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@ Motivation : Sampling optimisation for
@ Reconstruction of maps for spatial systems...
@ Invasive or protected species
@ Weeds or pests in a crop
@ ... or correlated ill-observed variables
@ Animal epidemics in farm networks
@ Pollution in water networks
@ Fault diagnosis in computer networks

@ Objectives
o Propose a HMRF-based model for such sampling problem
o Understand algorithmic difficulties of such problems
@ Propose exact and approximate solution algorithms
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@ Principle : Find a subset of sites (variables) to sample

@ leading to the construction of a map of high quality
o trading-off sampling cost and quality of the restored map

o Different types of sampling :

o Static Sampling
@ Adaptive (or sequential) Sampling
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Map restoration in HMRF

Optimal

Sampling in @ The state of each site is represented by a (random)
PHMRZ variable X; taking values x; € {0, ...,k — 1}
Sabbadin and @ The spatial structure is represented by a graph

e G = (V, E) showing local dependencies between variables

M
e e @ Example : Presence/absence map

HMRF
. { 1 Presence of the phenomenon
.=

0 Absence of the phenomenon



Markov Random Fields

Optimal . . .
Sampling in @ X ={Xi,..., Xy} : random variables taking values in

. {0,... k — 1}
Sebbadin and @ P : a probability distribution over X = {0, ...,k — 1}"
. @ G = (V,E) with |V| = n and C be the set of cliques of
rHe’f/tloRrstion in graph G
o W ={t}tcec,Vc(xc) > 0,Vxc, a set of positive functions

P is a Markov Random Field defined by (G, X, V) iff

P(X = x) = Py(x) = % [T ¥exc). vx € &,
ceC

where Z is a normalising constant ensuring that P sums to 1.

<
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Hidden Markov Random Field
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@ Variables X; are not observed directly
Peyrard
Sabbadin and oY= {Yl, .

Niaz

.., Yy} taking values in Y = Y1 X ... x ), are
observed instead
Map

O o i @ Y is conditionally independent of Y; given X :
HMRF

P(Y = y|X = x) = Po(y|x) = [ Pa(vilx), ¥x, Vy.
ieVv

where © = {01,...,0,} is a set of parameters.

Definition

A Hidden Markov Random Field (HMRF) is defined by the
tuple (G, X, ), V¥, 0).
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Hidden variables restoration in HMRF
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Sl @ Input :

din and

Niaz o Py(x) : MRF hidden variables distribution
@ Pgo(y/x) : HMRF observation function

Map

restoration in o Observations y

HMRF

@ OQutput :
@ Hidden variables posterior distribution :
Po(y/x)Pu(x)
Pye(x/y) =
) ( /y) P\U,@(y)

where Py o(y) = >, P(y/x)P(x)
o Hidden variables restoration x*



How to sample under limited resources ?

Optimal . . . . .
Sampling in @ Observations require to consume limited resources (time,
HMRF

people, etc.)
o A sample is a subset 0 C V of sites which will be actually
observed in order to restore the hidden field x

@ The result of a sample o is a a sample output y,

Optimal @ How to choose a sample 0 C V to observe ?

Sampling in
HMRF
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How to sample under limited resources ?
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Sampling in @ Observations require to consume limited resources (time,
HMRF
people, etc.)
Peyrard
Sabbadin and @ A sample is a subset ¢ C V of sites which will be actually

\IFV4
observed in order to restore the hidden field x

@ The result of a sample o is a a sample output y,

A @ How to choose a sample 0 C V to observe ?
ptima
Sampling in
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Definition (Posterior probability)
@ HMRF (G =(V,E),X,),V,0).
@ 0 C V is a sample and y, a sample outpout
@ The posterior probability conditionned on sample output
Yo is defined as :

Py o(x|ys) x Po(ys|x)Pw(x),Vx € X.

11/32



Sample quality definition
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@ How to define Uy g(c), the quality of sample o ?
@ Choice based on Py g(x|y,) and on sample cost (o)

@ y, unkown when o chosen = expectation criterion

Definition (Decision-theoretic sample quality measure)

Optimal
Sampling in

MRS Uve(o) = —1(0) + Y Pue(ys)Vre(o, %),
Yo

@ Vi o measures how informative Py o(x|ys) is

@ (o) measures the “cost” of o, and its unit is
homogeneous to Viy o(c, ys)

12/32



Sample quality definition
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Peyrard
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o Different possible choices : MPM, MPE (MAP), Entropy...

