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Rainfall data

Rainfall data in New Zealand
K=7 locations
26 years
Daily rainfall

Yt (k) ≥ 0 : rainfall (mm) during day
t at location k

Yt = (Yt (1), ..., Yt (K ))′
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Characteristics of the data ?

Marginal distribution (location 1)
Example of time series
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Mixed variable

Yt (k) = 0 if no rainfall
Yt (k) > 0 otherwise

Usual spatial or time series models
are not appropriate !

Heavy tails (κ ≈ 0.2 ?)
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Characteristics of the data ?

Spatial correlation matrix
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the distance between location k and l
other covariates which create local effect
and bloc structure

1

2

3

4
5
6

7

Pierre Ailliot, Université de Brest Peter Thomson, Statistics Research Associates LtdHidden Markov Models for daily rainfall



Rainfall data
Basic HMM

HMM with censored Gaussian field
Another HMM ?

Conclusion

Characteristics of the data ?

Temporal structure
Non-stationary components : seasonal, interannual( ?)

Focus on April and neglect interannual components

Existence of different weather types (e.g. dry/frontal systems/convective rain... )
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Dry or low rain
Moderate rain 1
Moderate rain 2
Heavy rain

Accumulated rainfall (over space and time)

Suggests segmenting the process and using different spatio-temporal models in each bloc
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Model description

Zucchini and Guttorp (1991), Bellone et al. (2000)
‘Weather types” modelled as a hidden process St ∈ {1...M}
Time structure : HMM

Weather type (hidden)
p(st |st−1

1 , yt−1
1 ) = p(st |st−1) · · · → St−1 → St → St+1 → · · ·

↓ ↓ ↓
Rainfall (observed)
p(yt |st

1, yt−1
1 ) = p(yt |st ) · · · Yt−1 Yt Yt+1 · · ·

...Dynamics induced only by {St} !

Spatial structure : conditional independence

p(yt |st) = p(yt (1), ..., yt (K )|st ) =
K∏

k=1

p(yt (k)|st )

...Spatial dependence induced only by {St} !

p(yt (k)|st ) =

{
1 − π

(st )
k if yt (k) = 0

π
(st )
k γ(yt (k); α

(st )
k , β

(st )
k ) if yt (k) > 0

0 ≤ π
(s)
k ≤ 1, α

(s)
k > 0, β

(s)
k > 0
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Model description

Zucchini and Guttorp (1991), Bellone et al. (2000)

‘Weather types” modelled as a hidden process St ∈ {1...M}
Time structure : HMM

Weather type (hidden)
p(st |st−1

1 , yt−1
1 ) = p(st |st−1) · · · → St−1 → St → St+1 → · · ·

↓ ↓ ↓
Rainfall (observed)
p(yt |st

1, yt−1
1 ) = p(yt |st ) · · · Yt−1 Yt Yt+1 · · ·

...Dynamics induced only by {St} !

Spatial structure : conditional independence

Multiplicative model

Yt(k) = Lt (k)At (k)

(Lt (k))k ,(At (k))k independent

Lt (k) ∼ Ber(π
(St )
k )

At (k) ∼ Gam(α
(St )
k , β

(St )
k )
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Parameter estimation

Generalized EM algorithm
Numerical optimization in the M step (K × M 1D optimization)

Model selection

M 1 2 3 4 5
BIC 17502 14523 13760 13663 13731

Maximum likelihood estimates (M = 4)
Conditional distributions in the different regimes
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Parameter estimation

Conditional distributions in the different regimes
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Parameter estimation

Generalized EM algorithm

Model selection

M 1 2 3 4 5
BIC 17502 14523 13760 13663 13731

Maximum likelihood estimates (M=4)
Conditional distributions in the different regimes
Transition matrix, stationary distribution and mean durations

St
St−1 1 2 3 4 π̃s Ds

1 0.62 0.23 0.10 0.05 0.37 2.62
2 0.38 0.44 0.15 0.03 0.35 1.80
3 0.00 0.32 0.41 0.27 0.16 1.70
4 0.06 0.54 0.00 0.40 0.12 1.65

Summary
Regime 1 : dry conditions, “long” persistence
Regime 2 and 3 : intermediate patterns, regional differences, higher rainfall in regime 3,
short persistence
Regime 4 : heavy rainfall

Similar meteorological interpretation for other datasets
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Model validation

Motivation of this work : stochastic weather generator
Build models which can generate realistic weather scenarios
Estimate related risks (agriculture, energy production...) by simulation

