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Multiple testing: local FDR

Question: Is gene G di�erentially expressed under speci�c conditions?

⇒ Multiple testing, local FDR(False Discovery Rate).

↪→ Mixture models
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Tiling array

1 Provides a mesure of the expression for each probe

2 Dimension: 104 to 106

2 kind of probes:

Expressed: High or middle intensity

Non expressed: Low intensity near from 0 ⇒ easily recognisable

Spatial dependance: A adjacent probe of an expressed probe is more
likely to be expressed(and vice versa). ⇒ HMM
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Binary classi�cation problem

We consider a mixture between two populations :

g(x) = Sf (x) + (1− S)φ(x) (1)

where S equals 1 if x belongs to f and 0 otherwise. The density function
φ is known and f must be ajusted.
The variable S is either distributed as a Multinomial or a �rst order
Markov Chain.
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Model averaging (1/2)

We are interested in the posterior distribution of S :

P(S |X ) =

∫
P(S ,Θ|X )dΘ,

where Θ is the vector of parameters.
Many models can be considered for the estimation of P(S |X ). However,

Each model brings some information

Select one speci�c model is not judicious

⇒ Use an aggregated estimator which combines all the models.
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Model averaging (2/2)

Estimators Weights Aggregated estimator

P̂
(1)(S|X ) α̃1

P̂
(2)(S|X ) α̃2

P̃(S|X ) =
∑
m α̃m P̂

(m)(S|X )

P̂
(3)(S|X ) α̃3

. . . P̂
(m)(S|X ) α̃m

Objective: Estimate αm.
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Model averaging

Jaakkola and Jordan (1998) prouved that combining models provided
better results than selecting only one model in J .

minKL(Qaggre(S)||P(S |X )) ≤ minKL(Qm(S)||P(S |X ))

Problem:

The quantity minKL(Qaggre(S)||P(S |X )) is hard to calculate.

Shift the original problem:

Instead of minimising KL(Q(S)||P(S |X )), we focus on the minimisation
of

KL(Q(S ,M)||P(S ,M|X ))

8/31



Context Optimal variational weights Other weights Inference of fm Simulation study

Table of contents

1 Context

2 Optimal variational weights

3 Other weights

4 Inference of fm

5 Simulation study

9/31



Context Optimal variational weights Other weights Inference of fm Simulation study

Minimisation of the Kullback-Leibler divergence (1/2)

In the bayesian framework, the natural weights are based on:

P(M|X ) =

∫
P(S ,Θ,M|X )dSdΘ

with M the model.

Theorem

Let M be a random variable, distributed as a multinomiale with

parameter r , it yields:

M ∼M(1, r) with P(M = m) = rm.

We denote by α̃m the posterior distribution of the variable M obtained by

the minimisation of KL(Q(S ,Θ,M|X )||P(S ,Θ,M|X )). Hence,

α̃m =

∫
Q(S ,Θ,M|X )dSdΘ ∝ rme

−KL(Q(S,Θ|m)||P(S,Θ,X |m)).
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Minimisation of the Kullback-Leibler divergence (2/2)

Proof.

KL(Q(H,M)||P(H,M|X )) =

∫∫
Q(H,M) log

Q(H,M)

P(H,M|X )
dHdM

=

∫∫
Q(H|M)Q(M) log

Q(H|M)Q(M)P(X )

P(H,M,X )
dHdM

=

∫
KL(Q(H|M)||P(H,X |M))Q(M)dM − E(Q(M))

+ logP(X )−
∫

logP(M)Q(M)dM

= logP(X ) +
∑
m

Q(m) [KL(Q(H|M)||P(H,X |M))

+ logQ(m)− logP(M)]

where, E(X ) = −
∫
X logXdX .

The minimum is obtained with Lagrange multipliers, i.e. we minimize the functional

KL (Q(H,M)‖P(H,M|X ))− λ(
∑
m

Q(m)− 1)
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Interpretation of the theorem

Other writing of the theorem

α̃m ∝ rme
−KL(Q(S,Θ|X ,m)||P(S,Θ,X |m))

∝ rme
−KL(Q(S,Θ|X ,m)||P(S,Θ|X ,m))+logP(X |m)

True weights

If KL(Q(S ,Θ|X ,m)||P(S ,Θ|X ,m)) = 0, then α̃m = P(m|X )

Consequence

We want to minimise KL(Q(S ,Θ|X ,m)||P(S ,Θ|X ,m))

VBEM algorithm for the bayesian case

EM algorithm for the frequentist case
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Sampling

The true distribution is given by :

P(M|X ) =
P(M)

P(X )
P(X |M)

∝
∫

P(X ,Θ|M)P(Θ)dΘ.

The integral is then estimate by:

α̂m ∝
1

B

B∑
b=1

P(X ,Θ(b)|M = m), (2)

avec Θ(b)∼iidP(Θ).

Problem: The variance is very high

Solution: Modi�ed the distribution P(H) in order to speed up the
convergence and reduce the variance ⇒ Importance
Sampling
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Importance sampling

We have:

P(M|X ) ∝
∫

P(X ,Θ|M)P(Θ)

G(Θ)
G(Θ)dΘ. (3)

The function G(Θ) represents the importance function.

