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Gibbs random fields

I Gibbs random fields: models
useful to analyse different types
of spatially correlated data.

I Potts model (1952) describes the
spatial dependency of discrete
random variable on the vertices
of an undirected graph.
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Hidden Potts model and model choice
HPM(G, α, β)∼ hidden Potts model where

I G graph of the depency structure,
I α noise parameter between the observed and the latent random field,
I β interaction parameter on the edges of G.

Aim: given an observation y select

the number of latent states K and/or the latent dependency structure G.

M4 = HPM(G4, α, β) where G4 is M8 = HPM(G8, α, β) where G8 is
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Intractable likelihood

Bayesian distribution set
I Prior on the model space, π(1), . . . , π(M),

I Prior on the parameter space of each model, πm(θm),

I Likelihood of the data y within each model, πm(y | θm)

Bayesian analysis
The posterior probability of a model is given by

π (m | y) ∝ π(m)

∫
πm(y | θm)πm(θm)dθm.

Triple intractable problem !
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Intractable likelihood

Intractable Gibbs distribution: π(x | βm,G)

Z(βm,G) =
∑
x∈X

exp

βm

∑
i
G
∼j

1{xi = xj}


Intractable evidence:

πm(y | θm) =
∑
x∈X

f (y | x, αm)π(x | βm,G)

Intractable posterior distribution:

π (m | y) ∝ π(m)

∫
πm(y | θm)πm(θm)dθm
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ABC = approximate Bayesian computation

Aim
A simulation based approach that can addresses the model choice issue in the
Bayesian paradigm,

π(m | y) ∝
∫
π(m)πm(y|θm)πm(θm)︸ ︷︷ ︸

(∗)

dθm.

Selecting the model that best fits the observed data yobs

m̂MAP(yobs) = arg maxm π(m|yobs).
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Selecting the model that best fits the observed data yobs

m̂MAP(yobs) = arg maxm π(m|yobs).

A first naive algorithm
I Draw a large set of particles (m, θm, y) from (∗).

I Keep the ones such that y = yobs.
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A first naive algorithm
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ABC in practice

Algorithm 1: Simulation of the ABC
reference table

Output: A reference table of size nREF

for j← 1 to nREF do
draw m from the prior π;
draw θ from the prior πm;
draw y from the likelihood πm(·|θ);
compute S(y);
save (mj, θj,S(yj))← (m, θ,S(y));

end
return the table of (mj, θj,S(yj)),
j = 1, . . . ,nREF

I The reference table
serves as a training
database

I Computer memory: one
saves only the
simulated vectors of
summary statistics.
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ABC in practice

Algorithm 2: Uncalibrated ABC model
choice

Output: A sample of size k distributed
according to the ABC
approximation of the
posterior

simulate the reference table T

according to Algorithm 1;
sort the replicates of T according to
ρ(S(yj),S(yobs));
keep the k first replicates;
return the relative frequencies of each
model among the k first replicates and
the most frequent model;

I ABC algorithm = a
k-nearest neighbor
method (Biau et al.,
2013).
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ABC in practice

I The relative frequency of model m returned by Algorithm 2 converges to

π(m | S(yobs))

I When the summary statistics are not sufficient, it can greatly differ
from π(m | yobs) (Didelot et al., 2011 ; Robert et al., 2011).

I Marin et al. (2013) provide conditions on S(·) for the consistency of the
MAP based on π(m | S(yobs)).
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ABC in practice

I The frequencies returned by Algorithm 2 should be used to construct a
knn classifier m̂ that predicts the model number.

I Calibration of k should be done by minimizing the misclassification
error rate of the classifier

I Evaluation of the misclassification rate on a validation reference table,
independent of the reference table.
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Trade off to find when no sufficient statistics

π
(

m | S(yobs)
)
6= π

(
m | yobs

)
A trade off has to be found between the loss of information and the
dimension of S(·).

I S(·) of low dimension⇒ π
(
m | S(yobs)

)
is a bad approximation.

I S(·) of high dimension⇒ π
(
m | S(yobs)

)
is a good approximation

approximation but it’s difficult to draw y such that S(y) ≈ S(yobs).
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Four geometric summary statistics

Γ(G, y) : i ∼ j ⇐⇒ i
G
∼ j et yi = yj

I number of connected components: T(G, y)
I size of the biggest connected component: U(G, y)

Γ(G4, y)

T(G4, y) = 7
U(G4, y) = 12

Γ(G8, y)

T(G8, y) = 4
U(G8, y) = 16
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Sets of summary statistics to compare

Aim of ABC
Selecting the hidden Gibbs model that better fits a given observation.

Our aim
Selecting the most informative set of summary statistics.

