On model choice for hidden Markov random fields: approximate Bayesian computation versus BIC approximations

Julien Stoehr¹

This is a joint work with Pierre Pudlo¹ and Jean-Michel Marin¹.

¹I3M, Université de Montpellier

Journée du réseau AIGM, 30th June 2015

PLAN

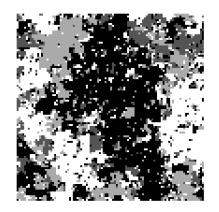
- Hidden Gibbs random field
- 2 Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- 4 Experiments results
- Take home messages

PLAN

- Hidden Gibbs random field
- 2 Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- 4 Experiments results
- 5 Take home messages

Gibbs random fields

- ► Gibbs random fields: models useful to analyse different types of spatially correlated data.
- ▶ Potts model (1952) describes the spatial dependency of discrete random variable on the vertices of an undirected graph.



June 2015

Hidden Potts model and model choice

HPM($\mathcal{G}, \alpha, \beta$)~ hidden Potts model where

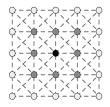
- $ightharpoonup \mathcal{G}$ graph of the depency structure,
- \triangleright α noise parameter between the observed and the latent random field,
- \triangleright β interaction parameter on the edges of \mathcal{G} .

Aim: given an observation y select

the number of latent states K and/or the latent dependency structure G.

$$\mathcal{M}_4 = HPM(\mathcal{G}_4, \alpha, \beta)$$
 where \mathcal{G}_4 is

$$\mathcal{M}_8 = HPM(\mathcal{G}_8, \alpha, \beta)$$
 where \mathcal{G}_8 is



Intractable likelihood

Bayesian distribution set

- ▶ Prior on the model space, $\pi(1), \ldots, \pi(M)$,
- ▶ Prior on the parameter space of each model, $\pi_m(\theta_m)$,
- ▶ Likelihood of the data y within each model, $\pi_m(y \mid \theta_m)$

Bayesian analysis

The posterior probability of a model is given by

$$\pi(m \mid y) \propto \pi(m) \int \pi_m(y \mid \theta_m) \pi_m(\theta_m) d\theta_m.$$

Triple intractable problem!

Intractable likelihood

Intractable Gibbs distribution: $\pi(x \mid \beta_m, \mathcal{G})$

$$Z(\beta_m, \mathcal{G}) = \sum_{x \in \mathcal{X}} \exp \left(\beta_m \sum_{\substack{i \leq j \\ i \sim j}} \mathbb{1} \{ x_i = x_j \} \right)$$

Intractable evidence:

$$\pi_m(y \mid \theta_m) = \sum_{x \in \mathcal{X}} f(y \mid x, \alpha_m) \pi(x \mid \beta_m, \mathcal{G})$$

Intractable posterior distribution:

$$\pi(m \mid y) \propto \pi(m) \int \pi_m(y \mid \theta_m) \pi_m(\theta_m) d\theta_m$$

PLAN

- Hidden Gibbs random field
- Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- 4 Experiments results
- Take home messages

ABC = approximate Bayesian computation

Aim

A simulation based approach that can addresses the model choice issue in the Bayesian paradigm,

$$\pi(m \mid y) \propto \int \underbrace{\pi(m)\pi_m(y|\theta_m)\pi_m(\theta_m)}_{(*)} d\theta_m.$$

Selecting the model that best fits the observed data *y*^{obs}

$$\widehat{m}_{\mathrm{MAP}}(y^{\mathrm{obs}}) = \mathrm{arg\,max}_m \, \pi(m|y^{\mathrm{obs}}).$$

30th June 2015

ABC = approximate Bayesian computation

Aim

A simulation based approach that can addresses the model choice issue in the Bayesian paradigm,

$$\pi(m \mid y) \propto \int \underbrace{\pi(m)\pi_m(y|\theta_m)\pi_m(\theta_m)}_{(*)} d\theta_m.$$

Selecting the model that best fits the observed data y^{obs}

$$\widehat{m}_{\text{MAP}}(y^{\text{obs}}) = \arg\max_{m} \pi(m|y^{\text{obs}}).$$

A first naive algorithm

- ▶ Draw a large set of particles (m, θ_m, y) from (*).
- ▶ Keep the ones such that $y = y^{obs}$.

