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Context

Multiple testing: local FDR

Question: Is gene G differentially expressed under specific conditions?
= Multiple testing, local FDR(False Discovery Rate).
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< Mixture models
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Context

Tiling array

© Provides a mesure of the expression for each probe
@ Dimension: 10* to 10°

NimbleGer

2 kind of probes:
@ Expressed: High or middle intensity
@ Non expressed: Low intensity near from 0 = easily recognisable

Spatial dependance: A adjacent probe of an expressed probe is more
likely to be expressed(and vice versa). = HMM
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Context

Binary classification problem

g
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We consider a mixture between two populations :

g(x) = Sf(x) + (1 = $)o(x) (1)

where S equals 1 if x belongs to f and 0 otherwise. The density function
¢ is known and f must be ajusted.

The variable S is either distributed as a Multinomial or a first order
Markov Chain.



Context

Model averaging (1/2)
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We are interested in the posterior distribution of S:
P(S|X) = /P(5,6|X)d€),

where © is the vector of parameters.
Many models can be considered for the estimation of P(S|X). However,

@ Each model brings some information

@ Select one specific model is not judicious

= Use an aggregated estimator which combines all the models.



Context

Model averaging (2/2)
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Estimators Weights Aggregated estimator
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Objective: Estimate ap,.



Context

Model averaging
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Jaakkola and Jordan (1998) prouved that combining models provided
better results than selecting only one model in 7.

min KL(Qaggre(S)[|P(S]X)) < min KL(Qm(S)[[P(S]X))
Problem:
The quantity min KL(Qaggre(S)||P(S]X)) is hard to calculate.
Shift the original problem:

Instead of minimising KL(Q(S)||P(S|X)), we focus on the minimisation
of

KL(Q(S, M)[|P(S, M|X))
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Optimal variational weights r weight fer of

Minimisation of the Kullback-Leibler divergence (1/2)

In the bayesian framework, the natural weights are based on:
P(M|X) :/P(5,97M|X)d5d@

with M the model.

Theorem

Let M be a random variable, distributed as a multinomiale with
parameter r, it yields:

M~ M(1,r) with P(M=m)=rp,.

We denote by &, the posterior distribution of the variable M obtained by
the minimisation of KL(Q(S,©, M|X)||P(S,©, M|X)). Hence,

G = / Q(S.©, M|X)dSdO o rpyeKLQ(S.OIm)P(S.0.X|m)
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Optimal variational weights

Minimisation of the Kullback-Leibler divergence (2/2)

Q(H, M)
P(H, M|X)
QHIM)Q(M)P(X)

P(H, M, X)

KL(Q(H, M)||P(H, M|X)) dHdM

/ Q(H, M) log

dHdM

[ atHimemyiog

[ KL@HM)IP(H,X| M) Q(M)dM ~ £(@(M))

+log P(X) — / log P(M)Q(M)dM

= log P(X) + ) Q(m)[KL(Q(H|M)||P(H,X|M))

+log Q(m) — log P(M)]

where, £(X) = — [ X log XdX.
The minimum is obtained with Lagrange multipliers, i.e. we minimize the functional

KL(Q(H, M)||P(H, M|X)) = A(D_ Q(m) — 1)
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Optimal variational weights

Interpretation of the theorem

Other writing of the theorem

G o rne—KL@(S.OIX.m)[IP(S.0.X|m)

o e~ KLQ(S.©1X,m)|[P(S,0]X.m)+log P(X|m)

True weights

If KL(Q(S,©|X, m)||P(S5,0|X,m)) =0, then a, = P(m|X)
Consequence

We want to minimise KL(Q(S,©|X, m)||P(S,©|X, m))

@ VBEM algorithm for the bayesian case

@ EM algorithm for the frequentist case
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Other weights

Sampling

The true distribution is given by :

pimix) = WM pixim)

x [ P(X,0|M)P(©)d®.

—

The integral is then estimate by:

1

O X

B
> P(X,0PM =m), (2)
b=1

o]

avec @(b)w,,dP(@)
Problem: The variance is very high
Solution: Modified the distribution P(H) in order to speed up the
convergence and reduce the variance = Importance
Sampling
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Other weights

Importance sampling
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We have:

wa)at/mxgg”@g@m. (3)

The function G(©) represents the importance function.

5 xe@M—mP@w

b:

with ©(P)~;,G(O)

Remarks @ Provides an estimation of the posterior distribution
P(M|X).

@ Reduces the variance of &,, for a good choice of G.

@ The higher B, the more accurate the estimation is.