α̂m ∝
1

B

B∑
b=1

P(X ,Θ(b)|M = m)P(Θ(b))

G(Θ(b))
, (4)

with Θ(b)∼iidG(Θ)

Remarks Provides an estimation of the posterior distribution
P(M|X ).
Reduces the variance of α̂m for a good choice of G.
The higher B, the more accurate the estimation is.
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Choice of the importance function

Two natural choices of function for H = Θ.

The posterior distribution of the VBEM algorithm QV (Θ)

The asymptotic normal distribution of the parameters with mean Θ̂
and the variance-covariance calculated from the Fisher information
matrix N (Θ̂, I−1)

I(Θ, x) = E
[
− ∂2

∂Θ∂ΘT
L(X ,Θ)

]
. (5)

Is there an optimal choice of G ?
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Chibs' weights

Chib's method is a direct application of the Bayes theorem, we have:

∀θ,P(X |M) =
P(X |M, θ)P(θ|M)

P(θ|X ,M)
, (6)

We choose θ as the posterior mean of Θ, θ∗ = E(Θ|X ).

P(θ∗|X ,M) is approximated by the distribution Q(θ∗|X ,M)
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fm as a mixture density

We consider fm as a mixture of Km Gaussian distributions.

fm(x) =
Km∑
k=1

pkφk(x) with
∑
k

pk = 1

Hence,

gm(x) =
Km∑
k=0

πkφk(x) with
∑
k

πk = 1

Then, we denote by Zi the label of observation i :

Zi = k if i ∈ k

These variable are distributed as:

multinomial, it is a classical mixture model with independant latent
variables.

Markov chain, it is a HMM(Hidden Markov Model) with spatially
dependant latent variables(with a speci�c transition matrix).
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Exemple

The class of interest is modelised by a standard gaussian
distribution.

The alternative is �tted by a 3-components gaussian mixture.
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Divide the problem: proposition

Proposition

Minimise KL(Q(S ,Θ|X ,M)||P(S ,Θ|X ,M))
is equivalent to

Minimise KL(Q(Z ,Θ|X ,M)||P(Z ,Θ|M,X )).

Interpretation

We can devide the problem into easier sub-problems.

It is more convenient to use Z rather than S .

Objective: Minimise KL(Q(Z ,Θ|X ,M)||P(Z ,Θ|M,X ))
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Variational approximation

We want:

Argmin
Θ

KL(Q(Θ,Z )||P(Θ,Z |X ))

The minimum is obtained for Q(Θ,Z ) = P(Θ,Z |X ).

Problem : We must know the marginal likelihood to calculate P(Θ,Z |X ).
⇒ We consider a distribution QV de�ne by:

QV (Θ,Z ) = QΘ(Θ)× QZ (Z ).
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Prior distributions: Normal inverse-gamma model

Hypothesis on latent variables

We suppose that latent variables are independant and:

Zi ∼M(1;π),

and,
QZ (Z ) =

∏
i

P(Zi )

Prior distributions

Data are distributed as a mixture of N (µk ,
1
λk

).

We consider a particular class models , which are called
conjugate-exponential (CE) models (Beal et Gharahmani (2003)) :

π ∼ D(p0, . . . , pK−1) ⇒ Proportions

µk ∼ N (m, 1
t×λk

) ⇒ Means

λk ∼ Γ(a, b) ⇒ Precision
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Figure: The VBEM steps

source: Beal thesis
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Prior distributions

Hypothesis on latent variables

We suppose that:

QZ (Z ) =
∏
i

P(Zi |Zi−1)

Prior distributions

We denote by Π = {πkj}k=0...K−1,j=0...K−1 the transition matrix:

πkj = P(Zt+1 = j |Zt = k).

πk. ∼ D(p
(k)
1 , . . . , p

(k)
K ) ⇒ Transition matrix

µk |λk ∼ N
(
m, 1

t×λk

)
⇒ Mean

λk ∼ Γ(a, b) ⇒ Precision
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VB-HMM algorithm

"Step E:" QZ (Z )

QZ (Z ) is obtained via a forward-bakward algorithm.

"Step M:"QΘ(Θ)

It is the same M step for the VBEM and the VB-HMM algorithms.
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Design

Simulate a mixture of a U [0, 1] and a β-distribution or a U-distribution.
Apply a probit transformation.

Choose 4 transition matrix and 4 di�erent parameters for the alternative

distribution.

Simulate S = 100 datasets of size 100

We compare the optimal variational weights and Chib's weights to the IS

approach.

We calculate the RMSE between the theoretical distribution of S and its

estimation.
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Hellinger distance

The next �gure displays the Hellinger distance between the estimated
weights (Uniform simulation case).
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RMSE
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Conclusion

Conclusion

The optimal weights are closer to the true weights than Chib's ones.

The RMSE highlights promising results for model averaging.

Perspectives

Application of the method on transcriptional dataset.

Extension to HMRF (Hidden Markov Random Fields)
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