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Decision-theoretic Optimal Sampling in

Hidden Markov Random Fields

Motivation : Sampling optimisation for
Reconstruction of maps for spatial systems...

Invasive or protected species

Weeds or pests in a crop

... or correlated ill-observed variables

Animal epidemics in farm networks

Pollution in water networks

Fault diagnosis in computer networks

Objectives

Propose a HMRF-based model for such sampling problem
Understand algorithmic difficulties of such problems
Propose exact and approximate solution algorithms
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Decision-theoretic Optimal Sampling in

Hidden Markov Random Fields

Principle : Find a subset of sites (variables) to sample

leading to the construction of a map of high quality
trading-off sampling cost and quality of the restored map

Different types of sampling :

Static Sampling

Adaptive (or sequential) Sampling
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Static Sampling process

x∗2

x∗1

x∗
k

Restored Maps

obs2

obs1

obsk

Value(σ)

Value(x∗2 )

Value(x∗1 )

Value(x∗
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)

ObservationsSampled Subset σ

σ
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Map restoration in HMRF

The state of each site is represented by a (random)
variable Xi taking values xi ∈ {0, ..., k − 1}

The spatial structure is represented by a graph
G = (V ,E ) showing local dependencies between variables

Example : Presence/absence map

xi =

{

1 Presence of the phenomenon

0 Absence of the phenomenon
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Markov Random Fields

X = {X1, . . . ,Xn} : random variables taking values in
{0, ..., k − 1}

P : a probability distribution over X = {0, ..., k − 1}n

G = (V ,E ) with |V | = n and C be the set of cliques of
graph G

Ψ = {ψc}c∈C , ψc(xc) > 0,∀xc , a set of positive functions

Definition

P is a Markov Random Field defined by (G ,X ,Ψ) iff

P(X = x) = PΨ(x) =
1

Z

∏

c∈C

ψc(xc ),∀x ∈ X ,

where Z is a normalising constant ensuring that P sums to 1.
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Hidden Markov Random Field

Variables Xi are not observed directly

Y = {Y1, . . . ,Yn} taking values in Y = Y1 × . . .× Yn are
observed instead

Yi is conditionally independent of Yj given X :

P(Y = y |X = x) = PΘ(y |x) =
∏

i∈V

Pθi (yi |xi ),∀x ,∀y .

where Θ = {θ1, . . . , θn} is a set of parameters.

Definition

A Hidden Markov Random Field (HMRF) is defined by the
tuple (G ,X ,Y,Ψ,Θ).
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Hidden Markov Random Field

Example

yi\xi 0 1

0 1 1 − θ
1 0 θ

8 / 32



Optimal
Sampling in

HMRF

Peyrard,
Sabbadin and

Niaz

Map
restoration in
HMRF

Optimal
Sampling in
HMRF

Complexity,
Approximation

Algorithms

Experiments

Conclusion

Hidden variables restoration in HMRF

Input :

PΨ(x) : MRF hidden variables distribution
PΘ(y/x) : HMRF observation function
Observations y

Output :

Hidden variables posterior distribution :

PΨ,Θ(x/y) =
PΘ(y/x)PΨ(x)

PΨ,Θ(y)

where PΨ,Θ(y) =
∑

x P(y/x)P(x)
Hidden variables restoration x∗
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How to sample under limited resources ?

Observations require to consume limited resources (time,
people, etc.)

A sample is a subset σ ⊆ V of sites which will be actually
observed in order to restore the hidden field x

The result of a sample σ is a a sample output yσ

How to choose a sample σ ⊆ V to observe ?

10 / 32



Optimal
Sampling in

HMRF

Peyrard,
Sabbadin and

Niaz

Map
restoration in
HMRF

Optimal
Sampling in
HMRF

Complexity,
Approximation

Algorithms

Experiments

Conclusion

How to sample under limited resources ?

Observations require to consume limited resources (time,
people, etc.)

A sample is a subset σ ⊆ V of sites which will be actually
observed in order to restore the hidden field x

The result of a sample σ is a a sample output yσ
How to choose a sample σ ⊆ V to observe ?

Definition (Posterior probability)

HMRF (G = (V ,E ),X ,Y,Ψ,Θ).

σ ⊆ V is a sample and yσ a sample outpout

The posterior probability conditionned on sample output
yσ is defined as :

PΨ,Θ(x |yσ) ∝ PΘ(yσ|x)PΨ(x),∀x ∈ X .
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Sample quality definition

How to define Uψ,Θ(σ), the quality of sample σ ?

Choice based on PΨ,Θ(x |yσ) and on sample cost γ(σ)

yσ unkown when σ chosen ⇒ expectation criterion

Definition (Decision-theoretic sample quality measure)

UΨ,Θ(σ) = −γ(σ) +
∑

yσ

PΨ,Θ(yσ)VΨ,Θ(σ, yσ),

VΨ,Θ measures how informative PΨ,Θ(x |yσ) is

γ(σ) measures the “cost” of σ, and its unit is
homogeneous to VΨ,Θ(σ, yσ)
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Sample quality definition

Computing VΨ,Θ(σ, yσ) ressembles a problem of image
restoration

Different possible choices : MPM, MPE (MAP), Entropy...

