{2}\right)
$$

Simulation and Discussion

(1) Input

	Simulation I	Simulation II
I	3	5
M	6	20
μ	$(-1,0,1)$	$(-1,0,1)$
σ^{2}	0.36	0.36
T	5000	5000
Nb. Sim.	100	100

(2) Multivariate HMM: perform a joint analysis with exact inference and variational inference, respectively.
(3) Output

$$
\hat{m}, \quad \hat{\pi}, \quad \hat{\mu}, \quad \hat{\sigma}, \quad \mathbb{P}\left(S_{i, t}=k \mid Y\right)
$$

Simulation and Discussion

- One simulation :

Simulation and Discussion

- Result simulation : red (true), blue (estimation)

Simulation and Discussion

- Time
- Mean time for one multivariate analysis

	Exact	Variational
$I=3$	58 s	2 s
$I=5$	396 s	13 s

- Accuracy
- Error rate for comparison between lines, e.g. $B / A, A / C, \ldots$

- Error rate for lines, e.g. A, B, \ldots

	Exact	Variational
$I=3$	5.4%	29%

Biogemma data analysis

- Experimental design
- Lines: F2, Mo17, B73 (Reference)
- Comparisons: F2/B73a, F2/B73b, Mo17/B73a, Mo17/B73b
- Information on Chromosome
- 2139527 probes (data point) on 10 chromosomes

Chromosome	1	2	3	4	5
Probe size	323410	252569	243428	260526	220582
Chromosome	6	7	8	9	10
Probe size	173328	182823	175177	156925	150759

- Joint analyses one by one chromosome

- Chromosome 1
- First 2000 probes
- Orange : mean

- Two joint analyses
- Red : Multivariate HMM
- Blue : Multivariate HMM but forcing B73 to be 0
- Different status

	Red \neq Blue
F2	0.9%
Mo17	0.45%
B73	0.65%
Total	0.67%

(4) Introduction

- Biological context
- Methodology
- Problems
(3) Multivariate HMM analysis for dependency structure I
- Model
- Inference
- Simulation
- Application
(3) Multivariate HMM analysis for genetic dependency structure II
- Model
- Inference
- Simulation
(4) Conclusion

Question: Genetic dependency structure II

- The lines are genetically correlated, e.g., $\operatorname{cor}(\mathrm{A}, \mathrm{B})=0.8$ $\operatorname{cor}(\mathrm{A}, \mathrm{C})=0.2$ $\operatorname{cor}(\mathrm{B}, \mathrm{C})=0.2$

Question?

- Perform a joint analysis taking into account the genetic dependency structure among lines A, B and C

Multivariate HMM Model

- Notations
- I: number of lines
- $X_{i, t}$: observation
- $S_{i, t}$: hidden status but $\forall i \neq j,\left(S_{i, t}, S_{j, t}\right)$ are not independent
- Model

$$
X_{i, t}=\sum_{q} S_{i, t}^{q} \mu_{q}+\varepsilon_{t}
$$

- $S_{i, t}^{q}=\mathbb{1}_{\left\{S_{i, t}=q\right\}}$
- $\varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2} l_{l}\right)$
- Inference
- Small data: Exact inference by E-M algorithm
- Big data : Approximate inference by variational E-M algorithm

Inference

- Graphical representation

- Complete likelihood

$$
\mathbb{P}(\boldsymbol{X}, \boldsymbol{S}) \propto \prod_{k} m_{k}^{S_{k}^{k}} \prod_{t>1} \prod_{k, \ell} \Pi_{k \ell}^{S_{t-1}^{k} S_{t}^{\ell}} W_{\ell}^{S_{t}^{\ell}} \prod_{t} \prod_{\ell} \phi\left(X_{t} ; \gamma_{\ell}\right)^{S_{t}^{\ell}}
$$

where $W_{\ell}=\mathbb{P}(S=\ell)$.

Inference

- Graphical representation

- For the part of cyclic

Model

Let $W_{\ell}=\mathbb{P}(S .=\ell)$,

$$
W_{\ell} \propto \prod_{i, j \neq i} \omega^{s_{i j} \mathbb{1}_{\left\{q_{j}^{\ell} \neq q_{i}^{\ell}\right\}}}
$$

with $\omega<1,\left(s_{i j}\right)_{i j}$ is the similarity matrix.

Inference

- Small I: exact inference with E-M algorithm is similar to that of dependency I .
- Big $I: \mathbb{P}(S \mid X)$ is not computable, find

$$
\tilde{\mathbb{P}}(S) \cong \mathbb{P}(S \mid X)
$$

in terms of Kullback-Leibler divergence.