ABC = approximate Bayesian computation

Aim

A simulation based approach that can addresses the model choice issue in the Bayesian paradigm,

$$\pi(m \mid y) \propto \int \underbrace{\pi(m)\pi_m(y|\theta_m)\pi_m(\theta_m)}_{(*)} d\theta_m.$$

Selecting the model that best fits the observed data y^{obs}

$$\widehat{m}_{\mathrm{MAP}}(y^{\mathrm{obs}}) = \mathrm{arg\,max}_m \, \pi(m|y^{\mathrm{obs}}).$$

A first naive algorithm

- ▶ Draw a large set of particles (m, θ_m, y) from (*).
- ► Keep the ones such that $\rho(S(y), S(y^{\text{obs}})) < \epsilon$

30th June 2015

Algorithm 1: Simulation of the ABC reference table

Output: A reference table of size n_{REF}

```
for j \leftarrow 1 to n_{REF} do

draw m from the prior \pi;

draw \theta from the prior \pi_m;

draw y from the likelihood \pi_m(\cdot|\theta);

compute S(y);

save (m_j, \theta_j, S(y_j)) \leftarrow (m, \theta, S(y));

end

return the table of (m_i, \theta_i, S(y_i)),
```

- ➤ The reference table serves as a **training database**
- Computer memory: one saves only the simulated vectors of summary statistics.

10 / 29

 $j=1,\ldots,n_{\text{REF}}$

Algorithm 2: Uncalibrated ABC model choice

Output: A sample of size *k* distributed according to the ABC approximation of the posterior

simulate the reference table \mathcal{T} according to Algorithm 1; **sort** the replicates of \mathcal{T} according to $\rho(S(y_j), S(y^{\text{obs}}))$; **keep** the k first replicates; **return** the relative frequencies of each model among the k first replicates and the most frequent model;

► ABC algorithm = a *k*-nearest neighbor method (Biau *et al.*, 2013).

► The relative frequency of model m returned by Algorithm 2 converges to $\pi(m \mid S(y^{\text{obs}}))$

- When the summary statistics are **not sufficient**, it can **greatly differ** from $\pi(m \mid y^{\text{obs}})$ (Didelot *et al.*, 2011; Robert *et al.*, 2011).
- ▶ Marin *et al.* (2013) provide conditions on $S(\cdot)$ for the consistency of the MAP based on $\pi(m \mid S(y^{\text{obs}}))$.

▶ The relative frequency of model *m* returned by Algorithm 2 converges to

$$\pi(m \mid S(y^{\text{obs}})) \neq \pi(m \mid y^{\text{obs}})$$

- When the summary statistics are **not sufficient**, it can **greatly differ** from $\pi(m \mid y^{\text{obs}})$ (Didelot *et al.*, 2011; Robert *et al.*, 2011).
- ▶ Marin *et al.* (2013) provide conditions on $S(\cdot)$ for the consistency of the MAP based on $\pi(m \mid S(y^{\text{obs}}))$.

- ▶ The frequencies returned by Algorithm 2 should be used to **construct a knn classifier** \hat{m} that predicts the model number.
- ► Calibration of *k* should be done by **minimizing the misclassification error rate** of the classifier
- ► Evaluation of the misclassification rate on a **validation reference table**, independent of the reference table.

Trade off to find when no sufficient statistics

$$\pi\left(m\mid S(y^{\text{obs}})\right) \neq \pi\left(m\mid y^{\text{obs}}\right)$$

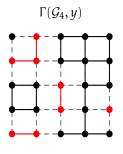
A trade off has to be found between the **loss of information** and the **dimension of** $S(\cdot)$.

- ▶ $S(\cdot)$ of *low* dimension $\Rightarrow \pi(m \mid S(y^{\text{obs}}))$ is a bad approximation.
- ▶ $S(\cdot)$ of *high* dimension $\Rightarrow \pi\left(m \mid S(y^{\text{obs}})\right)$ is a good approximation approximation but it's difficult to draw y such that $S(y) \approx S(y^{\text{obs}})$.

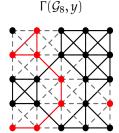
Four geometric summary statistics

$$\Gamma(\mathcal{G}, y): i \sim j \iff i \stackrel{\mathcal{G}}{\sim} j \text{ et } y_i = y_j$$

- ▶ number of connected components: T(G, y)
- ▶ **size of the biggest** connected component: U(G, y)



$$T(\mathcal{G}_4, y) = 7$$
$$U(\mathcal{G}_4, y) = 12$$



$$T(\mathcal{G}_8, y) = 4$$
$$U(\mathcal{G}_8, y) = 16$$

4 日 × 4 周 × 4 至 × 4 至

Sets of summary statistics to compare

Aim of ABC

Selecting the hidden Gibbs model that better fits a given observation.

