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Goal of this talk

Existence of nontrivial site percolation threshold in the Relative
Neighborhood Graph (RNG) for Poisson stationary point process with
unit intensity in R2.
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Some applications

Ferromagnetism (at low temperature) and Ising model
Disordered electrical networks (electrical resistance of a mixture
of two materials)
Cancerology for the study of the growth of tumor when the cancer
cells suddently begin to invade healthy tissue.
Epidemics and fires in orchards
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Some graphs

Definition

The Delaunay graph Del2(ϕ) of a configuration ϕ in Ω is the set of
edges of the unique triangulation Del3(ϕ) in which the interior of the
circle circumscribed by every triangle of Del3(ϕ) does not contain any
point of ϕ.

Definition

The Gabriel graph Gab(ϕ) of a configuration ϕ in Ω is defined as the
set of edges {u, v} ⊂ ϕ such that the open circle with {u, v} as
diameter does not contain any point of the configuration ϕ.

These graphs are planar in R2.
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Relative Neighborhood Graph

Definition

The Relative Neighborhood graph Rn(ϕ) of a configuration ϕ in Ω is
defined as the set of edges {u, v} ⊂ ϕ such that the intersection of the
disks with center u and v with radius uv does not contain any point of
the configuration ϕ.

uv

Figure: Vacuity regions for Gabriel and RN graphs for an edge uv
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The Model

Site percolation on the RNG for the Poisson point process Φ

Bernoulli process Θp(Φ) providing the type picking mechanism (1
for open with probability p and 0 for closed with probability 1− p)
of the points (or sites) in Φ.
Φp = (Φ,Θp(Φ)) can be seen as a marked Poisson process
The probability measure of Φp is given by :

P(dϕ,dξ) =

∫
Π(dϕ)µp

ϕ(dξ)

where µp
ϕ is the probability measure on {0,1}ϕ of the Bernoulli

process Θp(ϕ) given the configuration ϕ ∈ Ω.
µp

Rn(ϕ) is the probability measure on {0,1}Rn(ϕ) of the Bernoulli
process Θp(Rn(ϕ)) given the graph Rn(ϕ) where ϕ ∈ Ω.
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Critical Probabilities

We define psite
c (ϕ,Rn(ϕ)) and pbond

c (ϕ,Rn(ϕ)) such that:

µp
Rn(ϕ)(∃ at least one infinite open cluster in Rn(ϕ))

=

{
1 if p > psite

c (ϕ,Rn(ϕ))
0 if p < psite

c (ϕ,Rn(ϕ))

µp
Rn(ϕ)(∃ at least one infinite open cluster in Rn(ϕ))

=

{
1 if p > pbond

c (ϕ,Rn(ϕ))
0 if p < pbond

c (ϕ,Rn(ϕ))
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Proposition

∀ϕ ∈ Ω, as (ϕ,Rn(ϕ)) has a maximum vertex degree equals to 6,

1
6− 1

≤ pbond
c (ϕ,Rn(ϕ)) ≤ psite

c (ϕ,Rn(ϕ)) ≤ 1− [1−pbond
c (ϕ,Rn(ϕ))]6.

Theorem

psite
c (Rn,Π) < 1 and pbond

c (Rn,Π) < 1.
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Sktech of proof

To prove that continuous percolation occurs, we shall compare the
process to various bond percolation models on Z2. In these models,
the states of the edges are not be independent.

De�nition
A bond percolation model is 1-independent if whenever E1 and E2 are
sets of edges at graph distance at least 1 from each another (i.e., if no
edge of E1 is incident to an edge of E2) then the state of the edges in
E1 is independent of the state of the edges in E2.

We proceed in two steps:
1 Control the probability of some suitable con�gurations of points

under Poisson point process.
2 Consider the Bernoulli site percolation in such con�gurations.
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The Rolling Ball Method

S1 S2

C1 C2
L

v
u

•
•

s

s

2r

Figure 1: The Rolling Ball Method

1
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Comparison with Z2

Write u ∼ v if uv is an edge of the underlying graph Rn(ϕ)

Percolation = infinite path: a sequence u1,u2 . . . with ui ∼ ui+1 for
all i .
Let ES1,S2 be the event that every vertex u1 in the central disk C1 of
S1 is joined to at least one vertex v in the central disk C2 of S2 by
a Rn− path, regardless of the state of the Poisson process
outside of S1 and S2.
Each vertex (i , j) ∈ Z2 corresponds to a square
[Ri ,R(i + 1)]× [Rj ,R(j + 1)] ∈ R2, where R = 2r + 2s, and an
edge is open between adjacent vertices (corresponding to
squares S1 and S2) if both events ES1,S2 and ES2,S1 hold.
1-independent model on Z2 since the event ES1,S2 depends only
on the Poisson process within the region S1 and S2.
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Comparison with Z2