Realism of artificial sequences simulated with the model
Marginal distributions

Distributional versatility of HMM
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Model validation

Motivation of this work : stochastic weather generator
Realism of artificial sequences simulated with the model

Marginal distributions : ok
Dynamics at the different locations

Low correlation between successive observations
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Model validation

Motivation of this work : stochastic weather generator
Realism of artificial sequences simulated with the model

Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : correlation underestimated
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Model validation

Motivation of this work : stochastic weather generator
Realism of artificial sequences simulated with the model

Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : correlation underestimated

... Need for a better model !
Existence of residual spatial structure within the weather types

Empirical correlation matrices in
the different weather types
(identified by the Viterbi algorithm)
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Model validation

Motivation of this work : stochastic weather generator
Realism of artificial sequences simulated with the model

Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : correlation underestimated

... Need for a better model !
Existence of residual spatial structure within the weather types

Introduce spatial structure in the emission probabilities P(Yt |St = st)
Need spatial model for mixed discrete-continuous variables
A first model : censored Gaussian random fields
Ailliot P., Thompson C., Thomson P., (2009), Space time modeling of precipitation using a
hidden Markov model and censored Gaussian distributions, Journal of the Royal Statistical
Society, Series C (Applied Statistics). Vol. 58, no3, pp. 405-426.
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Model description

Hidden weather type
Markov chain . . . → St−1 → St → St+1 → . . .

↓ ↓ ↓
Partially observed Gaussian RV
P[Wt |St = st ] ∼ N (

m(st ),Σ(st )
)

. . . Wt−1 Wt Wt+1 . . .
↓ ↓ ↓

Observed precipitation

Yt (k) =

{
0 if Wt(k) ≤ 0

Wt(k)β(s)(k) if Wt(k) > 0
. . . Yt−1 Yt Yt+1 . . .

pdf of                   pdf of 
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W N 1.88– 3.78,( )∼ max W 0,( )1.81=
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Model description

Spatial information can be included in the covariance matrices

Model C0 : Σ(s)(i, i) = (σ
(s)
i )2

Model C1 : Σ(s)(i, j) = σ
(s)
i σ

(s)
j exp(−λ(s)d(zi , zj ))

Model C2 : Σ(s)(i, j) = σ
(s)
i σ

(s)
j κ(λ

(s)
i , λ

(s)
j ) exp(−κ(λ

(s)
i , λ

(s)
j )
√

λ
(s)
i λ

(s)
j d(zi , zj ))

with κ2(x, y) = 2
√

x2y2/(x2 + y2)

AIC BIC
M 1 2 3 4 5 1 2 3 4 5
C0 17403 14445 13639 13398 13289 17501 14651 13963 13849 13875
Cγ 17404 14317 13436 13213 13144 17502 14523 13760 13663 13731
C1 13092 12770 12697 12616 12623 13196 12985 13035 13085 13233
C2 12995 12741 12600 12506 12509 13127 13013 13022 13089 13260
C∗ 12904 12643 12640 12674 12611 13101 13046 13259 13519 13690
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Parameter estimation

Monte Carlo EM algorithm
Need to compute the following smoothing probabilities for the M-step

W−
t : vector of censored components (dry locations) at time t

γt (s) = p(St = s|yT
1 ; θ̂n), γt (s, s′

) = p(St−1 = s, St = s′|yT
1 ; θ̂n) (1)

E(W−
t |St = s, yt ; θ̂n), E(W−

t (W−
t )

′|St = s, yt ; θ̂n) (2)

Several algorithms can be used in the E-step
Generic algorithms can be used : Gibbs sampler, particle filter,...
More efficient to use the specific structure of the model

Computing (2) requires computing integrals of the form (if W −
t = (Wt (1), ..., Wt (d)))∫ 0

−∞
. . .

∫ 0

−∞
w(k)φ(w ; m(s)

, Σ(s))dw(1) . . . dw(d) (3)

∫ 0

−∞
. . .

∫ 0

−∞
w(k)w(k′)φ(w ; m(s)

, Σ(s))dw(1) . . . dw(d) (4)

Emission probabilities p(yt |st ) depend on integrals of the form∫ 0

−∞
. . .

