Unicity of q-Potts measure on a family of self-dual graphs

SAGAG team, Jean Kuntzmann Laboratory, Grenoble

Outline

(1) The q Potts Model

- Pressure and Tutte polynomial
- Particular cases of the Tutte polynomial
(2) Conjecture of Chen, Hu and Wu (1996)
(3) Useful tools
- Beraha Kahane Weiss theorem
- Vitali's convergence theorem
(4) General results
- Analyticity of the pressure
(5) Examples
- Strip of triangles with a double edge: G_{n}
- The wheel: B_{n}
- Cycle with an edge of multiplicity $n: C_{n}$
(6) Concluding remarks

The q-Potts Model

Let be G a connected graph with n vertices.
Partition function $Z(G, q, v)=\sum_{\left\{\sigma_{n}\right\}} e^{-\beta H}$;
The Hamiltonian: $H=-J \sum_{<i, j>} \delta_{\sigma_{i} \sigma_{j}}$ with

- $\sigma_{i}=1$...q spin variables on each vertex i.
$-\beta=\left(k_{B} T\right)^{-1}$
- $\langle i, j\rangle$ denotes pairs of adjacent vertices.

We denote $\sqrt{q} v=e^{\beta J}-1=e^{J /\left(k_{B} T\right)}-1$.
If $v \geq 0 \Leftrightarrow 0 \leq T, J \geq 0$, for the Potts ferromagnet.
If $-1 \leq \sqrt{q} v \leq 0 \Leftrightarrow 0 \leq T, J \leq 0$, for the Potts antiferromagnet.
We call the half plane $\operatorname{Re}(v) \geq 0$: the ferromagnetic region.

Pressure and Tutte polynomial

- Pressure function :

$$
p(G, q, v)=\lim _{n \rightarrow \infty} \ln \left(Z(G, q, v)^{1 / n}\right)
$$

- Relation between partition function and Tutte polynomial

$$
\begin{aligned}
& \qquad Z(G, q, v)=(x-1)(y-1)^{n} T(G, x, y) \\
& \text { on the curve }(x-1)(y-1)=q \Leftrightarrow\left\{\begin{array}{l}
x=1+\sqrt{q} / v \\
y=1+\sqrt{q} v
\end{array}\right. \\
& z=x+y-2=\sqrt{q}(v+1 / v) .
\end{aligned}
$$

Particular cases of the Tutte polynomial

The chromatic polynomial

$$
P(G, q)=q(-1)^{n+1} T(G, x=1-q, y=0)
$$

$T(G, 1,1)$ number of spanning trees
$T(G, 2,1)$ number of spanning forests, (or independent sets)
$T(G, 2,2)$ number of spanning subgraphs
$T(G, 1,2)$ number of spanning connected subgraphs
$T(G, 2,0)$ number of acyclic orientations
$T(G, 0,2)$ number of totally cyclic orientations

If $G=G^{\star}$ then $T(G, x, y)=T(G, y, x)$

Conjecture of Chen, Hu and Wu (1996)

Conjecture

For finite planar self-dual lattices and for square lattice with free or periodic boundary conditions in the thermodynamic limit, the Potts partition zeros in the $\operatorname{Re}(v)>0$ half plane are located on the unit circle $|v|=1$.

Graph C : a cycle with an edge of multiplicity three. The Tutte polynomial of C on the hyperbola with $q=16$:

$$
T(C, z)=z^{3}+6 z^{2}+12 z+218
$$

One not positive real root $\left(-2-(210)^{1 / 3}\right)$ and two conjugated roots with not negative real part $\left((210)^{1 / 3} / 2-2 \pm i(210)^{1 / 3} \sqrt{3} / 2\right)$.

Useful tools

Let D be a connected open set in \mathbb{C}, and let $\alpha_{1}, \ldots, \alpha_{M}, \lambda_{1}, \ldots, \lambda_{M}$ be analytic functions on D , none of which is identically zero. For each integer $n \geq 0$, let define

$$
\begin{aligned}
f_{n}(z) & =\sum_{k=1}^{M} \alpha_{k}(z)\left[\lambda_{k}(z)\right]^{n} \\
Z\left(f_{n}\right) & =\left\{z \in D: f_{n}(z)=0\right\}
\end{aligned}
$$

- liminf $Z\left(f_{n}\right)=\{z \in D$: every neighborhood $U \ni z$ has a nonempty intersection with all but finitely many of the sets $\left.Z\left(f_{n}\right)\right\}$.
- limsup $Z\left(f_{n}\right)=\{z \in D$: every neighborhood $U \ni z$ has a nonempty intersection with infinitely many of the sets $\left.Z\left(f_{n}\right)\right\}$.
Let k be a dominant subscript z if $\left|\lambda_{k}(z)\right| \geq\left|\lambda_{l}(z)\right|$ for all $l \in\{1 \ldots M\}$.

