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The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Pressure and Tutte polynomialPartiular ases of the Tutte polynomialThe q-Potts ModelLet be G a onneted graph with n verties.Partition funtion Z (G , q, v) =
∑

{σn} e−βH ;The Hamiltonian : H = −J ∑

<i ,j> δσiσj with- σi = 1...q spin variables on eah vertex i .- β = (kBT )−1- < i , j > denotes pairs of adjaent verties.We denote √qv = eβJ − 1 = eJ/(kBT ) − 1.If v ≥ 0 ⇔ 0 ≤ T , J ≥ 0, for the Potts ferromagnet.If −1 ≤ √qv ≤ 0 ⇔ 0 ≤ T , J ≤ 0, for the Potts antiferromagnet.We all the half plane Re(v) ≥ 0: the ferromagneti region.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Pressure and Tutte polynomialPartiular ases of the Tutte polynomialPressure and Tutte polynomialPressure funtion :p(G , q, v) = limn→∞
ln(Z (G , q, v)1/n).Relation between partition funtion and Tutte polynomialZ (G , q, v) = (x − 1)(y − 1)nT (G , x , y)on the urve (x − 1)(y − 1) = q ⇔

{ x = 1 +
√q/vy = 1 +
√qvz = x + y − 2 =

√q(v + 1/v).Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Pressure and Tutte polynomialPartiular ases of the Tutte polynomialPartiular ases of the Tutte polynomialThe hromati polynomialP(G , q) = q(−1)n+1T (G , x = 1− q, y = 0)T (G , 1, 1) number of spanning treesT (G , 2, 1) number of spanning forests, (or independent sets)T (G , 2, 2) number of spanning subgraphsT (G , 1, 2) number of spanning onneted subgraphsT (G , 2, 0) number of ayli orientationsT (G , 0, 2) number of totally yli orientationsIf G = G ⋆ then T (G , x , y) = T (G , y , x)Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarksConjeture of Chen, Hu and Wu (1996)ConjetureFor �nite planar self-dual latties and for square lattie with free orperiodi boundary onditions in the thermodynami limit, the Pottspartition zeros in the Re(v) > 0 half plane are loated on the unitirle |v | = 1.Graph C : a yle with an edge of multipliity three. The Tuttepolynomial of C on the hyperbola with q = 16:T (C , z) = z3 + 6z2 + 12z + 218.One not positive real root (−2− (210)1/3) and two onjugatedroots with not negative real part ((210)1/3/2− 2± i(210)1/3√3/2).Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Beraha Kahane Weiss theoremVitali's onvergene theoremUseful toolsLet D be a onneted open set in C, and let
α1, . . . , αM , λ1, . . . , λM be analyti funtions on D, none of whihis identially zero. For eah integer n ≥ 0, let de�nefn(z) =

M
∑k=1 αk(z)[λk (z)]n.Z (fn) = {z ∈ D : fn(z) = 0}- liminf Z (fn) = {z ∈ D : every neighborhood U ∋ z has anonempty intersetion with all but �nitely many of the sets Z (fn)}.- limsup Z (fn) = {z ∈ D : every neighborhood U ∋ z has anonempty intersetion with in�nitely many of the sets Z (fn)}.Let k be a dominant subsript z if |λk (z)| ≥ |λl (z)| for alll ∈ {1 . . .M}.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Beraha Kahane Weiss theoremVitali's onvergene theoremBeraha Kahane Weiss theoremTheoremLet D be a domain in C, and let λ1, . . . λM , α1, . . . , αM be analytifuntions on D, none of whih is identially zero. There do notexist subsripts k 6= k ′ suh that λk = ωλk′ for some onstant ωwith |ω| = 1 and suh that {z ∈ D : k is dominant at z}
(= {z ∈ D : k ′ is dominant at z}) has nonempty interior. ∀n ≥ 0,fn(z) =