∫ 0

−∞
φ(w ; m(s)

, Σ(s))dw(1) . . . dw(d) (5)

Monte-Carlo integration for (3),(4) and (5) and forward-backward algorithm for ( 1)
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Parameter estimation

Sample size for the Monte-Carlo approximations increases progressively
100 for iterations n ≤ 50
500 for 50 < n ≤ 100
n2 for n > 100
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Number of iteration
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Number of iteration

CPU time : 140 minutes when M = 4
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Parameter estimation

Conditional distributions in the different regimes

Similar interpretation that for the previous model !
Probability
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok
Dynamics at the different locations : ok ?
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : ok
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : ok

Limitations ?
Heavy computation (MCEM)

Problematic for networks with more rainfall stations
CPU time increases with the number of dry days/locations!
We would like to make it even more complicated to include more dynamics !

Physical explanation for the censoring is missing

Look for another spatial model for mixed variable such that
Quicker EM recursions

E-step : avoid Monte-Carlo simulations
M-step : allow numerical optimization

Flexibility
Realistic uni/multivariate distribution (margins with heavy tail ?)
Correlation with block structure and possibility to include spatial information

Interpretability
Structural/hierarchical model
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Outline

1 Rainfall data

2 Basic HMM
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4 Another HMM ?

5 Conclusion

Pierre Ailliot, Université de Brest Peter Thomson, Statistics Research Associates LtdHidden Markov Models for daily rainfall



Rainfall data
Basic HMM

HMM with censored Gaussian field
Another HMM ?

Conclusion

Model description : general structure

Hidden regional weather type
St ∈ {1, ..., M} . . . → St−1 → St → St+1 → . . .

↓ ↓ ↓
Hidden regional rainfall index
It > 0 . . . It−1 It It+1 . . .

↙↘ ↙↘ ↙↘
Local occurrence/amount
Lt (k) ∈ {0, 1} and At (k) > 0 . . . Lt−1 At−1 Lt At Lt+1 At+1 . . .

↘↙ ↘↙ ↘↙
Observed local rainfall
Yt (k) = Lt (k)At (k) . . . Yt−1 Yt Yt+1 . . .

It > 0 is supposed to summarize what governs rainfall at the regional scale
Both probability rainfall and amount expected to increase at each location with It
Common to all locations : realistic only for small scale networks ?

"Downscaling" (It → Lt and It → At ) models local effects

It creates dependence between At and Lt

Can we find parametrizations such that p(yt |st) is analytical ?
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Model for the positive field At (amount)

Conditional Inverse Gamma distribution for the regional index

P(1/It |St = st ) ∼ Gam(γ(st ), δ(st ))

Technical result : if 1/I ∼ Gam(γ, δ) then E
[
I−αexp

(
− β

I

)]
= Γ(α+γ)

δαΓ(γ)
(1 + β

δ )−α−γ

Useful to compound with Gamma distributions
Permit to integrate the effect of It and avoid Monte Carlo simulations

Conditional independent Gamma distribution for the positive amounts

p(at (1), .., at(K )|it , st ) =
∏K

k=1 p(at(k)|it , st )

P(At (k)|It = it , St = st ) ∼ Gam
(
α

(st )
k , β

(st )
k it

)
Can be written as a multiplicative model

At (k) = It Jt (k)

Jt (k) ∼ Gam(α
(St )
k , β

(St )
k ) (mutually independent and independent of It )

It represents the regional effect and Jt the local effects
Model with independent Gamma distributions is a limit case ( γ(st ) = 1

δ(st )
and δ(st ) → 0)

Identifiability constraint : δ(st ) = 1
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Model for the positive field At (amount)

Properties of the model
Joint pdf can be integrated analytically over It (required for quick E-step)

p(at (1), ..., at (K )|st ) =

∫
p(at (1), ..., at (K )|it , st )p(it |st )dit

=
Γ(γ(st ) +

∑K
k=1 α

(st )
k )

Γ(γ(st ))
∏K

k=1 Γ(α
(st )
k )

∏K
k=1 β

(st )
k

∏K
k=1

(
at (k)

β
(st )
k

)α
(st )
k

−1

(
1 +

∑ K
k=1

at (k)

β
(st )
k

)γ(st )+
∑K

k=1 α
(st )
k

Marginal pdf : beta distribution of the second kind

p(at (k)|st ) =
1

B(γ(st ), α
(st )
k )β

(st )
k

(
at (k)

β
(st )
k

)α
(st )
k

−1

(
1 +

ak

β
(st )
k

)γ(st )+α
(st )
k

Gamma distribution as a limit case
Heavy tail : E[At (k)p|st ] < +∞ iif p < γ(st )
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Model for the positive field At (amount)