Definition (Most Probable Explanation (MPE) criterion)

Optimal

Sampling in @ Restoration quality :
HMRF

V\II)/,I(SE(O-? ycr) = )I’;ﬂea/%( P\U,@(X’yg)’v}/cr

@ Hidden variables restoration :

xMPE(y,) = arg max Py o(x|yo), Vo
xXEX
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Decision-theoretic sample optimisation problem

Sammglng i Definition (Decision-theoretic sample optimisation problem)

@ HMRF (G = (V,E), X, ),V ,0)

@ integer K > 0, a set W C V of sites available for sample
and costs v; > 0,Vi € W

HMRF sample optimisation problem O(U MPE) defined as :

Optimal
Sampling in ) "
HMRF Find ¢* = arg  max

MPE(O,)
aCW,|o|<K

@ How difficult is this sample optimisation problem ?
= Computational complexity results
= Polynomial approximations
@ Practical solution algorithms
= Exact variable elimination algorithm
= Approximate (exponential) “greedy” algorithm

= Aprroximate “Belief propagation™ algorithm
14 /32



Optimal sample exact computation

Optimal

Sampling in * = arg max — max P, P 5
mpling o gmax—(0) + Y _ max Py e (yo|x)Pu(x)
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Complexity, &&5’
Approximation >
Q(d, y) = maxx Py (y/x, d)Pyy (x)
&
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Computational complexity results
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ot Several cases depending on :

Peyrard @ Whether the sample size K is “small” (i.e. of

Sabbadin and

Niaz unconditionally bounded size)

@ Whether Z is known (or v(o) constant)

Proposition (General case)

The HMRF sample optimisation problem O(U\,A,”’gE ) is PP-hard,
Complexity, even when Z is known

Approximation

Proof :
@ "Sum-tree” complexity dominates
@ Reduction of the problem MAJSAT

@ Complexity lower bound is likely to be strict

16 /32



Computational complexity results
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Proposition (Best case : Z known, K small)

The HMRF sample optimisation problem O(Uu’\,/{gE ) is
NPO-complete when Z is known is K small

Proof :
Complexity, . .
Approximation @ “Max-tree” complexity dominates

@ Hardness by reduction of the problem MAX 2-SAT

17 /32



Polynomial approximations
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Proposition (Negative result)
O(UYEE) does not belong to APX.

Proof :
—— @ Meaning that there is no polynomial algorithm providing a
Approximation constant ratio approximation

@ Proof by reduction of the problem MAX 2-SAT

18/32
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Complexity,
Approximation

Polynomial approximations

Proposition (Positive result)

For a HMRF with binary variables, null cost function (Z
known) and Py (yi|xi) > 0,Vi,xi,yi :

U@,{g’f (o) can be approximated in polynomial time within an
instance-dependent approximation ratio py e, = Kyg o

where

e — Hcec maxy, Ye(xc) Hiea maXy; y; P9i(yi‘xi)
= Hcec minxc 1/}C(XC) Hiea minxiy}’i Pgi(y,'|X,')

If furthermore the HMREF is pairwise, py o, = K%o(gga.

Proof :

@ Adaptation of best known polynomial algorithms for MAX
SAT and MAX 2-SAT

19/32



What does it mean in practice ?
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@ That the decision-theoretic optimal sampling in HMRF
problem is hard to solve exactly... or very hard!
@ Still we can explore several directions :

© Exact variable elimination algorithm
© Greedy variable elimination algorithm
© Belief Propagation (message passing) algorithm

Algorithms

20/32



Exact variable elimination algorithm
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@ Exhaustive enumeration of the sample x observation
space (i.e. all pairs (0, y,))

o Exact calculation of UUA,{QE(U)

@ Variable elimination used for

o Exact calculation of V/EE (o, y,)

: o Exact calculation of Z (once for a given problem)
Algorithms

21/32



Calculation of VMPE( . Yo)
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Niaz MPE(O’ ya) _ l

max H Po, (vi/xi»0) [ | %e(xc)

.....

Tiev ceC

@ Successive elimination of x; through local variable
elimination

@ Find max on the potentials of each variable and project it
Algorithms on its neighbours

@ Elimination order 1 to n

22/32



Optimal @ For every xi eliminated

Sampling in
i o Calculate

hx = max Py, (yk/xk, o) Ye(xec)hi—1
Xk
c)eC,kec

o Store hy
@ New edges added between neighbours of xx
@ End when no variables left

VIEE (0, yo ) = max Py ya/xn, ) 1
@ Similar principle for computing Z

x2

X1 x3

Algorithms

, o, % s, X6

X9
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Greedy approximation algorithm

Optimal . .. . . .
Sevpsifigs i @ The exact variable elimination algorithm requires to

HMIRE perform variable elimination for
o All available samples o (number exponential in K)
o All possibles observations o (number exponential in K)

@ So, it needs to perform a task require exponential (in |V|)
time many (exponential in K'!) times

The idea of the greedy algorithm is to reduce (a bit) this
complexity, by “greedily” exploring samples of increasing size :

@ Complexity decreased by an exponential factor (but still
exponential !)

Algorithms

@ Unfortunately, no guarantee on the loss of quality by using
the greedy algorithm (could have been if U\"U’ng were
submodular)

@ Quite good in practice (see experiments) !