Beraha Kahane Weiss theorem

Theorem

Let D be a domain in \mathbb{C}, and let $\lambda_{1}, \ldots \lambda_{M}, \alpha_{1}, \ldots, \alpha_{M}$ be analytic functions on D, none of which is identically zero. There do not exist subscripts $k \neq k^{\prime}$ such that $\lambda_{k}=\omega \lambda_{k^{\prime}}$ for some constant ω with $|\omega|=1$ and such that $\{z \in D: k$ is dominant at $z\}$
$\left(=\left\{z \in D: k^{\prime}\right.\right.$ is dominant at $\left.\left.z\right\}\right)$ has nonempty interior. $\forall n \geq 0$,

$$
f_{n}(z)=\sum_{k=1}^{M} \alpha_{k}(z) \lambda_{k}(z)^{n}
$$

Then $\liminf Z\left(f_{n}\right)=\limsup Z\left(f_{n}\right)$, z lies in this set if and only if (a) There is a unique dominant subscript k at z, and $\alpha_{k}(z)=0$; or (b) There are two or more dominant subscripts at z.

Vitali's convergence theorem

Theorem

Let $p_{n}(z)$ be a sequence of functions, each regular in a region D. Assume that it exists a constant B as $\left|p_{n}(z)\right| \leq B$ for every n and for all $z \in D$. If $p_{n}(z)$ tends to a limit as $n \rightarrow \infty$ at a set of points having a limit point inside D, then $p_{n}(z)$ tends uniformly to a limit in any region bounded by a contour interior to D : the limit therefore being an analytic function of z.

General results

$$
f_{n}(z)=\sum_{k=1}^{M}\left[\alpha_{a_{k}}(z)\left[\lambda_{a_{k}}^{+}(z)\right]^{n}+\beta_{a_{k}}(z)\left[\lambda_{a_{k}}^{-}(z)\right]^{n}\right]
$$

where $\lambda_{a_{k}}^{+}(z)$ and $\lambda_{a_{k}}^{-}(z)$ are the solutions of

$$
X^{2}-\left(z+2+a_{k}\right) X+z+q+1=0
$$

with $a_{k} \in[0, q]$.

$$
\lambda_{a_{k}}^{ \pm}(z)=\frac{1}{2}\left(z+2+a_{k} \pm \sqrt{\left(z+a_{k}\right)^{2}-4\left(q-a_{k}\right)}\right)
$$

$\lambda_{a_{k}}(z)$ be the solution between $\lambda_{a_{k}}^{+}(z)$ and $\lambda_{a_{k}}^{-}(z)$ with the greatest magnitude. $\left\{\alpha_{a_{k}}, \beta_{a_{k}}, k=1 . . M\right\}$ are such that f_{n} stays a polynomial function in the variable z.
$a_{u}=\sup _{k=1 \ldots M} a_{k}$ and $a_{l}=\inf _{k=1 \ldots M} a_{k}$.

$$
\begin{gathered}
D_{]-\infty,-a_{u}-2[}=\left\{z=c+i d ;(c, d) \in \mathbf{R}^{2}, c<-a_{u}-2\right\}, \\
D_{]-a_{l},+\infty[}=\left\{z=c+i d ;(c, d) \in \mathbb{R}^{2}, c>-a_{l}\right\} .
\end{gathered}
$$

Theorem

There exists only one dominant eigenvalue at z :
$-\forall z \in D_{]-a_{l},+\infty[} \backslash\left\{c \in\left[-a_{l}, \sup \left(-a_{l},-a_{u}+2 \sqrt{q-a_{u}}\right)\right], d=0\right\}$,
$\lambda_{a_{u}}(z)$ is the dominant eigenvalue.
$-\forall z \in D_{]-\infty,-a_{u}-2[} \backslash\{c \in$
$\left.\left[\inf \left(-a_{u}-2,-a_{l}-2 \sqrt{q-a_{l}}\right),-a_{u}-2\right], d=0\right\}, \lambda_{a_{l}}(z)$ is the dominant eigenvalue.
Taking $p_{n}(z)=\frac{\ln \left(f_{n}(z)\right)}{n}$,

