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Model-based multivariate clustering

Model-based clustering: Mixture of gaussians
K

f(yi) = > mrfe(yi; Ok)

k=1
With fr(yi; 0k) ~ N (px, X)

e Univariate and multivariate

» Decomposition of the covariance matrix for flexibility in shape, volume and orientation
(Banfield and Raftery 93, Celeux and Govaert 95)

with Ag : volume

Dy, : orientation
Ay : shape

\§

Convenient computational tractability:

EM algorithm

+ additional minimization algorithm for some decompositions (see Celeux, Govaert 95)



Robust clustering

In some applications:
*The tails of the normal distributions are shorter than appropriate or

eParameter estimations are affected by atypical observations (outliers)

=P it a mixture of t-distribution (Student distribution) fr (i3 0k) ~ t(Yi; tr, 2k, Vi)

« Univariate and multivariate
« Additional degree of freedom (dof) parameter v — 00 = fr — N distribution

The dof can be seen as a robustness tuning parameter

0.40
Convenient computational tractability: 222
EM algorithm with additional missing variables (class+ weights) 025
+ additional numerical procedure for the ML estimate of the dof & 0.20f
(see MacLachlan and Peel 2000) giz

0:05-

In contrast to the Gaussian case, no closed-form solution for ML  0.00

But a useful representation of the t-distribution as an infinite mixture of scaled Gaussians




Scaled mixture of Gaussians

The EM algorithm for t-mixtures is based on the following construction of the t-distribution

v — —(v+M)/2
b(y; 1, B v) = T |71/ 1482 /w] "

with §%2 = (y — u)T X1 (y — u) the squared Mahalanobis distance

M: dimensionality of y
I': Gamma function

=ty 2v) = Ny E/w) G(w;v/2,v/2) dw

Another construction (equivalent):

X ~N(0,X)and V ~ X%(v) = G(v/2,1/2)
Y=Xx/&) +p ~ tuwv)

v ~G(v/2,v/2)



EM algorithm for t-mixtures (MoT)

Observations: ¥y ={y1...yn~} wherey; = {yi1...yinm}
Missing data: z =4z ...zy} with z; € {e;...ex} (K classes)
Additional missing data: W ={wy...wWx}

yilwi, zi = e, ~ G(yi; pr, =*)

w;|z; = ex ~ T'(%, %)

Z; ~ M(m1 ...7g) independent

Unknown parameters: Y = { ks Xk Vk, Tk }

Expectation Maximization (EM) for maximum likelihood (%)

Iteration r E-step: compute p(z, w|y; ¢(r))
M-step: ("t = arg max Ellogp(Z, W,y;¢)|y; 9]




EM algorithm for t-mixtures (MoT)

Iterate:

© { Compute q ( ) posterior class membership probabilities, for all 7, k
E
Compute 'wz( )

_(r) _ ( )+ M

w, -
C T s D)

Compute the dof I/,(:—H) as a solution of an equation
(M) Compute the gaussian means and variances using

7 (ex) By yi

> of
pg ) = S
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|llustrations

10

/
|
o o “ o
|
|
|
| .
| {
{
| / w |
L '\I - o / L o b
o
Ve @ © ’/ o . o
\ o ol ° / @ g ©
\ e D/ o
\ =)
. \ 24
T T T T T T | T T T
-10 -5 0 5 10

-10 5 0 5 10
x1

Figure 2: (Asymptotic) ellipsoids for the three clusters obtained by fitting a mixture of

Figure 1: (Asymptotic) ellipsoids for the three clusters obtained by fitting a mixture of
g = 3t components to three normal groups plus uniformly distributed noise.

g = 3 normal components to three normal groups plus uniformly distributed noise.

