Processus de contact sur graphe et méthodes variationnelles de simplification de la structure spatiale

Nathalie Peyrard, dept. MIA - INRA - Avignon/Toulouse Alain Franc, dept EFPA - INRA - Bordeaux Ulf Dieckmann, projet ADN - IIASA - Vienne

Motivation

- Quelles sont les caractéristiques du réseau qui influencent l'évolution du processus? Comment?
- Rôle sur la transition de phase?
- Comment améliorer l'estimation de la valeur critique?

Structure des graphes

- Principales caractéristiques des graphes :
 - distribution des degrés, ${\cal P}$
 - coefficient d'aggrégation, ${\boldsymbol C}$
 - diamètre, \boldsymbol{d}
 - corrélation des degrés

	Random Graph	Scale-free	Graphes
	(Poisson)	(Barabasi)	Réels
Petit d	×	×	Х
Grand C	NON	NON	Х
P, loi puissance	NON	×	×

Newman, M. E. J., 2003. The structure and function of complex networks. SIAM Review 45, 167-256

Effet de la distribution des degrés

Effet du coefficient d'aggrégation

Clustering Coefficient

Effet de la corrélation des degrés

 Deux graphes en loi de puissance
 un avec degrés non corrélés
 un avec hubs connectés
 préférentiellement aux sommets de faible degré
 → le second est un frein à
 0.1 la propagation

Eguiluz V. and Klemm K., 2002. Epidemic threshold in structured scaled free networks, Phys. Rev. Let. (89)

Le modèle de processus de contact

- stochastique,	
- spatio-temporel	$a_i = nb$ de voisins de <i>i</i> infectes
- 2 états (sain/malade),	$P(z_i^{t+dt} = 0 z_i^t = 1) = dt$
- b: taux de contamination par site,	$P(z_i^{t+dt} = 1 z_i^t = 0, a_i = a) = a b dt$
- transition de phase	$\rho(t) = P(z_i^t = 1)$

Harris T.E., 1974. Contact interactions on a lattice, Annals of Probability, 2, 969-988

Equations des dynamiques d'ordre 1 et 2

• Pour un graphe à degré constant d :

$$\frac{d\rho}{dt} = (1-\rho)t_{0\to 1} - \rho$$

$$\frac{dP^{(1)}(01)}{dt} = (\rho - P^{(1)}(01)) + (1-\rho - P^{(1)}(01))t_{00\to 01}^{(1)} - P^{(1)}(01)(1+t_{01\to 11}^{(1)})$$

$$\frac{d\rho}{dt} = dbP^{(1)}(01) - \rho$$

$$\frac{dP^{(1)}(01)}{dt} = (\rho - P^{(1)}(01)) + b(d-1)P^{(1,1)}(100)$$

$$-P^{(1)}(01)[1+b+b(d-1)\frac{P^{(1,1)}(100)}{1-\rho - P^{(1)}(01)}]$$

Simplification de la complexité spatiale

• Principe : méthode d'approximation par troncature de la hiérarchie à un niveau choisi

• Fermeture à l'ordre 2, compromis entre précision et complexité \Rightarrow on approche les probabilités sur les triplets par une fonction des probas sur les singletons et sur les paires

• Plusieurs fermetures possibles dans la litérature

 $\sum_{i=1}^{N} \mathbb{P}^{(1,1)}(z_i, z_j, z_k) \approx C \tilde{P}^{\Delta}(z_i, z_j, z_k) + (1-C) \tilde{P}^{\wedge}(z_i, z_j, z_k),$ C: coefficient d'aggrégation du réseau d'interaction

Dieckmann U., Law R. and Metz J.A. editors, 2000. The geometry of ecological interactions - Simplifying spatial complexity. Cambridge Studies in Adaptative Dynamics. Cambridge University Press, UK.

Objectif : Prise en compte des corrélations à longue distance dans la fermeture

• les solutions existantes de fermeture des moments ne prennent en compte que les corrélations à distance 1

• mauvaise approximation près du point critique (décroissance des corrélations en loi puissance au lieu d'exponentielle)

 \Rightarrow introduction des corrélations à plus grande distance

Méthodes variationnelles

- Origine = mécanique statistique, étude des systèmes de particules en interaction, minimum d'entropie
- Espace discret (grille, graphe)
- Utilisé en analyse d'image (estimation), écologie (recherche d'équilibre), modèles graphiques (inférence)

- Méthode la plus naïve, à l'ordre 1 : approximation champ moyen
- on approche l'influence des voisins par leur influence moyenne \rightarrow indépendance des sites
- Approximation par paire (Sato, Iwasa, 2000)
 - même approximation pour un triangle fermé et ouvert

$$\tilde{P}^{\triangle}(z_i, z_j, z_k) = \frac{P^{(1)}(z_i, z_j)P^{(1)}(z_j, z_k)}{P(z_j)}$$