Definition (Most Probable Explanation (MPE) criterion)

Restoration quality :

V MPE
Ψ,Θ (σ, yσ) = max

x∈X
PΨ,Θ(x |yσ),∀yσ

Hidden variables restoration :

xMPE (yσ) = arg max
x∈X

PΨ,Θ(x |yσ),∀yσ
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Decision-theoretic sample optimisation problem

Definition (Decision-theoretic sample optimisation problem)

HMRF (G = (V ,E ),X ,Y,Ψ,Θ)

integer K ≥ 0, a set W ⊆ V of sites available for sample
and costs γi ≥ 0,∀i ∈ W

HMRF sample optimisation problem O(UMPE
Ψ,Θ ) defined as :

Find σ∗ = arg max
σ⊆W ,|σ|≤K

UMPE
Ψ,Θ (σ).

How difficult is this sample optimisation problem ?
⇒ Computational complexity results
⇒ Polynomial approximations

Practical solution algorithms
⇒ Exact variable elimination algorithm
⇒ Approximate (exponential) “greedy” algorithm
⇒ Aprroximate “Belief propagation” algorithm
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Optimal sample exact computation

σ∗ = arg max
σ

−γ(σ) +
X

yσ

max
x

PΨ,Θ(yσ |x)PΨ(x),
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Computational complexity results

Several cases depending on :

Whether the sample size K is “small” (i.e. of
unconditionally bounded size)

Whether Z is known (or γ(σ) constant)

Proposition (General case)

The HMRF sample optimisation problem O(UMPE
Ψ,Θ ) is PP-hard,

even when Z is known

Proof :

“Sum-tree” complexity dominates

Reduction of the problem MajSat

Complexity lower bound is likely to be strict
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Computational complexity results

Proposition (Best case : Z known, K small)

The HMRF sample optimisation problem O(UMPE
Ψ,Θ ) is

NPO-complete when Z is known is K small

Proof :

“Max-tree” complexity dominates

Hardness by reduction of the problem Max 2-Sat
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Polynomial approximations

Proposition (Negative result)

O(UMPE
Ψ,Θ ) does not belong to Apx.

Proof :

Meaning that there is no polynomial algorithm providing a
constant ratio approximation

Proof by reduction of the problem Max 2-Sat
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Polynomial approximations

Proposition (Positive result)

For a HMRF with binary variables, null cost function (Z
known) and Pθi (yi |xi ) > 0,∀i , xi , yi :
UMPE

Ψ,Θ (σ) can be approximated in polynomial time within an

instance-dependent approximation ratio ρΨ,Θ,σ = κ0.23
Ψ,Θ,σ,

where

κΨ,Θ,σ =

∏

c∈C maxxc ψc (xc)
∏

i∈σ maxxi ,yi
Pθi (yi |xi )

∏

c∈C minxc ψc (xc)
∏

i∈σ minxi ,yi
Pθi (yi |xi)

.

If furthermore the HMRF is pairwise, ρΨ,Θ,σ = κ0.069
Ψ,Θ,σ.

Proof :

Adaptation of best known polynomial algorithms for Max

Sat and Max 2-Sat
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What does it mean in practice ?

That the decision-theoretic optimal sampling in HMRF
problem is hard to solve exactly... or very hard !

Still we can explore several directions :
1 Exact variable elimination algorithm
2 Greedy variable elimination algorithm
3 Belief Propagation (message passing) algorithm
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Exact variable elimination algorithm

Exhaustive enumeration of the sample × observation
space (i.e. all pairs (σ, yσ))

Exact calculation of UMPE
Ψ,Θ (σ)

Variable elimination used for

Exact calculation of V MPE
Ψ,Θ (σ, yσ)

Exact calculation of Z (once for a given problem)
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Calculation of V MPE
Ψ,Θ (σ, yσ)

V MPE
Ψ,Θ (σ, yσ) =

1

Z
max

x1,...,xn

Y

i∈V

Pθi
(yi/xi , σ)

Y

c∈C

ψc (xc)

Successive elimination of xi through local variable
elimination

Find max on the potentials of each variable and project it
on its neighbours

Elimination order 1 to n
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For every xk eliminated
Calculate

hk = max
xk

Pθk
(yk/xk , σ)

Y

c)∈C ,k∈c

ψc (xc )hk−1

Store hk

New edges added between neighbours of xk

End when no variables left

V MPE
Ψ,Θ (σ, yσ) = max

xn

Pθ(yn/xn, σ)hn−1

Similar principle for computing Z

x2 x3

x6x5x4

x7 x8 x9

x3

x6x5x4

x7 x8 x9

x6x5x4

x7 x8 x9

x6x5

x7 x8 x9

x1 x2 x3

x6x5x4

x7 x8 x9

x6

x7 x8 x9 x8 x9x7 x8 x9 x9
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Greedy approximation algorithm

The exact variable elimination algorithm requires to
perform variable elimination for

All available samples σ (number exponential in K )
All possibles observations σ (number exponential in K )

So, it needs to perform a task require exponential (in |V |)
time many (exponential in K !) times

The idea of the greedy algorithm is to reduce (a bit) this
complexity, by “greedily” exploring samples of increasing size :

Complexity decreased by an exponential factor (but still
exponential !)