Our aim

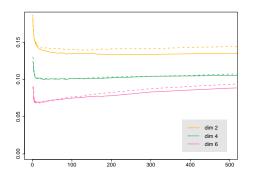
Selecting the **most informative set** of summary statistics.

Summary statistics	Croland et al	Number of	Size of the biggest
	Greiauu, et ut.	conn. comp.	conn. comp.
$S_{2D}(y) (\dim = 2)$	✓		
$S_{4D}(y) (\dim = 4)$	\checkmark	\checkmark	
$S_{6D}(y) (\dim = 6)$	✓	✓	\checkmark

ABC experiment

Settings

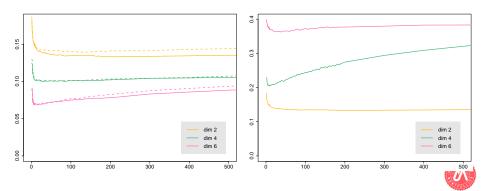
- ▶ 2 colors,
- ▶ $y_i \mid x_i = c \sim \mathcal{N}(c, \sigma^2), c \in \{0, 1\}$
- ► Training reference table: 50 000 or 100 000,
- ▶ Validation reference table: 20 000.



ABC experiment

Settings

- ▶ 2 colors,
- ▶ $y_i \mid x_i = c \sim \mathcal{N}(c, \sigma^2), c \in \{0, 1\}$
- ▶ Training reference table: 50 000 or 100 000,
- ▶ Validation reference table: 20 000.



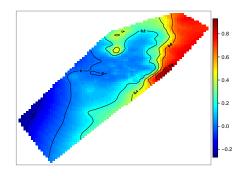
ABC experiment

Settings

- ▶ 2 colors,
- $y_i \mid x_i = c \sim \mathcal{N}(c, \sigma^2), c \in \{0, 1\}$

Prior error rates

Train size	5,000	100,000
2D statistics	14.2%	13.8%
4D statistics	10.8%	9.8%
6D statistics	8.6%	6.9%
Adaptive ABC	8.2%	6.7%



Reference

Stoehr, J., Pudlo, P., and Cucala, L. (2014). Adaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields. Statistics and Computing, 25(1), 129-141.

PLAN

- Hidden Gibbs random field
- 2 Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- Experiments results
- Take home messages

Bayesian Information Criterion

Principle: approximate the integrated likelihood using Laplace's method (Schwarz, 1978)

$$BIC(m) = 2 \log \pi_m(y \mid \hat{\theta}_m^{mle}) - d_m \log(|\mathcal{S}|),$$

where

$$\pi_m(y \mid \widehat{\theta}_m^{mle}) = \int_{\mathcal{X}} f(y \mid x, \widehat{\alpha}_m^{mle}) \pi(x \mid \widehat{\beta}_m^{mle}, \mathcal{G}) dx.$$

Bayesian Information Criterion

Principle: approximate the integrated likelihood using Laplace's method (Schwarz, 1978)

$$BIC(m) = 2 \log \pi_m(y \mid \hat{\theta}_m^{mle}) - d_m \log(|\mathcal{S}|),$$

where

$$\pi_m(y \mid \widehat{\theta}_m^{mle}) = \int_{\mathcal{X}} f(y \mid x, \widehat{\alpha}_m^{mle}) \pi(x \mid \widehat{\beta}_m^{mle}, \mathcal{G}) dx.$$

Solutions:

- ▶ Monte Carlo draws from $\pi(x \mid \hat{\beta}^{mle}, \mathcal{G})$
- ▶ Likelihood approximations (*e.g.*, Stanford and Raftery 2002, Celeux *et al.*, 2003, Forbes and Peyrard, 2003, Varin and Vidoni, 2005)

《中》《圖》《意》《意》

Pseudolikelihood versus Mean-field approximation

Pseudolikelihood (Besag, 1975)

$$f_{\mathrm{CL}}(x \mid \beta, \mathcal{G}) = \prod_{i=1}^{C} \pi(x_{A(i)} \mid x_{B(i)}, \beta, \mathcal{G}).$$

▶ Not a genuine probability distribution.

Mean field approximation: minimizes the Kullback-Leibler divergence between a given distribution P and the Gibbs distribution $\pi(\cdot \mid \beta, \mathcal{G})$ over the set of probability distributions that factorize

$$P(x) = \prod_{i \in S} P_i(x_i)$$
, where $P_i \in \mathcal{M}_1^+(X_i)$ and $P \in \mathcal{M}_1^+(X)$.