- Approximation de Bethe (Morita, 1994)
 - égal à l'approx. par paire lorsque le triangle est ouvert

$$\tilde{P}^{\triangle}(z_i, z_j, z_k) = \frac{P^{(1)}(z_i, z_j)P^{(1)}(z_j, z_k)P^{(1)}(z_i, z_k)}{P(z_i)P(z_j)P(z_k)}$$

Généralisation à un ordre quelconque

• Approximation de Kikuchi :

Exemple à l'ordre 4:

$$P(z_1, \dots, z_6) = \frac{P(z_1, z_2, z_3, z_6)P(z_6, z_3, z_4, z_5)}{P(z_6, z_3)}$$

• Application : modèles graphiques

Yedidia J., Freeman, W. and Weiss Y., 2001, Bethe free energy, Kikuchi approximations and belief propagation algorithms, MERL technical report.

Méthodes de fermeture des moments

- Origine : physique, transitions de phase
- Espace continu
- Power 1 (Bolker and Pacala, 1997, Dieckman and Law, 2000)

$$\tilde{P}^{\Delta}(z_i, z_j, z_k) = P(z_i)P^{(1)}(z_j, z_k) + P(z_j)P^{(1)}(z_i, z_k) + P(z_k)P^{(1)}(z_i, z_j) - 2P(z_i)P(z_j)P(z_k)$$

• Power 2 (Dieckmann and Law, 2000)

$$\begin{split} \tilde{P}^{\Delta}(z_i, z_j, z_k) &= \frac{1}{2} \left(\begin{array}{c} \frac{P^{(1)}(z_i, z_j) P^{(1)}(z_j, z_k)}{P(z_j)} + \frac{P^{(1)}(z_i, z_j) P^{(1)}(z_i, z_k)}{P(z_i)} \\ &+ \frac{P^{(1)}(z_i, z_k) P^{(1)}(z_j, z_k)}{P(z_k)} - P(z_i) P(z_j) P(z_k) \end{array} \right) \end{split}$$

• Bethe "classique", l'équation exacte non fermée

$$\frac{d\rho}{dt} = dbP^{(1)}(01) - \rho$$

$$\frac{dP^{(1)}(01)}{dt} = (\rho - P^{(1)}(01)) + b(d-1)P^{(1,1)}(100)$$

$$-P^{(1)}(01)[1 + b + b(d-1)\frac{P^{(1,1)}(100)}{1 - \rho - P^{(1)}(01)}]$$

est fermée en approchant ${\cal P}^{(1,1)}(100)$ par

$$P^{(1,1)}(100) \approx C \frac{P^{(1)}(01)^2 P^{(1)}(00)}{\rho(1-\rho)^2} + (1-C) \frac{P^{(1)}(01) P^{(1)}(00)}{1-\rho}$$

• Approximation Bethe quelles que soient les distances (géodésiques) entre les sommets :

$$\tilde{P}^{(d_{ij},d_{jk},d_{ik})}(z_i,z_j,z_k) = \frac{P^{(d_{ij})}(z_i,z_j)P^{(d_{jk})}(z_j,z_k)P^{(d_{ik})}(z_i,z_k)}{P(z_i)P(z_j)P(z_k)}$$

• si d_{ik} est > 2, on remplace $P^{(d_{ik})}(z_i, z_k)$ par $P(z_i)P(z_k)$

• Rappel, on cherche une approximation de la forme

$$\tilde{P}^{(1,1)}(z_i, z_j, z_k) = C\tilde{P}^{\Delta}(z_i, z_j, z_k) + (1-C)\tilde{P}^{\wedge}(z_i, z_j, z_k)$$

- \Rightarrow L'approximation $\tilde{P}^{\bigtriangleup}(z_i,z_j,z_k)$ ne change pas
- \Rightarrow l'approximation $\tilde{P}^{\wedge}(z_i, z_j, z_k)$ devient

$$\tilde{P}^{(1,1,2)}(z_i, z_j, z_k) = \frac{P^{(1)}(z_i, z_j)P^{(1)}(z_j, z_k)P^{(2)}(z_i, z_k)}{P(z_j)P(z_i)P(z_k)}$$

$$\frac{d\rho}{dt} = dbP^{(1)}(01) - \rho$$

$$\frac{dP^{(1)}(01)}{dt} = (\rho - P^{(1)}(01)) + b(d-1)\tilde{P}^{(1,1)}(100)$$