Any open path in Z2 corresponds to a sequence of events
ES1,S2 , ES2,S3 . . . that occur, where Si is the square associated with
a site in Z2.
Every vertex u1 of the original Poisson process that lies in the
central disk C1 of S1 now has an infinite path leading away from it,
since one can find points ui in the central disk of Si and paths
from ui−1 to ui inductively for every i > 1.
One can choose r and s so that the probability that the
intersection of these events is large and then we will apply the
theorem of Ballister, Bollobas and Walters.
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A result of a 1-independent bond percolation on Z2

Theorem (Ballister, Bollobas, Walters. Random Structures and
Algorithms, 2005)

If every edge in a 1-independent bond percolation model on Z2 is open
with probability at least 0.8639, then almost surely there is an infinite
open component. Moreover, for any bounded region, there is almost
surely a cycle of open edges surrounding this region.
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The Rolling Ball Method

Let ES1,S2 be the event that for every point v ∈ C1 ∪ L, there is a u such
that:
a) v ∼ u;
b) d(u, v) ≤ s; and
c) u ∈ Dv , where Dv is the disk of radius r inside C1 ∪ L ∪ C2 with v on
its C1-side boundary (the dotted disk in Figure 1).
If ES1,S2 holds, then every vertex v in C1 must be joined by a Rn−path
to a vertex in C2, since each vertex in C1 ∪ L is joined to a vertex
whose disk Dv is further along in C1 ∪ L ∪ C2.
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to a vertex in C2, since each vertex in C1 ∪ L is joined to a vertex
whose disk Dv is further along in C1 ∪ L ∪ C2.
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The Rolling Ball Method

The probability of ĒS1,S2 is bounded by the expected number of points
u for which above conditions (a)-(c) fail. Thus, we have

Π(ĒS1,S2) ≤ 2r(2r + 2s)pRn,r ,s (1)

where pRn,r ,s is the probability that (a)-(c) fail for some fixed v . Notice
that this probability is independent of the location of v in C1 ∪ L.

Lemma
We can choose r and s such that Π(ĒS1,S2) is arbitrary small.
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The probability of ĒS1,S2 is bounded by the expected number of points
u for which above conditions (a)-(c) fail. Thus, we have
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sketch of proof

Let D(x , α) be the disk of radius α and of center x . Then,

pRn, r , s ≤ e−|Dv∩D(v ,s)| +

∫
Dv∩D(v ,s)

p r , s(u) du

where p r , s(u) is the probability that u is the closest point to v inside
Dv , but that (u, v) is not an edge of the RNG.
The first term being the probability that there is no u satisfying (b) and
(c), and the integral gives the probability that such a u exists, but that
the closest one to v fails (a).
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Second Step

We also need to control the probability of having at least one point in
C1 and less than m points in C1 ∪ L ∪ C2.
We denote FC1 = {Φ(C1) ≥ 1} and Am = {Φ(C2 ∪ C1 ∪ L) ≤ m}. We
obtain that

Π(ES1,S2∩ES2,S1) ≥ 1−
[
Π(ĒS1,S2) + Π(ĒS2,S1) + Π(F̄C1) + Π(F̄C2) + Π(Ām)

]
where Π(F̄C1) = Π(F̄C2) = e−πr2

and

Π(Ām) =
∑
k>m

[2r(2r + 2s) + πr2]k

k !
e−2r(2r+2s)−πr2

.

Choosing r = s, we have the following bound

Π(Ām) ≤ [(8 + π)r2]m+1

(m + 1)!
.

Using Stirling’s formula, this bound becomes negligible whenever
r � 1 and m > e(8 + π)r2.
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let Br ,s be the event that all the sites are open in C2 ∪ C1 ∪ L with
probability p = 1− ε

2m and also define Cr ,s = ES1,S2 ∩ ES2,S1 ∩ Br ,s.

P (Cr ,s) =

∫
ES1,S2

∩ES2,S1

Π (dϕ)µp
ϕ (Br ,s)

≥
∫

ES1,S2
∩ES2,S1

∩FC1
∩FC2

∩Am

Π (dϕ)µp
ϕ (Br ,s)

≥ (1− ε/2)pm > 1− ε = 0.8639

because we can choose r , s,m (as preceding) such that

Π(ES1,S2 ∩ ES2,S1 ∩ FC1 ∩ FC2 ∩ Am) ≥ 1− ε/2

We conclude with theorem of Balister et al. that
psite

c (Rn,Π) ≤ 1− ε
2m < 1.
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