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Genetic structure of Scandinavian brown bears



Spatial genetics

e Statistical genetics : Use of DNA samples to infer the evolutionary processes that shaped
the molecules

e Spatial genetics : Explain the spatial variation of DNA among individuals within a
population.




Why Is it important?

Detect the presence of genetically clustered subpopulations (populations are usually

defined from subjective criteria)

Detect changes in population structure: e.g., recent migrations or admixtures

Issues: Undetected structure may

lead to conclude that genes are under selection while they are not (low heterozygosity)

modify Linkage Desequilibrium (correlation among genes) and create wrong associations

(of genes to diseases for example)



The data: multilocus genotypes and sampling locations
e |ndividuals sampled at several geographical sites
e DNA genotyping: each individual genome DNA is amplified at specific loci

e Molecular markers: Short Tandems Repeats in DNA (microsatellites), Single Nucleotide

Polymorphisms are the alleles at these loci
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Allele frequencies: the Hardy-Weindberg Law
e Allele frequencies are under equilibrium and remain constant over successive generations

e A consequence of Mendel's law that assumes a panmitic (neutral) rule of mating .
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A Bayesian clustering model
Model-based approach (Prichard Stephens & Donnelly, Genetics, 2000).
The population is subdivided into /X subpopulations/clusters
Each individual may have multiple membership to subpopulations (probabilities 7.)

Each subpopulation evolves under HW equilibrium. The prior distribution of allele

frequencies is a Dirichlet distribution.

The loci evolve under linkage equilibrium (independence of loci).



DAG representation

Mixture of Dirichlet + multinomial sampling

—)@ C ~ U[1.K]
Cluster label

— F Fk ~ Dir( o, ,a )

Allele frequencies in cluster k
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Including spatial priors
e Hidden Markov Random Field: the Potts Model.

e Individuals living nearby tend to be more alike than those living far apart (Malécot, 1948;
Kimura and Weiss 1964).

e Markov property at the cluster membership level.
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New DAG representation

The things to compute: Prob(C = k|Z = z)

K ¢ w

C ~Potts Model

J/ Cluster label

al— F Fk ~ Dir( o, . )

Allele frequencies

J’ in cluster k

Z Genotype
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Model detalls

e Genotypes: Z = {(z;,27),{ = 1,... L}, where L is the number of loci and the

2t € {1,...,J¢} are the two copies of the allele at locus .

e Conditional probability (HW)
L
P(Z=2|C=k F=f)=]] faelzi) fre(}) (2 - 6.1.2)
/=1

e The allele frequencies are sampled from Dirichlet distributions (dimension Jy)

fkg() ~ D(Oz, coey Oé),
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HMRF

e Prior distribution on cluster membership C': MRF for a graph computed from the

geographical locations of the sampling sites
P(Ci=c¢ |Cj=cj,j~1)xexp sz(Ci,cj)
jrvi
e The value x(c;, c¢;) represent the interactions between individuals.

e j ~ ¢ means that 7 et j are neighbours

e Hammersley-Clifford Theorem (1972): representation as a Gibbs measure.
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Error Rates in Coassignements - Simulations /X = 2

Posterior membership probabilities are computed using a MCMC algorithm.,

Fg1 = measure of genetic differentiation (low levels < 0.05)

Genet. structure NON-SPATIAL HMRF GENELAND

Fgr MODEL MODEL
all 16.1 0.7 3.2
Fgr <0.08 26.3 1.6 6.6
0.08< Fs7<0.09 7.6 0.6 1.4
0.09< Fy1<0.1 8 0.6 1.4

Fst>0.1 8.3 0.2 1.1
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Data analysis: Scandinavian brown bears

e 366 brown bears genotyped at 19 microsatellite loci (J. Swenson, Agricultural Univ.
Norway), Waits et al. (2001)

e Biologists believed that the population was subdivided into 4 subpopulations (4 areas)

e Areas identified from hunting data during the years 1981-1993 and from the history of the
bottleneck
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The four predefined subpopulations
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Clustering using the HMRF model

Confirmed by a genealogical method
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The Northern NWN cluster

Spatial interpolation of the cluster membership probability, and the posterior assignments to the
NWN cluster (black color)
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Discussion: The HMRF model

Choice of K': Bayesian regularisation (cf ridge regression, lasso estimators).

The log-likelihood writes as

L(Z, f, C) — Lnon spatial(za f7 C) + ¢U(C)

where 1) is the interaction intensity parameter, and U (c) the Energy of a cluster

configuration in the Potts model.

1) = Lagrange multiplier in a constraint optimization problem where the non-spatial
likelihood is optimized while the algorithm attempts to assign a maximal number of

neighbours pairs to a same cluster.

MCMC implantation: extension to include local departures from the HW equilibrium

(inbreeding)
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Discussion: Bears

The HMRF hypothesis (Potts) is reasonable because the strong phylopatry of females tends

to induce a continuous distribution of genotypes across space

2 cluster matches with two predefined populations (S and M)

But two others don't!

The NWN (fourth) cluster can be explained by the matriarchal structure of the population.

Actually, one male was responsible for 88% of the descendants in the group, the male was
the father of 70% of them, grandfather of 12% and great-grandfather for 6% of them, and

probably the uncle for 9% of them (parentage analysis).

Conclusion for the bear conservation policy: No reasons for distinguishing the NS and NN

regions.
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