Inference when / is large

- Graphical representation

Distribution: $\mathbb{P}(S, X)$

Distribution: $\tilde{\mathbb{P}}(S)$

$K L[\tilde{\mathbb{P}}|\mid \mathbb{P}]$
 $\longrightarrow \mathbf{S}_{1, t} \longrightarrow$ $\longrightarrow \boldsymbol{S}_{2, t} \longrightarrow$ $\longrightarrow \boldsymbol{S}_{3, t} \longrightarrow$

Inference when I is large

Proposition

Let denote $p_{\text {itqr }}=\tilde{\mathbb{P}}\left(S_{i, t}=r \mid S_{i, t-1}=q\right)$, then we obtain a set of fixed point equations for $p_{\text {itgr }}$:

$$
p_{i t q r} \propto \pi_{q r} \omega^{\sum_{j \neq i}\left(1-\mathbb{E}_{\mathbb{P}} S_{j, t}^{r}\right)} \phi\left(X_{i, t}, \mu_{r}, \sigma^{2}\right),
$$

where π is the transition probability and ϕ emission probability.

- Variational E-step: find

$$
\begin{array}{r}
\tilde{\mathbb{P}}(S)=\arg \min _{\tilde{\mathbb{P}} \in \mathcal{P}} K L[\tilde{\mathbb{P}}(S) \| \mathbb{P}(S \mid X)] \\
\text { where } \mathcal{P}=\left\{\tilde{\mathbb{P}}(S) \mid \tilde{\mathbb{P}}(S) \propto \prod_{i} \prod_{t} \tilde{\mathbb{P}}\left(S_{i, t} \mid S_{i, t-1}\right)\right\}
\end{array}
$$

Inference when I is large

- Variational M-step: estimate $\theta=\left(m, \pi, \mu, \sigma^{2}\right)$ as

$$
\hat{\theta}^{(h+1)}=\arg \max _{\theta} \mathbb{E}_{\tilde{\mathbb{P}}(h)}[\log \mathbb{P}(Y, S \mid \theta)]
$$

- \hat{m}

$$
\hat{m}_{q} \propto \sum_{i} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, 1}^{q}\right)
$$

- $\hat{\pi}_{q r}$

$$
\hat{\pi}_{q r} \propto \sum_{i, t} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t-1}^{q} S_{i, t}^{r}\right)
$$

- $\hat{\mu}$

$$
\hat{\mu}_{r}=\sum_{i, t} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t}^{r}\right) X_{i, t} / \sum_{i, t} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t}^{r}\right)
$$

- $\hat{\sigma}^{2}$

$$
\hat{\sigma}^{2}=\sum_{i, t, r} \mathbb{E}_{\tilde{\mathbb{P}}}\left(S_{i, t}^{r}\right)\left(X_{i, t}-\hat{\mu}_{r}\right)^{2} / I T
$$

Simulation and Discussion

(1 Input

| Simulation I |
| :---: | :---: |
| Simulation II
 $s_{i j}$$\quad\left(\begin{array}{ccc}1 & 0.8 & 0.2 \\ 0.8 & 1 & 0.2 \\ 0.2 & 0.2 & 1\end{array}\right) \quad\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0.24 & 0.32 & 0.4 \\ 0 & 0.24 & 1 & 0.48 & 0.6 \\ 0 & 0.32 & 0.48 & 1 & 0.8 \\ 0 & 0.4 & 0.6 & 0.8 & 1\end{array}\right)$ |

(2) Multivariate HMM: perform a joint analysis with exact inference and variational inference, respectively.
(3) Output

$$
\hat{m}, \quad \hat{\pi}, \quad \hat{\mu}, \quad \hat{\sigma}, \quad \mathbb{P}\left(S_{i, t}=q \mid X\right)
$$

Simulation and Discussion

- Time
- Mean time for one joint analysis

	Exact	Variational
$I=3$	48 s	0.2 s
$I=5$	450 s	0.6 s

- Accuracy
- Error rate for lines, e.g. A, B, \ldots

	Exact	Variational
$I=3$	0.5%	4.5%

Conclusion

- Multivariate HMM
- Perform the joint analysis taking into account the dependency due to the CGH experiments
- Perform the joint analysis taking into account the dependency among plant lines
- Perform the joint analysis taking into account two above dependencies
- Inference
- When line size is large, the inference becomes impossible.
- Variational technique provides a fast algorithm.
- R package "MHMM" is built, and handles 16 different cases
- Paired / Unpaired for observation
- Dependent / Independent for hidden status
- Exact / Variational for inference
- Yes / No for reference
- UMR AgroParisTech/INRA Emilie Lebarbier Julie Aubert Stéphane Robin

Thank you!

- UMR Moulon

Stéphane Nicolas

- Biogemma

Jean-Philippe Pichon