Unfortunately, no guarantee on the loss of quality by using
the greedy algorithm (could have been if UMPE

Ψ,Θ were
submodular)

Quite good in practice (see experiments) !
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Belief propagation algorithm

Double approximation :

Marginal probability distributions for each vertex
computed approximately a priori, using a classical
“Sum-Product” BP algorithm

Sample choice made on the basis of these approximate
distributions (most “uncertain” vertices chosen for
sampling

Consequences :

+ Sum Product BP algorithm run only once

+ No need to explore the sample output space

+ Complexity independent of sample size

+ Sum Product BP run time can be “tuned” (number of
updates)

- Less efficient than the Greedy algorithm
25 / 32
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Experiments

Pairwise HMRF with Xi = Yi = {0, 1}

Singleton potentials : white (ψi (1) = 0.3), grey
(ψi (1) = 1) black (ψi (1) = 3)

Pair potentials : exp(1) = e for (1, 1) and (0, 0), 1
otherwise.
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Results
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Comments

Exact method inapplicable for large problems (Couldn’t
solve the 6x6 problem with k = 4 within 9 days)

Greedy algorithm considerably faster (x10 for k = 2, x100
for k = 3 and x500 for k = 4) and still close to optimal
(for small problems).

BP is the only applicable method for large problems (and
time independent of K ). Optimality ratio decreases to
< 80%.
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Summary

An approach for optimal sampling in structured problems
under limited budget, within the framework of HMRF

Criterion : tradeoff between expectatation (over outputs)
of the most likely reconstruction and sample cost

Results :
1 Complexity/approximability results
2 Exact and approximation algorithms (empirical validation)

Originality :
1 General HMRF structure with decisions
2 Noisy observations
3 Non-trivial quality measure
4 Focus on sample size (rather than graph structure) to

exhibit “easier” classes of problem
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Related works

Several recent works have addressed the question of
decision-theoretic observation selection in graphical models :

[KG09] (i) Reliable observations (ii) simple problem
structures (chain model, naive Bayes model or polytree).
(iii) Complexity results and exact and approximate solution
algorithms (iv) Rewards are local.

[RSS06] (i) Noisy observations case (ii) Simple problem
structures (hidden Markov chains, tree-shaped Bayesian
networks) (iii) Easily computable local rewards

[MS08] (i) General Bayesian networks (ii) Noisy
observations, (iii) Specific and easy to compute non-local
reward function.

[PSS+10] (i) Similar problem with application to invasive
species map reconstruction (ii) MPM-based criterion (iii)
static and adaptive case (iv) BP and heuristic algorithms.
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Related works

Authors Structure Obs Reward Algo Complexity
[KG09] Simple Reliable Easy Ex+App Yes
[RSS06] General Noisy Easy Exact No
[MS08] General Noisy Easy Exact No

[PSS+10] General Noisy MPM App No
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Future work

Mathieu Bonneau’s PhD thesis (with S. GABA, INRA-EA
Avignon)

Extending the framework to general stochastic graphical
model

Exploring simulation-based algorithms (Reinforcement
Learning) for adaptive sampling problems with different
criteria

Comparing with Krigging-based approaches [BPS10]

Weeds communities mapping application
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M. Bonneau, N. Peyrard, and R. Sabbadin.
Echantillonnage spatial basé sur le krigeage pour la
reconstruction de carte d’occurrence.
In Proc. 17th Conf. Reconnaissance des Formes et IA
(RFIA’2010), 2010.

A. Krause and C. Guestrin.
Optimal value of information in gaphical models.
Journal of Artificial Intelligence Research, 35 :557–591,
2009.

M. Munie and Y. Shoham.
Optimal testing of structured knowledge.
In Proc. of 23rd AAAI Conference, 2008.

N. Peyrard, R. Sabbadin, D. Spring, R. Mac Nally, and
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Spatial sampling in hmrf mapping problems : Static and
adaptive algorithms.
In ECCS conference, Lisbon, Portugal, 2010.

Y. Radovilsky, G. Shattah, and S. Shimony.
Efficient deterministic approximation algorithm for
nonmyopic value of information in graphical models.
In SMC conference, Taipei, Taiwan, 2006.
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