Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study

Variational bayesian approach for model aggregation in non-supervised classification

Stevenn Volant

AgroParisTech, UMR 518 MIA

June 1, 2010

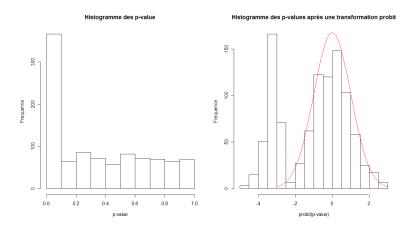
Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
	T 1	I.C.		
	lab	le of conten	its	

- Optimal variational weights
 - 3 Other weights

5 Simulation study

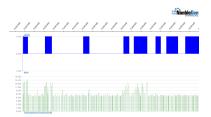
Multiple testing: local FDR

Question: Is gene G differentially expressed under specific conditions? \Rightarrow Multiple testing, local FDR(False Discovery Rate).



Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
Tiling	array			

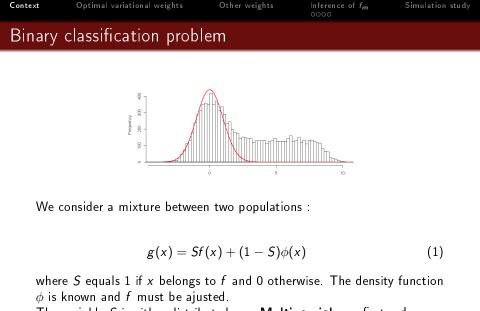
- Provides a mesure of the expression for each probe
- \bigcirc Dimension: 10^4 to 10^6



2 kind of probes:

- Expressed: High or middle intensity
- $\bullet~$ Non expressed: Low intensity near from 0 \Rightarrow easily recognisable

Spatial dependance: A adjacent probe of an expressed probe is more likely to be expressed(and vice versa). \Rightarrow HMM



The variable *S* is either distributed as a **Multinomial** or a first order **Markov Chain**.

We are interested in the posterior distribution of S:

$$P(S|X) = \int P(S,\Theta|X)d\Theta,$$

where Θ is the vector of parameters.

Many models can be considered for the estimation of P(S|X). However,

ション ふゆ アメリア メリア しょうくしゃ

- Each model brings some information
- Select one specific model is not judicious
- \Rightarrow Use an aggregated estimator which combines all the models.

Context Optimal variational weights Other weights Inference of f_m Simulation study 0000

Model averaging (2/2)

Estimators	Weights	Aggregated estimator
$\hat{P}^{(1)}(S X)$	ã1	
$\hat{P}^{(2)}(S X)$	ã2	$ ilde{P}(S X) = \sum_{m} ilde{lpha}_{m} \hat{P}^{(m)}(S X)$
$\hat{P}^{(3)}(S X)$	ã 3	
 $\hat{P}^{(\boldsymbol{m})}(S X)$	ã m	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

Objective: Estimate α_m .

Jaakkola and Jordan (1998) prouved that combining models provided better results than selecting only one model in \mathcal{J} .

```
\min KL(Q_{aggre}(S)||P(S|X)) \leq \min KL(Q_m(S)||P(S|X))
```

Problem:

The quantity min $KL(Q_{aggre}(S)||P(S|X))$ is hard to calculate.

Shift the original problem:

Instead of minimising KL(Q(S)||P(S|X)), we focus on the minimisation of

KL(Q(S, M)||P(S, M|X))

イロト 不得 トイヨト イヨト ヨー ろくで

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study

Table of contents

Optimal variational weights

Other weights

4 Inference of f_m

5 Simulation study

ContextOptimal variational weightsOther weightsInference of f_m Simulation studyMinimisation of the Kullback-Leibler divergence (1/2)

In the bayesian framework, the natural weights are based on:

$$P(M|X) = \int P(S,\Theta,M|X) dS d\Theta$$

with M the model.