BIC based on Mean field-like approximations

Mean field-like approximation:

$$P^{\mathrm{MFL}}(x \mid \beta, \mathcal{G}) = \prod_{i \in \mathcal{S}} \pi(x_i \mid X_{\mathcal{N}(i)} = \tilde{x}_{\mathcal{N}(i)}, \beta, \mathcal{G}).$$

Notable solutions

- Approximate Bayes factors for image segmentation: The pseudolikelihood information criterion (PLIC), Stanford and Raftery (IEEE PAMI, 2002)
- ▶ Hidden Markov random field model selection criteria based on mean field-like approximations, Forbes and Peyrard (IEEE PAMI, 2003)

Block Likelihood Information Criterion (BLIC)

Thrust: working with distributions that factorize on blocks

$$P = \prod_{i=1}^{C} P_{A(i)}$$
, where $P_{A(i)} \in \mathcal{M}_{1}^{+}(\mathfrak{X}_{A(i)})$ and $P \in \mathcal{M}_{1}^{+}(\mathfrak{X})$.

Approximation:

$$\pi(y \mid \hat{\theta}^{mle}, m) \approx \prod_{i=1}^{C} \frac{\sum_{x_{A(i)}} f(y_{A(i)} \mid x_{A(i)}, \hat{\alpha}^{mle}) \exp\left(\hat{\beta}^{mle} \sum_{i \in J \atop \sim j} \mathbb{1}\{x_i = x_j\}\right)}{Z\left(\mathcal{G}_{block}, \hat{\beta}^{mle}\right)}$$

Idea: opportunity to compute normalizing constants if blocks are small enough (*e.g.*, Friel and Rue, Biometrika, 2007).

PLAN

- Hidden Gibbs random field
- 2 Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- 4 Experiments results
- 5 Take home messages

Selection of *K*

Noise distribution: $y_i \mid x_i = c \sim \mathcal{N}(c, 0.25)$.

▶ Data set: 100 draws from $\pi(x \mid \beta = 1, \mathcal{G}_4)$ when K = 4

K	2	3	4	5	6	7	8
PLIC	0	9	91	0	0	0	0
BICp	0	0	39	23	16	22	0
$BLIC(2 \times 2)$	0	0	100	0	0	0	0

▶ Data set: 100 draws from $\pi(x \mid \beta = 0.4, \mathcal{G}_8)$ when K = 4

K	2	3	4	5	6	7	8
PLIC	0	7	93	0	0	0	0
BICp	0	0	43	18	19	20	0
$BLIC(2 \times 2)$	0	1	99	0	0	0	0
$BLIC(4 \times 4)$	0	0	100	0	0	0	0

Selection of \mathcal{G}

Noise distribution: $y_i \mid x_i = c \sim \mathcal{N}(k, 0.25)$.

▶ Data set: 100 draws from $\pi(x \mid \beta = 1, \mathcal{G}_4)$ when K = 4

	\mathcal{G}_4	\mathcal{G}_8
PLIC	53	47
BICp	100	0
$BLIC(2 \times 2)$	100	0

▶ Data set: 100 draws from $\pi(x \mid \beta = 0.4, \mathcal{G}_8)$ when K = 4

	\mathcal{G}_4	\mathcal{G}_8
PLIC	0	100
BICp	0	100
$BLIC(2 \times 2)$	59	41
$BLIC(4\times4)$	0	100

Comparison ABC versus BIC approximations

- ▶ 2 colors,
- $y_i \mid x_i = c \sim \mathcal{N}(c, 0.15), c \in \{0, 1\},$
- ➤ 2000 draws from the corresponding Gibbs distribution using Swendsen Wang algorithm (5000 iterations).

Train size	5,000	100,000	Criterion	Error rate
2D statistics	14.2%	13.8%	PLIC	19.8%
4D statistics	10.8%	9.8%	BICp	7.6%
6D statistics	8.6%	6.9%	BICw	7.1%
Adaptive ABC	8.2%	6.7%	BLIC(4x4)	7.7%

PLAN

- Hidden Gibbs random field
- 2 Background on ABC for model choice
- 3 Bayesian Information Criterion approximations
- 4 Experiments results
- Take home messages

Take home message

ABC

- ► ABC model choice = classification problem
- \triangleright A local error which assesses the accuracy of the classifier at y^{obs}
- ► Calibrating the number of neighbors in ABC provides better results than a fixed quantile of the distances ⇒ reduce significantly the number of simulations.

Latent Markov random fields

New class of summary statistics based on cluster analysis

BIC approximations

- ▶ BIC approximations provide good results while being computationaly efficient.
- ▶ Block approximations seem preferable to single sites approximations to select the number of hiddent states.