24 /32



Belief propagation algorithm

S Double approximation :
- o Marginal probability distributions for each vertex
Peyrard

n and computed approximately a priori, using a classical
- “Sum-Product” BP algorithm
@ Sample choice made on the basis of these approximate
distributions (most “uncertain” vertices chosen for
sampling
Consequences :

+ Sum Product BP algorithm run only once

Algorithms

+ No need to explore the sample output space
+ Complexity independent of sample size

+ Sum Product BP run time can be “tuned” (number of
updates)

- Less efficient than the Greedy algorithm

25/32



Experiments

Sammpling n o Pairwise HMRF with X; = J; = {0,1}

HMRF

e @ Singleton potentials : white (¢;(1) = 0.3), grey
Sabbadin and (¥i(1) = 1) black (vi(1) = 3)
@ Pair potentials : exp(1) = e for (1,1) and (0,0), 1
otherwise.

Experiments

26 /32



Results
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Ratio Vgreedy/V*

Ratio VBPV*

HMRF N " ]
£ oo

Log(Time): Greedy algorithm

Log(Time): Belief propagation Log(Time): Exact method

Log(M)

Log(M
log(M)

Nof vertices.

Experiments

@ Top : Ratio of values, greedy (left), BP (center), relative
increase of optimal value wrt sample size.(right).
@ Bottom : Log-times of greedy, BP and exact algorithms.

27 /32



Comments
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@ Exact method inapplicable for large problems (Couldn't
solve the 6x6 problem with k = 4 within 9 days)

@ Greedy algorithm considerably faster (x10 for k = 2, x100
for k = 3 and x500 for k = 4) and still close to optimal
(for small problems).

@ BP is the only applicable method for large problems (and
time independent of K). Optimality ratio decreases to

Experiments < 80%.

28 /32



Summary
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@ An approach for optimal sampling in structured problems
under limited budget, within the framework of HMRF

@ Criterion : tradeoff between expectatation (over outputs)
of the most likely reconstruction and sample cost
@ Results :
© Complexity/approximability results
© Exact and approximation algorithms (empirical validation)
o Originality :
@ General HMREF structure with decisions
©Q Noisy observations
Conclusion © Non-trivial quality measure

© Focus on sample size (rather than graph structure) to
exhibit “easier” classes of problem

29 /32



Related works

Sa%P;:iT;'in Several recent works have addressed the question of
HMRF decision-theoretic observation selection in graphical models :

e @ [KGO09] (i) Reliable observations (ii) simple problem
e structures (chain model, naive Bayes model or polytree).

(iii) Complexity results and exact and approximate solution
algorithms (iv) Rewards are local.

@ [RSS06] (i) Noisy observations case (ii) Simple problem
structures (hidden Markov chains, tree-shaped Bayesian
networks) (iii) Easily computable local rewards

@ [MSO08] (i) General Bayesian networks (ii) Noisy
observations, (iii) Specific and easy to compute non-local

Conclusion reward function.

@ [PSS™10] (i) Similar problem with application to invasive
species map reconstruction (ii) MPM-based criterion (iii)
static and adaptive case (iv) BP and heuristic algorithms.

30/32
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Authors | Structure Obs Reward Algo Complexity
[KGO9] Simple | Reliable | Easy | Ex+App Yes
[RSS06] General Noisy Easy Exact No
[MSO08] General Noisy Easy Exact No
[PSST10] | General Noisy MPM App No

Conclusion

31/32



Future work
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Mathieu Bonneau's PhD thesis (with S. GABA, INRA-EA

Avignon)

@ Extending the framework to general stochastic graphical
model

@ Exploring simulation-based algorithms (Reinforcement
Learning) for adaptive sampling problems with different
criteria

@ Comparing with Krigging-based approaches [BPS10]

@ Weeds communities mapping application

Conclusion

32/32



g Optimal [M M. Bonneau, N. Peyrard, and R. Sabbadin.
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reconstruction de carte d’occurrence.

In Proc. 17th Conf. Reconnaissance des Formes et I1A

(RFIA'2010), 2010.

[@ A. Krause and C. Guestrin.
Optimal value of information in gaphical models.
Journal of Artificial Intelligence Research, 35 :557-591,
2009.

[@ M. Munie and Y. Shoham.
Optimal testing of structured knowledge.
In Proc. of 23rd AAAI Conference, 2008.

@ N. Peyrard, R. Sabbadin, D. Spring, R. Mac Nally, and
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Conclusion
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Conclusion

adaptive algorithms.
In ECCS conference, Lisbon, Portugal, 2010.

[§ Y. Radovilsky, G. Shattah, and S. Shimony.
Efficient deterministic approximation algorithm for
nonmyopic value of information in graphical models.
In SMC conference, Taipei, Taiwan, 2006.

Spatial sampling in hmrf mapping problems : Static and
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