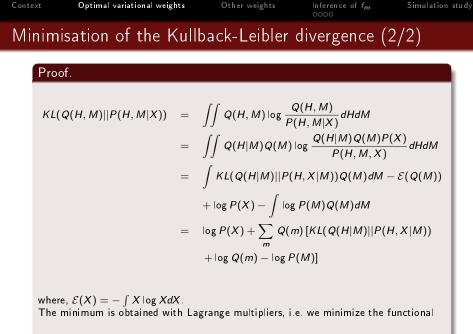
Theorem

Let M be a random variable, distributed as a multinomiale with parameter r, it yields:

$$M \sim \mathcal{M}(1, r)$$
 with $P(M = m) = r_m$.

We denote by $\tilde{\alpha}_m$ the posterior distribution of the variable M obtained by the minimisation of $KL(Q(S, \Theta, M|X))||P(S, \Theta, M|X))$. Hence,

$$\tilde{\alpha}_m = \int Q(S,\Theta,M|X) dS d\Theta \propto r_m e^{-\kappa L(Q(S,\Theta|m)||P(S,\Theta,X|m))}.$$



$$\lambda L(Q(H,M) || P(H,M|X)) - \lambda (\sum_{m} Q(m) - 1)$$

k

11/31

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
Interpr	etation of the theo	rem		

Other writing of the theorem

$$\begin{aligned} \tilde{\alpha}_m & \propto \quad r_m e^{-KL(Q(S,\Theta|X,m))|P(S,\Theta|X,m))} \\ & \propto \quad r_m e^{-KL(Q(S,\Theta|X,m))|P(S,\Theta|X,m)) + \log P(X|m)} \end{aligned}$$

ション ふゆ アメリア メリア しょうくしゃ

True weights

If
$$KL(Q(S, \Theta|X, m)||P(S, \Theta|X, m)) = 0$$
, then $\tilde{\alpha}_m = P(m|X)$

Consequence

We want to minimise $KL(Q(S, \Theta|X, m)||P(S, \Theta|X, m))$

- VBEM algorithm for the bayesian case
- EM algorithm for the frequentist case

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
	Table	of contents		
	Context			
2	Optimal variational weights			
3	Other weights			
4	nference of f_m			

5 Simulation study

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
Sampli	ng			

The true distribution is given by :

$$P(M|X) = \frac{P(M)}{P(X)}P(X|M)$$

$$\propto \int P(X,\Theta|M)P(\Theta)d\Theta.$$

The integral is then estimate by:

$$\hat{\alpha}_m \propto \frac{1}{B} \sum_{b=1}^{B} P(X, \Theta^{(b)} | M = m), \qquad (2)$$

avec $\Theta^{(b)} \sim_{iid} P(\Theta)$.

Problem: The variance is very high

Solution: Modified the distribution P(H) in order to speed up the convergence and reduce the variance \Rightarrow Importance Sampling

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> 0000	Simulation study
Import	ance sampling			

We have:

$$P(M|X) \propto \int \frac{P(X,\Theta|M)P(\Theta)}{\mathcal{G}(\Theta)} \mathcal{G}(\Theta) d\Theta.$$
 (3)

The function $\mathcal{G}(\Theta)$ represents the importance function.

$$\hat{\alpha}_m \propto \frac{1}{B} \sum_{b=1}^{B} \frac{P(X, \Theta^{(b)} | M = m) P(\Theta^{(b)})}{\mathcal{G}(\Theta^{(b)})},\tag{4}$$

with $\Theta^{(b)} \sim_{iid} \mathcal{G}(\Theta)$

- Remarks Provides an estimation of the posterior distribution P(M|X).
 - Reduces the variance of $\hat{\alpha}_m$ for a good choice of \mathcal{G} .
 - The higher B, the more accurate the estimation is.

Two natural choices of function for $H = \Theta$.