MacLachlan, Ng, Bean 2006




Robust Bayesian clustering

Student mixtures + priors on parameters : Bayesian Student mixtures
Inference by Variational Bayes EM

Advantage: automatic and robust model selection

References:
Svensen and Bishop: no prior on the dof and variational approximation qz qw qtheta
Archambeau and Verleysen: uniform prior on dof and “better” approximation qzw gtheta

Takekawa et Fukai: improved on Archambeau and Verleysen with exponential prior on dof

A lot of robust approaches to clustering via mixture models has been based on mixture of
Student distribution

Goal: explore the scale mixture framework further




Multivariate heavy tall distributions

Many ways to generalize the univariate Student distribution (in the Student spirit):

» The standard way has one particular disadvantage as a model for data: all its marginals
are Student but have the same dof and hence the same amount of tailweight.

v — —(v+M)/2
Hys 1 50 v) = gy iy [S17Y2 (14 62/1]

with 62 = (y — )T (y — p) X ~N(0,%) and V ~ X2%(v)

V=Xx(8)+n ~ o)

» Product of independent t-distributions: varying dof but no correlation

« Jones 2002: a dependent bivariate t distribution with marginals of different dof. Extension
to multivariate? Joint density not tractable?

* Eltoft et al. 2006: new multivariate scale mixture of Gaussians, more general than Student

X ~ N(0,Idy) and A pos.def M x M with |A] =1,
Z a scalar positive variable with pdf to be chosen (eg I' or X)

_ 1/2 X



New multivariate heavy tail distributions

Several equivalent constructions:

1. Gaussian scale mixtures

(1 5, 601...001) = TTN(y 1 DWLADT) g1 (wn; 01— gas(wn; Oas) chn..chung

W:dag(ﬂ)l, ...'UM) 2 — DA.DT

Student like: q1(un; 6h) =Gun; 11/2,11/2) - . - gra(wng; Ong) = Glung vaa/2 var/2)
Pearson Type VII like: g1(w1; 91) = g(wl; 041,’)’1) .. -gM(wM; 9M) = g(wM; OéM,’YM)

2. Generative construction (useful for simulation)

X ~N(0, Id) X ~ N0, A)

and for m=1...M, Zm ~ Gm(2;6mm) anq for m=1...M, Zm ~ g,m:(z; Or)
all independent (positive variables) all independent (positive variables)
(X X v (X1 Xy \T

K= T K= (35300

Then Y = pu+ 312X Then Y = u+ DX



Univariate Pearson type VIl distribution

Log density and density for different parameters (varying
kurtosis ie. sharpness of peak)
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Multiple DoF Student distributions

Student
v = 0.1 (top left) and

v =5 (bottom left)

Student like:
v1 =vp =0.1 and 6 = 7w/3 (top right)
v1 = 1,1, = 10,0 = /3 (bottom right)

Multivariate Student

...........
..............

Multiple dof Multivariate Student



Multiple DoF Student distributions

-2 0 2 4 6 8
| | | | | | |
-2 0 2 4 6 8
| | | | | | |

-4
-4

Bivariate Student:

v =2 (left) and v = 10 (right) 4 -2 0 2 4 6 3 4 -2 0 2 4 6

New Bivariate Student like
for 11 =2, 1o = 10:

6 = 0 (left) and 0 = 7/8 (right)~
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Multivariate Pearson like distributions

A1:O.15,A2:1,9:O,Oé120.2,041:1,51:5,52:10
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Application to clustering: mixtures

3 Clusters generated from the product of two univariate Student distribution

with v =2 and v = 30

MoMultipleDoFT: the different
tailweights are better modeled

True classification True classification

Standard MoT

15

15




Further generalization

Data item dependent weight priors and spatial class prior

K-component mixture of M-dim. t-distributions weighted model

Data augmentation:

w={w;...wn}
with w; > 0 (independent of m)

{21 ...2zn} independent
Yilwi,zi = ex ~ G(yi; ik, ?U—':)

w;|z; = ey ~ ['(%e, %)

Ex. Ve =V Vk
— w; independent of z;

W={W1...WN} with W; Z{’wzlsz}

Wi = Dz'ag(wil...wz-M)
z Markovian

Y:|Wi, 2 = ex ~ G(ys; ur, DW, P A DT))

Wim ~ I'(Qm, Yim) independent of k

For a standard mixture, we would need
Qlim, YVim independent of ¢
—> inappropriate for lesion detection

MOTIVATION for such a generalization



Modelling lesions: inliers vs outliers

Explicit modelling usually avoided:

1) Widely varying and inhomogeneous appearance
(tumors, stroke)

2) Lesion size can be small (MS lesions)

‘fﬂ‘-

DIFFUSION




Modelling lesions: inliers vs outliers

—— prevent accurate model parameter estimation

———== pad lesion delineation

In most approaches: lesion voxels identified as outliers wrt a normal brain
model (a priori)
Our approach (incorporation strategy):
*Modify the segmentation model so that lesion voxels become inliers
*Make the estimation of the lesion class possible