$$-P^{(1)}(01)[1+b+b(d-1)\frac{\tilde{P}^{(1,1)}(100)}{1-\rho - P^{(1)}(01)}$$

$$\frac{dP^{(2)}(01)}{dt} = -P^{(2)}(01)(t_{01\to11}^{(2)} + t_{01\to00}^{(2)})$$

$$+P^{(2)}(00)t_{00\to01}^{(2)} + P^{(2)}(11)t_{11\to01}^{(2)}$$

$$\tilde{t}_{01\to11}^{(2)} = b(d-1)\frac{\tilde{P}^{(1,2)}(101)}{P^{(2)}(01)} + b\frac{\tilde{P}^{\wedge}(011)}{P^{(2)}(01)}$$

$$\tilde{P}^{(1,2)}(z_i, z_j, z_k) = \alpha_1 \frac{P^{(1)}(z_i, z_j) P^{(2)}(z_j, z_k) P^{(1)}(z_i, z_k)}{P(z_i) P(z_j) P(z_k)} + \alpha_2 \frac{P^{(1)}(z_i, z_j) P^{(2)}(z_j, z_k) P^{(2)}(z_i, z_k)}{P(z_i) P(z_j) P(z_k)} + \alpha_3 \frac{P^{(1)}(z_i, z_j) P^{(2)}(z_j, z_k)}{P(z_j)}$$

jikikk

Résultats

- Comparaison de
- simulations du processus de contact
- approximation en champ moyen (indépendance spatiale)
- Pair approximation (PA), Bethe (BA), Bethe normalisé (NBA), Power 1 (Pw1) et Power 2 (Pw2) avec corrélation à distance 1, 2 et 3
- Sur les graphes réguliers suivants

Près du point critique ...

$$d = 4$$

Près du point critique ...

- Conclusions
 - Performances relatives communes aux trois graphes
 - Toutes les approximations surestiment la proba d'être infecté
 - Champ moyen : le plus mauvais ...comme attendu
 - La prise en compte successive des corrélations à distance 1, puis 2, puis 3 améliore beaucoup l'approximation juste en dessous du point critique
 - Pw1 ou Pw2 paraissent les approximations les plus performantes

... et en s'éloignant du point critique

$$d = 3$$

... et en s'éloignant du point critique

- Conclusions
 - L'apport de la prise en compte des corrélations est de plus en plus faible
 - Proche du point critique mais au dessus, gros écart entre simulations et approximations
 - Cet écart tends vers 0 quand le paramètre de contamination augmente

Approximation par paire et de Bethe pour un graphe quelconque

- Qu'est-ce qui change?
 - dépendance entre états, entre degrés et entre états et degrés
 - -quantités d'intéret : ρ_k et $P^{kl}(z_i,z_j)\equiv P(z_i,z_j|deg(i)=k,deg(j)=l),\;\forall k,j.$
 - \rightarrow Multiplication de la taille du système.
- Equations exactes

$$\frac{d\rho_k}{dt} = (1 - \rho_k) t_{0 \to 1}^k - \rho_k$$

$$\frac{dP^{kl}(00)}{dt} = P^{kl}(01) + P^{kl}(01) - P^{kl}(00)(t_{00 \to 01}^{kl} + t_{00 \to 01}^{lk})$$

Approximation par paire

• Approximation des transitions

$$\begin{split} t^{k}_{0 \to 1} &= b \frac{k P^{kl}(01)}{1 - \rho_{k}} \\ t^{lk}_{00 \to 01} &\approx b \frac{(k - 1) P^{kl}(01)}{1 - \rho_{k}} \end{split}$$

• Solution explicite à l'équilibre

$$\begin{aligned} \alpha_k &= kb - \frac{k}{k-1} \\ \rho_k &= 1 - \frac{1}{1+\alpha_k} \forall k > 1 \end{aligned}$$

Résultats sur graphe aléatoire

Résultats sur graphe en loi de puissance

Potentiel et limites de l'approximation par paire

- Réseaux proches de l'hypothèse d'un système "well-mixed": le champ moyen suffit
- Réseaux plus réalistes : l'approximation par paire améliore
- Mais pas suffisant pour une bonne approximation du seuil critique
- Comment prendre en compte d'autres caratéristiques du graphe : avec l'approximation de Bethe

$$t_{00\to01} \approx b \, \frac{d-1}{1-\rho} \left(C \frac{P(01)^2}{\rho(1-\rho)} + (1-C)P(01) \right)$$

Au delà ...

- Justification théorique de candidats pour fermeture des moments/méthodes variationnelles
- Extension au cas des graphes valués et à plus de deux états : plus réalistes (effet ville-village pour la coqueluche et la rougeole)