- The posterior distribution of the VBEM algorithm $Q_V(\Theta)$
- The asymptotic normal distribution of the parameters with mean Θ
 and the variance-covariance calculated from the Fisher information
 matrix N(Θ, I⁻¹)

$$\mathcal{I}(\Theta, x) = \mathbb{E}\left[-\frac{\partial^2}{\partial\Theta\partial\Theta^{T}}\mathcal{L}(X, \Theta)\right].$$
(5)

イロト 不良 トイヨト イロト

• Is there an optimal choice of \mathcal{G} ?

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> 0000	Simulation study
Chibs'	weights			

Chib's method is a direct application of the Bayes theorem, we have:

$$\forall \theta, P(X|M) = \frac{P(X|M,\theta)P(\theta|M)}{P(\theta|X,M)},$$
(6)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

- We choose θ as the posterior mean of Θ , $\theta^* = \mathbb{E}(\Theta|X)$.
- $P(\theta^*|X, M)$ is approximated by the distribution $Q(\theta^*|X, M)$

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
	Table	e of content	5	
	Context			
2	Optimal variational weights			
3	Other weights			
-	nference of <i>f_m</i> ● Mixture Models			

• HMM

Context Optimal variational weights Other weights $\frac{\text{Inference of } f_m}{0000}$ Simulation study

f_m as a mixture density

We consider f_m as a mixture of K_m Gaussian distributions.

$$f_m(x) = \sum_{k=1}^{K_m} p_k \phi_k(x)$$
 with $\sum_k p_k = 1$

Hence,

$$g_m(x) = \sum_{k=0}^{K_m} \pi_k \phi_k(x)$$
 with $\sum_k \pi_k = 1$

Then, we denote by Z_i the label of observation *i*:

$$Z_i = k$$
 if $i \in k$

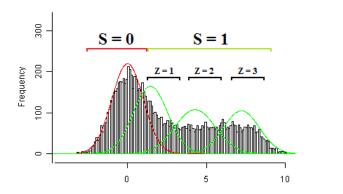
These variable are distributed as:

- multinomial, it is a classical mixture model with independant latent variables.
- Markov chain, it is a HMM(Hidden Markov Model) with spatially dependant latent variables(with a specific transition matrix).

San

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> 0000	Simulation study
Exemple	е			

- The class of interest is modelised by a standard gaussian distribution.
- The alternative is fitted by a 3-components gaussian mixture.



Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> 0000	Simulation study
Divide	the problem: prop	osition		
Prop	position			
	imise $KL(Q(S, \Theta X, M) H$	$P(S,\Theta X,M))$		
	uivalent to			
Mini	imise $KL(Q(Z,\Theta X,M) I$	$P(\mathbf{Z},\Theta M,X)).$		
Inter	rpretation			

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへつ

- We can devide the problem into easier sub-problems.
- It is more convenient to use Z rather than S.

Objective: Minimise $KL(Q(Z, \Theta|X, M)||P(Z, \Theta|M, X))$

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> 0000	Simulation study
Variati	onal approximation			

We want:

$$\operatorname{Argmin}_{\Theta} \mathsf{KL}(Q(\Theta, Z)||P(\Theta, Z|X))$$

The minimum is obtained for $Q(\Theta, Z) = P(\Theta, Z|X)$.

Problem : We must know the marginal likelihood to calculate $P(\Theta, Z|X)$. \Rightarrow We consider a distribution Q_V define by:

$$Q_V(\Theta, Z) = Q_\Theta(\Theta) \times Q_Z(Z).$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Hypothesis on latent variables

We suppose that latent variables are independant and:

 $Z_i \sim \mathcal{M}(1; \pi),$

and,

$$Q_Z(Z) = \prod_i P(Z_i)$$

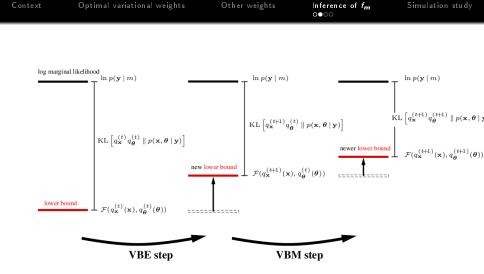
Prior distributions

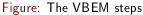
Data are distributed as a mixture of $\mathcal{N}(\mu_k, \frac{1}{\lambda_k})$. We consider a particular class models , which are called conjugate-exponential (CE) models (Beal et Gharahmani (2003)) :