M
∑k=1 αk(z)λk (z)nThen liminfZ (fn) = limsupZ (fn), z lies in this set if and only if(a) There is a unique dominant subsript k at z, and αk(z) = 0; or(b) There are two or more dominant subsripts at z.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Beraha Kahane Weiss theoremVitali's onvergene theoremVitali's onvergene theorem
TheoremLet pn(z) be a sequene of funtions, eah regular in a region D.Assume that it exists a onstant B as |pn(z)| ≤ B for every n andfor all z ∈ D. If pn(z) tends to a limit as n → ∞ at a set of pointshaving a limit point inside D, then pn(z) tends uniformly to a limitin any region bounded by a ontour interior to D: the limittherefore being an analyti funtion of z.
Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Analytiity of the pressureGeneral resultsfn(z) =

M
∑k=1[αak (z)[λ+ak (z)]n + βak (z)[λ−ak (z)]n]where λ+ak (z) and λ−ak (z) are the solutions ofX 2 − (z + 2 + ak )X + z + q + 1 = 0with ak ∈ [0, q].

λ±ak (z) =
12 (z + 2 + ak ± √

(z + ak)2 − 4(q − ak )) .

λak (z) be the solution between λ+ak (z) and λ−ak (z) with the greatestmagnitude. {αak , βak , k = 1..M} are suh that fn stays apolynomial funtion in the variable z .Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Analytiity of the pressureau = supk=1...M ak and al = infk=1...M ak .D]−∞,−au−2[ = {z =  + id ; ( , d) ∈ IR2,  < −au − 2},D]−al ,+∞[ = {z =  + id ; ( , d) ∈ IR2,  > −al}.TheoremThere exists only one dominant eigenvalue at z:- ∀z ∈ D]−al ,+∞[ \ { ∈ [−al , sup(−al ,−au + 2√q − au)], d = 0},
λau (z) is the dominant eigenvalue.- ∀z ∈ D]−∞,−au−2[ \ { ∈
[inf(−au − 2,−al − 2√q − al ),−au − 2], d = 0}, λal (z) is thedominant eigenvalue.Taking pn(z) =

ln(fn(z))n ,Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Analytiity of the pressureAnalytiity of the pressureCorollaryWe haveIf ∀z ∈ D]−al ,+∞[ \ { ∈
[−al , sup(−al ,−au + 2√q − au)], d = 0}, αau (z) 6= 0 thenpn(z) −→ ln[λau (z)] as n → ∞.If ∀z ∈ D]−∞,−au−2[ \ { ∈
[inf(−au − 2,−al − 2√q − al ),−au − 2], d = 0}, βal (z) 6= 0then pn(z) −→ ln[λal (z))] as n → ∞.Both limits are analyti funtions of z respetively on subsetsD]−al ,+∞[ \ { ∈ [−al , sup(−al ,−au + 2√q − au)], d =0}⋂B((0, 0),K ) and D]−∞,−au−2[ \ { ∈

[inf(−au − 2,−al − 2√q − al ),−au − 2], d = 0}⋂B((0, 0),K ).Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs
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The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnThe Tutte polynomial of Gn
T (Gn) =

µ1 − 1
µ1 − µ2µn+11 +

µ2 − 1
µ2 − µ1µn+12 .On the hyperbola (x − 1)(y − 1) = q, these eigenvalues are of theform introdued before with a = 1.T (Gn) = α1(z)[λ+1 (z)]n+1 + β1(z)[λ−1 (z)]n+1with α1(z) =

λ+1 (z)−1
λ+1 (z)−λ−1 (z) and β1(z) =

λ−1 (z)−1
λ−1 (z)−λ+1 (z) .Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnPropositionFor the family of graphs (Gn)n≥0, the loation of the degenerationof the dominant eigenvalue is desribed in the z omplex plane:- ∀ q ≥ 2
|λ+1 (z)| = |λ−1 (z)| ⇐⇒d = 0,  ∈ [−1− 2√q − 1,−1 + 2√q − 1]- ∀ q ∈ [1, 2]

|λ+1 (z)| = |λ−1 (z)| ⇔ { d = 0,  ∈ [−1− 2√q − 1,−1 + 2√q − 1]or z ∈ C ((−q − 1, 0), 2 − q)Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnPropositionFor the family of graphs (Gn)n≥0, the loation of the degenerationof the dominant eigenvalue is desribed in the v omplex plane:- if q ∈ [1, 25/16]
{