Other weights

Choice of the importance function

Two natural choices of function for H = ©.

@ The posterior distribution of the VBEM algorithm Q\ (©)

@ The asymptotic normal distribution of the parameters with mean &
and the variance-covariance calculated from the Fisher information
matrix \(©,7°1)

82

~ 557 L(X.0)|. (5)

I(0,x) =E

@ Is there an optimal choice of G ?
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Other weights

Chibs" weights

Chib’s method is a direct application of the Bayes theorem, we have:

P(X|M,0)P(0|M)

90, PIXIM) = = (6)

@ We choose 6 as the posterior mean of ©, 6* = E(©|X).
@ P(0*|X, M) is approximated by the distribution Q(6*|X, M)
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Inference of f,

fm as a mixture density

We consider f,, as a mixture of K, Gaussian distributions.

Km
fn(x) =D prdi(x) with > pe=1
k=1 k

Hence,

Km
gm(x) = Zﬂ'kd)k(x) with Zﬂ'k =1
k=0 k
Then, we denote by Z; the label of observation i:

Zi=k if ick
These variable are distributed as:

@ multinomial, it is a classical mixture model with independant latent
variables.

@ Markov chain, it is a HMM(Hidden Markov Model) with spatially
dependant latent variables(with a specific transition matrix).
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Inference of f,

Exemple

@ The class of interest is modelised by a standard gaussian
distribution.

@ The alternative is fitted by a 3-components gaussian mixture.
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Inference of f,

Divide the problem: proposition

Proposition

Minimise KL(Q(S,©|X, M)||P(S,©|X, M))
is equivalent to
Minimise KL(Q(Z,©|X, M)||P(Z,0|M, X)).

Interpretation

@ We can devide the problem into easier sub-problems.

@ It is more convenient to use Z rather than S.

Objective: Minimise KL(Q(Z,©|X, M)||P(Z,0|M, X))
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Inference of f,

Variational approximation

We want:

Argmin KL(Q(©, Z)||P(©, Z|X))
S}

The minimum is obtained for Q(©, Z) = P(©, Z|X).

Problem : We must know the marginal likelihood to calculate P(©, Z|X).
= We consider a distribution Qy define by:

Qv(©,2) = Qo(©) x Qz(2).
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Inference of f,
°0

Prior distributions: Normal inverse-gamma model

Hypothesis on latent variables
We suppose that latent variables are independant and:
Zi ~ M(1; ),
and,
Qz(2)=11P(2)
Prior distributions

Data are distributed as a mixture of N (u, Aik)
We consider a particular class models , which are called
conjugate-exponential (CE) models (Beal et Gharahmani (2003)) :
o m~D(po,...,px-1) = Proportions
@ Ly ~ N(m, ﬁ) = Means

@ )\, ~ [(a,b) = Precision
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Inference of f,

oe

log marginal likelihood

lower bound
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Figure: The VBEM steps

source: Beal thesis
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Inference of f,
°0

Prior distributions

Hypothesis on latent variables
We suppose that:
Qz(2) =[] P(z1Zi-1)
Prior distributions
We denote by I = {mj}k=0...k—1,j=0...k—1 the transition matrix:

@ Ty ~ D(pgk), e ,pﬁf)) = Transition matrix

TEX A

® i Mk N./\/(m L ) = Mean

@ )¢ ~ I'(a,b) = Precision
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Inference of f,
oce

VB-HMM algorithm

"Step E:" Qz(2)

Qz(Z) is obtained via a forward-bakward algorithm.

"Step M:" Qe (0)

It is the same M step for the VBEM and the VB-HMM algorithms.
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Simulation study

@ Simulate a mixture of a U/[0, 1] and a S-distribution or a U-distribution.
@ Apply a probit transformation.

@ Choose 4 transition matrix and 4 different parameters for the alternative
distribution.

Histogram of Data Histogram of Data Histogram of Data Histogram of Data
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@ Simulate S = 100 datasets of size 100

@ We compare the optimal variational weights and Chib’s weights to the IS
approach.

@ We calculate the RMSE between the theoretical distribution of S and its

estimation.
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Hellinger distance

Simulation study

The next figure displays the Hellinger distance between the estimated

weights (Uniform simulation case).
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Simulation study
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Conclusion

Conclusion

@ The optimal weights are closer to the true weights than Chib’s ones.

@ The RMSE highlights promising results for model averaging.

Perspectives

@ Application of the method on transcriptional dataset.

@ Extension to HMRF (Hidden Markov Random Fields)
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