•
$$\pi \sim \mathcal{D}(p_0, \ldots, p_{K-1}) \Rightarrow \mathsf{Proportions}$$

•
$$\mu_k \sim \mathcal{N}(m, \frac{1}{t \times \lambda_k}) \Rightarrow Means$$

•
$$\lambda_k \sim \Gamma(a, b) \Rightarrow \text{Precision}$$





3 → 3

900

source: Beal thesis

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> ००●०	Simulation study
Prior d	listributions			

Hypothesis on latent variables

We suppose that:

$$Q_Z(Z) = \prod_i P(Z_i | Z_{i-1})$$

Prior distributions

We denote by $\Pi = \{\pi_{kj}\}_{k=0...K-1, j=0...K-1}$ the transition matrix:

$$\pi_{kj}=P(Z_{t+1}=j|Z_t=k).$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

• $\pi_{k.} \sim \mathcal{D}(p_1^{(k)}, \dots, p_K^{(k)}) \Rightarrow$ Transition matrix

•
$$\mu_k | \lambda_k \sim \mathcal{N}\left(m, \frac{1}{t \times \lambda_k}\right) \Rightarrow \text{Mean}$$

• $\lambda_k \sim \Gamma(a, b) \Rightarrow \text{Precision}$

Context	Optimal variational weights	Other weights	Inference of <i>f_m</i> ○○○●	Simulation study
VB-HN	AM algorithm			

"Step E:" $Q_Z(Z)$

$Q_Z(Z)$ is obtained via a forward-bakward algorithm.

"Step M:" $Q_{\Theta}(\Theta)$

It is the same M step for the VBEM and the VB-HMM algorithms.

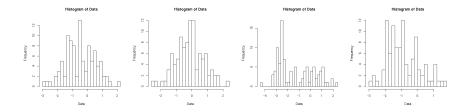
▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
	Table	e of content	S	
1	Context			
2	Optimal variational weights			
3 (Other weights			

5 Simulation study

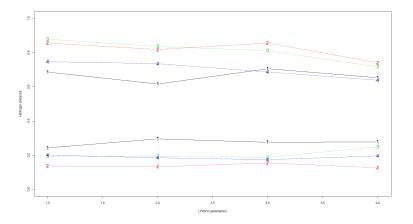
Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
Design				

- Simulate a mixture of a $\mathcal{U}[0,1]$ and a β -distribution or a \mathcal{U} -distribution.
- Apply a probit transformation.
- Choose 4 transition matrix and 4 different parameters for the alternative distribution.



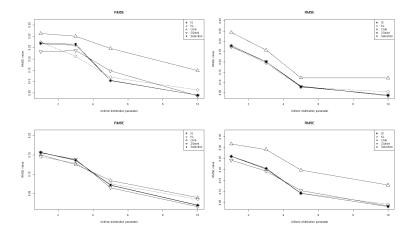
- Simulate S = 100 datasets of size 100
- We compare the optimal variational weights and Chib's weights to the IS approach.
- We calculate the RMSE between the theoretical distribution of S and its estimation.

The next figure displays the Hellinger distance between the estimated weights (Uniform simulation case).



< A >

Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
RMSE				



Context	Optimal variational weights	Other weights	Inference of f _m 0000	Simulation study
Conclu	ision			

Conclusion

• The optimal weights are closer to the true weights than Chib's ones.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• The RMSE highlights promising results for model averaging.

Perspectives

- Application of the method on transcriptional dataset.
- Extension to HMRF (Hidden Markov Random Fields)