*Use an additional weight field



Reasons for using weights

1) To bias the model toward lesion identification: voxel specific weights
 eg. duplicate intensity values typical of the lesion
2) To weight the information content of each sequences: modality specific weights

* Multiple MR volumes are commonly modelled via multivariate Gaussian
intensity distributions
 But all the sequences have equal importance

——> Optimally combine sequences to take into account
- a priori (expert) knowledge
- the targeted task
— the type of lesion

Weight choice? Bayesian framework:

e incorporate a priori on relevant information content of each sequence

» a weighting scheme modified adaptively




Robustness to non Gaussian components

lllustration: non spatial, data point dependent weight, no expert, priors G(1,1)

1. To assess the ability to deal with varying cluster shapes
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3 Gaussians and 500 data points from a G(2,2) to the right



Weighted G(1,1) vs non weighted approach
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Robustness to shape variability
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The weights adjust to the data allowing slight deviations from a Gaussian distribution



Robustness to outliers (grouped) Prior: G(1,1)
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Lesion detection or semi-supervised context

Principe de la méthode d'incorporation

« Deétermination d’'une région d’intéret, (a pondérer):
— Les voxels candidats a appartenir a la lesion

— Les voxels sélectionnés sont les moins représentatifs du modele
“sain”, ie. les outliers

— Ou sélection par un expert (semi-supervise) [Graph cut]
— Ou utilisation de regles (faux positifs) [STREM]

« Segmentation initiale:
— Classe lésion=région d’intéret
— Les autres voxels sont segmentés en 3 classes

—> Variante de EM pour modele de mélange a K=4 classes avec
pondeérations avec loi a priori sur les poids




Supervised context: non spatial illustration

1. To assess the ability of the weighted approach to detect a small non Gaussian component

0.25
|

0.20
|

/\ /\ /\ 3 Gaussian components
g (5000 data points each)

and

0.15
|

a small Beta(10,2) shifted by
6 units representing 100 data
points (proportion=0.066)

Density

0.10
|

0.05
|

. The smallest component is
1 gl “of interest” (eg. lesions)

0.00
n

Procedure: choose £ data points from the fourth component (supervised)
and use a G(a, B) prior for the corresponding weights variables




Supervised context

Number of points classified to 4th component

Prior parameters forw L£=10 L =50 L =100
a=1.0;8=1.0 0 0 0
a=158=10 25 90 147
a=3.0;,6=1.0 50 223

Note: with a Gaussian mixture model (K=4), no points in the 4" component



Supervised context

weights

Frequency

02 04 06 08 10 12 14

1500 2500

500

Clustering results for £ = 50 and G(1.5,1)

True classification
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Spatial case: A weighted Hidden Markov model

N voxels (3D) x M modalities (T1, T2, Flair images)
= Observations: Yy ={y1...y~} where y; = {yi1 ... yinm}
= Labels:z={z;...z2ny} with z; € {e;...ex} (K tissues)
= Weights: w={wi...wy} with w; = {w;; ... w;m}

sequence and voxel specific

Spatial dependencies between voxels:
the joint distribution is a Markov random field (MRF)

p(y,z, w;v) o exp(H(y,z, w;v)) Y =1{86,¢}
N\

- - (W) + 3. log g(¥ilzi, wi; 6)
........................ e

: Missing data term : EParameter prior termg

i Data driven term, based :
: on intensities :

"
. .
. 5
...............................................




Data term: 9(y;|Zi, Wi; &) = G(yi; tzy, Do, W, " Ay, DY)

If all weights are 1, a standard multivariate (diagonal) Gaussian case is recovered

Missing data term. Hz(z;8) = f}(< 7, &>+ Y. 0 <zi,z; >)
=1

FEN(3)

N (7): voxels neighboring %
B={&n} with £ =*(&1,...,€k) and n >0
Potts model with external field £, interaction parameter n

Parameter prior term: p(w) = [I1X_, p(Wm) Wi = {Wim - .- W)
1) Z,fil Wim = N A dirichlet distribution for p(w.,,)

2) the w;,, are independent Wirn, ~ I'(Qim, Yim)

erp

w .