θ ∈ [aros(−1+2√q−12√q ), aros(−1−2√q−12√q )], r = 1or v ∈ F (C ((−q − 1, 0), 2− q)).- if q ∈ [25/16, 2] 









θ ∈ [aros(−1+2√q−12√q ), π], r = 1or θ = π, r ∈ [1/r1, r1]or v ∈ F (C ((−q − 1, 0), 2 − q)).- if q ≥ 2 {

θ ∈ [aros(−1+2√q−12√q ), π], r = 1or θ = π, r ∈ [1/r1; r1]with r1 and 1/r1 the roots of the polynomial√qr2 − (1 + 2√q − 1)r +
√q = 0.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs
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The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnThe Tutte polynomial of Bn
T (Bn) = (xy − x − y − 1) + µn1 + µn2.On the hyperbola (x − 1)(y − 1) = q, these eigenvalues are of theform introdued before with a = 1 for {µ1, µ2} and a = q for theeigenvalue 1. The Tutte polynomial an be written as :T (Bn) = (q − 2)[λ−q (z)]n + [λ+1 (z)]n + [λ−1 (z)]nwhere λ−q (z) = 1.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnPropositionFor the family of graphs (Bn)n≥0, the loation of the degenerationof the dominant eigenvalue is desribed in the z-omplex plane:- ∀q ∈ [1, 5], q 6= 2, when |λ+1 (z)| = |λ−1 (z)| > 1 or |λ1(z)| = 1
⇒







 ∈ [−q,−1 + 2√q − 1] and d = 0or ∈ [−(q + 5)/2,−q] and d2 = −( + q)2 2+q+52+q+1- ∀q > 5, when |λ+1 (z)| = |λ−1 (z)| > 1
⇒  ∈ [−1− 2√q − 1,−1 + 2√q − 1] and d = 0.- For q = 2, when |λ+1 (z)| = |λ−1 (z)|

⇒  ∈ [−3, 1], d = 0.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs
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The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnThe Tutte polynomial of Cn:
T (Gn,n) =

xy − x − y
(x − 1)(y − 1) [xn + yn − 1] +

(xy)n
(x − 1)(y − 1) .On the hyperbola (x − 1)(y − 1) = q, these eigenvalues are of theform introdued before with a = 0 for {x , y} and with a = q for

{1, xy}.T (Gn,n) =
1q [λ+q (z)]n+1− qq [λ−q (z)]n+q − 1q [λ+0 (z)]n+q − 1q [λ−0 (z)]n.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs



The q Potts ModelConjeture of Chen, Hu and Wu (1996)Useful toolsGeneral resultsExamplesConluding remarks Strip of triangles with a double edge: GnThe wheel: BnCyle with an edge of multipliity n: CnPropositionFor the family of graphs (Gn,n)n≥0, the loation of the degenerationof the dominant eigenvalue is desribed in the omplex plane usingrespetively variable z and v as follows:
∀q ≥ 1, when |λ0(z)| = |λq(z)|

⇐⇒
{

( , d) ∈ IR2,  ∈ [−2− q/2,−q/2] ,d2 = −(2 + q + 4) [

( + q)22 + q ]

⇐⇒ v ∈ ∆−√q/2 ∪ C ((−1/√q, 0), 1/√q)where ∆−√q/2 is the line Re(v) = −√q/2 andC ((−1/√q, 0), 1/√q) denotes the irle of enter (−1/√q, 0) andof radius 1/√q.Jean-Mihel Billiot, Frank Corset, Eri Fontenas Uniity of q-Potts measure on a family of self-dual graphs
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