Properties of the model

Joint pdf can be integrated analytically over It (required to avoid MCEM)

Marginal pdf : beta distribution of the second kind (heavy tail)

Correlation matrix (γ(st ) > 2 and k �= l) :

corr(At (k), At (l)|st ) =

(
1 + γ(st )−1

α
(st )
k

)−1/2(
1 + γ(st )−1

α
(st )
l

)−1/2

The spatial dependence comes from the regional index It
corr(At (k), It ) =(

γ(st )+1

α
(st )
k

)−1/2 ↗ 0 if γ(st )/α
(st )
k → +∞ Local dominates

↘ 1 if γ(st )/α
(st )
k → 0 Regional dominates

corr(At (k), At (l)) ≈ 1 if regional conditions dominates at location k AND l
corr(At (k), At (l)) ≈ 0 if local conditions dominates at location k OR l
Possible to get a correlation matrix with positive coefficients and one bloc of strongly
correlated locations
We also would like to include geographic information (distance,...)...
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Model for the binary field Lt (occurrence)

Introduce a "regional occurrence" process Qt ∈ {0, 1}
Qt = 0 : mainly dry at the regional scale
Qt = 1 : mainly wet at the regional scale

St−1

p
(st )
k↗ Lt(k) = 1

Qt = 1
↘ Lt(k) = 0

↓
π(It ,St )↗

St → It
↓ ↓ ↘

St+1 At

q
(st )
k↗ Lt (k) = 0

Qt = 0
↘ Lt (k) = 1

Joint distribution : analytic expression
If π(it , st ) = P[Qt = 1|st , it ] = exp

(
− θ(st )

it
− φ(st )

)
then P[Qt = 1|st ] =

∫
P[Qt = 1|st , it ]p(it |st )dit = exp(−φ(st ))

(1+θ(st ))γ
(st )

and we get analytic expression for the joint distribution (integrated over It )

p(lt (1), ..., lt (K )|st ) =P[Qt = 0|st ]
K∏

k=1

(
q

(st )
k

)1−lt (k) (
1 − q

(st )
k

) lt (k)

+ P[Qt = 1|st ]
K∏

k=1

(
p

(st )
k

) lt (k) (
1 − p

(st )
k

)1−lt (k)
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Model for the binary field Lt (occurrence)

Introduce a "regional occurrence" process Qt ∈ {0, 1}

St−1

p
(st )
k↗ Lt(k) = 1

Qt = 1
↘ Lt(k) = 0

↓
π(It ,St )↗

St → It
↓ ↓ ↘

St+1 At

q
(st )
k↗ Lt (k) = 0

Qt = 0
↘ Lt (k) = 1

Joint distribution : analytic expression
Special cases :

If p
(st )
k = 1 − q

(st )
k then Lt (k) is independent of Qt and Lt (l) for l 
= k

If p
(st )
k = q

(st )
k = 1 then Lt (k) = Qt : allow one bloc of strongly correlated locations

We also would like to include geographic information (distance,...)...
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Parameter estimation

Generalized EM algorithm
E-step : usual forward-backward algorithm

Analytical expressions for p(yt |st )

M-step : numerical optimization (M optimizations in 4K + 3-dimensional spaces)

Quasi-Newton with increasing accuracy

May be improved ? Need to look more precisely at Q
(

θ, θ(k)
)

Starting point : model with independent Gamma distributions
CPU time : 40 minutes when M = 4

Model selection
BIC

M 1 2 3 4 5
Independent 17502 14523 13760 13663 13731

Regional index 13775 13372 13279 13439 13587
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Parameter estimation

Maximum likelihood estimates (M = 4)
Similar interpretation that for the previous models
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Heavy tail distributions : γ̂(1) = 3.54, γ̂(4) = 2.35
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok, check tail
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Model validation

Realism of artificial sequences simulated with the model
Marginal distributions : ok
Dynamics at the different locations : ok ?
Spatial structure : ok
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Outline

1 Rainfall data
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Conclusion

HMMs provide a flexible framework for modelling meteorological processes

Spatial model for mixed variables are needed when modelling daily rainfall

Censored Gaussian distributions permit a good description of rainfall properties but
lead to heavy computation

Compounding Gamma/Inverse Gamma distributions leads to a tractable model

Seems to be able to reproduce the properties of the data at a regional scale
Perspectives

Include dynamics in the regimes
Combine different regional models to model rainfall at a bigger spatial scale
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