.18 the mode of the prior for w;,




Estimation by variational EM

An alternating maximization view of EM: F(q,v) = E,[logp(y,Z, W ; )] + I[q]

[Neal&Hinton98]
| Ilq] = —E,[log q(z, W)] (entropy of q)

E-step: q(’") = arg meai))c F(q, w(r)) g € D a distribution on Z x W
q

M-step: ¢l = F(q™
step: v arg max (@', %)

Variational approximation:
Exact E-step leads to q(r) (z, w) = p(z, le; w(r)) intractable
EM variant (Variational EM): q(z,w) = qz(2) qw (W)

The E-step is solved over a restricted class of pdfs (that factorize)

The E-step is further approximated by its decomposition in 2 sub-steps
(Incremental EM [Neal&Hinton9s])

Modified GAM procedures [Byrne&Gunawardana05]




Variational E-step

arg max F(qy " qz;9™)
qz€Dz

arg max F(qw qg’);w(”)

qw €EDw

E-Z: qg) X exp (qu;_l)[logp(z|y,W;?,b(r)])

E-W: q‘(;/) X exp (Eq(Zr)[IOgP(WW,ZHD(T))])

For the weighted Markov model

p(y,z,w; ) is Markovian = all conditionals are Markovian

p(z|y,w;) is Markovian: H(z|y, w;) = Hz(z;8) + > log g(yi|z:, Wi; ¢)
eV

p(w|y,z; 1) is Markovian: H(wly,z;v¢) = Hw (W) + ) log g(y:|z:, Ws; &)
eV




In practice (for diagonal covariances)

Fix 7 (interaction parameter) and the expert weights wy.>

(modes of the weight priors) and +;,, (variances of the Welght priors)

Iterate:

6 { Compute g, )(z) using mean-field approx1mat10n or variants
E

Compute 'w( ") as o™ — Qim + 3
m K
Yim + % kg_:l a(yima ,Uggz,,, ng)%) g;) (ek)
exr 2
with Qim = YimWim, C+1 6 (Yim» Mg’;Zu Skm )) = {tim (i; )

skm

(Mahalanobis distance)
: ){ Compute (Newton) £ (external field parameter) using mean field
M

Compute the gaussian means and variances using

Z q(Z ) (ex) wm Yim

(r+1) _
km (r)
iE 49z, (ex) wi
d ( + ) z dz )(ek) 'w (yzm /*l'(r+1))2
an S

N
xz a5 (ex) D)



Choosing the expert weights

Expert knowledge difficult to formalize into weight values
Proposed setting:

Wil = we>1 Viel

m

w? = 1 VidCL

m

L is obtained by applying the model
with K =3, w;, " =1, Yyim =1 Vi,m
n =0 1is ok

Identify outliers by thresholding (Chi2 percentile)
the estimated weights (typicality)




Experiments

Chi? percentile fixed to 99%
Parameters to tune: we = 10

Yim =y =10 Vi,m (prior variances)

Simulated data (BrainWeb) with MS lesions: T1,T2,PD sequences, 1mms3

Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)
AWEM |72 (+9)|55 (-15)| 39 (+2) |22 (+18)

[G] 67 70 34 0
EMS 56 33 13 4
[R] 52 NA NA NA

Moderate lesions (0.18% of the voxels)
AWEM [86 (+7)| 80 (-1) |77 (+18) |73 (+306)

[G] T2 81 59 29
EMS 79 69 52 3F
[R] 63 NA NA NA

Severe lesions (0.52% of the voxels)
AWEM [93 (+8)| 88 (0) | 78 (+6) |74 (+33)
[G] 79 88 72 41
EMS 85 72 56 41

[R] 82 NA NA NA




Real data sets

2 Patients with MS: Flair,T1,T2 sequences, 1mm2x3mm

Ground truth

58% Ground truth



Real data sets

1 Patient with stroke: DW , Flair, T2 sequences, 1mm?2x5mm

63% Ground truth



Future work

Extension to full covariance matrices: temporal multi-sequence data,
eg. patient follow-up

Other prior for the weights: eg. MRF prior

Other expert weighting schemes, possibly lesion specific
Extension to handle intensity inhomogeneities
Sensitivity analysis: initialization, parameter tuning etc.
Evaluation in a semi-supervised context

Add lesion specific information: atlas, rules etc.