Summary statistics Grelaud, et al.
Number of Size of the biggest

conn. comp. conn. comp.
S2D(y) (dim = 2) �
S4D(y) (dim = 4) � �
S6D(y) (dim = 6) � � �
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ABC experiment

Settings
I 2 colors,
I yi | xi = c ∼ N (c, σ2), c ∈ {0; 1}
I Training reference table: 50 000 or 100 000,
I Validation reference table: 20 000.
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ABC experiment
Settings

I 2 colors,
I yi | xi = c ∼ N (c, σ2), c ∈ {0; 1}

Prior error rates

Train size 5, 000 100, 000

2D statistics 14.2% 13.8%
4D statistics 10.8% 9.8%
6D statistics 8.6% 6.9%

Adaptive ABC 8.2% 6.7%
−0.2

0.0

0.2

0.4

0.6

0.8

Reference
I Stoehr, J., Pudlo, P., and Cucala, L. (2014). Adaptive ABC model choice and

geometric summary statistics for hidden Gibbs random fields. Statistics and
Computing, 25(1), 129-141.
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Bayesian Information Criterion

Principle: approximate the integrated likelihood using Laplace’s method
(Schwarz, 1978)

BIC(m) = 2 logπm(y | θ̂mle
m ) − dm log(|S |),

where

πm(y | θ̂mle
m ) =

∫
X

f (y | x, α̂mle
m )π(x | β̂mle

m ,G)dx.

Solutions:
I Monte Carlo draws from π(x | β̂mle,G)

I Likelihood approximations (e.g., Stanford and Raftery 2002, Celeux et al.,
2003, Forbes and Peyrard, 2003, Varin and Vidoni, 2005)
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Pseudolikelihood versus Mean-field approximation

Pseudolikelihood (Besag, 1975)

fCL(x | β,G) =
C∏

i=1

π(xA(i) | xB(i), β,G).

I Not a genuine probability distribution.

Mean field approximation: minimizes the Kullback-Leibler divergence be-
tween a given distribution P and the Gibbs distribution π(· | β,G) over the
set of probability distributions that factorize

P(x) =
∏
i∈S

Pi(xi), where Pi ∈M+
1 (Xi) and P ∈M+

1 (X).
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BIC based on Mean field-like approximations

Mean field-like approximation:

PMFL(x | β,G) =
∏
i∈S

π(xi | XN (i) = x̃N (i), β,G).

Notable solutions
I Approximate Bayes factors for image segmentation: The pseudolikelihood informa-

tion criterion (PLIC), Stanford and Raftery (IEEE PAMI, 2002)

I Hidden Markov random field model selection criteria based on mean field-like ap-
proximations, Forbes and Peyrard (IEEE PAMI, 2003)
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Block Likelihood Information Criterion (BLIC)

Thrust: working with distributions that factorize on blocks

P =

C∏
i=1

PA(i), where PA(i) ∈M+
1 (XA(i)) and P ∈M+

1 (X).

Approximation:

π(y | θ̂mle,m) ≈
C∏

i=1

∑
xA(i)

f (yA(i) | xA(i), α̂
mle) exp

(
β̂mle∑

i
G
∼ j
1{xi = xj}

)
Z
(
Gblock, β̂mle

)
Idea: opportunity to compute normalizing constants if blocks are small enough
(e.g., Friel and Rue, Biometrika, 2007).
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Selection of K
Noise distribution: yi | xi = c ∼ N (c, 0.25).

I Data set: 100 draws from π(x | β = 1,G4) when K = 4

K 2 3 4 5 6 7 8
PLIC 0 9 91 0 0 0 0
BICp 0 0 39 23 16 22 0

BLIC(2 × 2) 0 0 100 0 0 0 0

I Data set: 100 draws from π(x | β = 0.4,G8) when K = 4

K 2 3 4 5 6 7 8
PLIC 0 7 93 0 0 0 0
BICp 0 0 43 18 19 20 0

BLIC(2 × 2) 0 1 99 0 0 0 0
BLIC(4 × 4) 0 0 100 0 0 0 0

Julien Stoehr (Université de Montpellier) Model choice for HMRF 30th June 2015 25 / 29



Selection of G
Noise distribution: yi | xi = c ∼ N (k, 0.25).

I Data set: 100 draws from π(x | β = 1,G4) when K = 4

G4 G8

PLIC 53 47
BICp 100 0

BLIC(2 × 2) 100 0

I Data set: 100 draws from π(x | β = 0.4,G8) when K = 4

G4 G8

PLIC 0 100
BICp 0 100

BLIC(2 × 2) 59 41
BLIC(4 × 4) 0 100
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Comparison ABC versus BIC approximations

I 2 colors,

I yi | xi = c ∼ N (c, 0.15), c ∈ {0; 1},

I π(m) ∼ U({G4,G8}), πG4(β) ∼ U([0; 1]) and πG8(β) ∼ U([0; 0.4]),
I 2000 draws from the corresponding Gibbs distribution using

Swendsen Wang algorithm (5000 iterations).

Train size 5, 000 100, 000 Criterion Error rate
2D statistics 14.2% 13.8% PLIC 19.8%
4D statistics 10.8% 9.8% BICp 7.6%
6D statistics 8.6% 6.9% BICw 7.1%

Adaptive ABC 8.2% 6.7% BLIC(4x4) 7.7%
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Take home message

ABC
I ABC model choice = classification problem

I A local error which assesses the accuracy of the classifier at yobs

I Calibrating the number of neighbors in ABC provides better results than
a fixed quantile of the distances ⇒ reduce significantly the number of
simulations.

Latent Markov random fields
I New class of summary statistics based on cluster analysis

BIC approximations
I BIC approximations provide good results while being computationaly

efficient.

I Block approximations seem preferable to single sites approximations to
select the number of hiddent states.

Julien Stoehr (Université de Montpellier) Model choice for HMRF 30th June 2015 29 / 29


	Hidden Gibbs random field
	Background on ABC for model choice
	Bayesian Information Criterion approximations
	Experiments results
	Take home messages