Analyticity of the pressure

Corollary

We have

- If $\forall z \in D_{]-a_{l},+\infty[} \backslash\{c \in$
$\left.\left[-a_{l}, \sup \left(-a_{l},-a_{u}+2 \sqrt{q-a_{u}}\right)\right], d=0\right\}, \alpha_{a_{u}}(z) \neq 0$ then $p_{n}(z) \longrightarrow \ln \left[\lambda_{a_{u}}(z)\right]$ as $n \rightarrow \infty$.
- If $\forall z \in D_{]-\infty,-a_{u}-2[} \backslash\{c \in$
$\left.\left[\inf \left(-a_{u}-2,-a_{l}-2 \sqrt{q-a_{l}}\right),-a_{u}-2\right], d=0\right\}, \beta_{a_{l}}(z) \neq 0$ then $\left.p_{n}(z) \longrightarrow \ln \left[\lambda_{a_{l}}(z)\right)\right]$ as $n \rightarrow \infty$.
Both limits are analytic functions of z respectively on subsets $D_{]-a_{l},+\infty[} \backslash\left\{c \in\left[-a_{l}, \sup \left(-a_{l},-a_{u}+2 \sqrt{q-a_{u}}\right)\right], d=\right.$ $0\} \cap B((0,0), K)$ and $D_{]-\infty,-a_{u}-2[} \backslash\{c \in$ $\left.\left[\inf \left(-a_{u}-2,-a_{l}-2 \sqrt{q-a_{l}}\right),-a_{u}-2\right], d=0\right\} \bigcap B((0,0), K)$.

Strip of triangles with a double edge: $\boldsymbol{G}_{\boldsymbol{n}}$ The wheel: B_{n} Cycle with an edge of multiplicity $n: C_{n}$

Strip of triangles with a double edge: G_{n}

Strip of triangles with a double edge: $\boldsymbol{G}_{\boldsymbol{n}}$ The wheel: B_{n} Cycle with an edge of multiplicity $n: C_{n}$

The Tutte polynomial of G_{n}

$$
T\left(G_{n}\right)=\frac{\mu_{1}-1}{\mu_{1}-\mu_{2}} \mu_{1}^{n+1}+\frac{\mu_{2}-1}{\mu_{2}-\mu_{1}} \mu_{2}^{n+1} .
$$

On the hyperbola $(x-1)(y-1)=q$, these eigenvalues are of the form introduced before with $a=1$.

$$
T\left(G_{n}\right)=\alpha_{1}(z)\left[\lambda_{1}^{+}(z)\right]^{n+1}+\beta_{1}(z)\left[\lambda_{1}^{-}(z)\right]^{n+1}
$$

with $\alpha_{1}(z)=\frac{\lambda_{1}^{+}(z)-1}{\lambda_{1}^{+}(z)-\lambda_{1}^{-}(z)}$ and $\beta_{1}(z)=\frac{\lambda_{1}^{-}(z)-1}{\lambda_{1}^{-}(z)-\lambda_{1}^{+}(z)}$.

Proposition

For the family of graphs $\left(G_{n}\right)_{n \geq 0}$, the location of the degeneration of the dominant eigenvalue is described in the z complex plane:

- $\forall q \geq 2$

$$
\begin{gathered}
\left|\lambda_{1}^{+}(z)\right|=\left|\lambda_{1}^{-}(z)\right| \Longleftrightarrow \\
d=0, c \in[-1-2 \sqrt{q-1},-1+2 \sqrt{q-1}]
\end{gathered}
$$

$-\forall q \in[1,2]$
$\left|\lambda_{1}^{+}(z)\right|=\left|\lambda_{1}^{-}(z)\right| \Leftrightarrow\left\{\begin{array}{l}d=0, c \in[-1-2 \sqrt{q-1},-1+2 \sqrt{q-1}] \\ \text { or } z \in C((-q-1,0), 2-q)\end{array}\right.$

Proposition

For the family of graphs $\left(G_{n}\right)_{n \geq 0}$, the location of the degeneration of the dominant eigenvalue is described in the v complex plane:

- if $q \in[1,25 / 16]$
$\left\{\theta \in\left[\arccos \left(\frac{-1+2 \sqrt{q-1}}{2 \sqrt{q}}\right), \arccos \left(\frac{-1-2 \sqrt{q-1}}{2 \sqrt{q}}\right)\right], r=1\right.$
or $v \in F(C((-q-1,0), 2-q))$.
- if $q \in[25 / 16,2]\left\{\begin{array}{l}\theta \in\left[\arccos \left(\frac{-1+2 \sqrt{q-1}}{2 \sqrt{q}}\right), \pi\right], r=1 \\ \operatorname{or} \theta=\pi, r \in\left[1 / r_{1}, r_{1}\right] \\ \text { or } v \in F(C((-q-1,0), 2-q)) \text {. }\end{array}\right.$
- if $q \geq 2\left\{\theta \in\left[\arccos \left(\frac{-1+2 \sqrt{q-1}}{2 \sqrt{q}}\right), \pi\right], r=1\right.$
or $\theta=\pi, r \in\left[1 / r_{1} ; r_{1}\right]$
with r_{1} and $1 / r_{1}$ the roots of the polynomial
$\sqrt{q} r^{2}-(1+2 \sqrt{q-1}) r+\sqrt{q}=0$.

The wheel: B_{n}

The Tutte polynomial of B_{n}

$$
T\left(B_{n}\right)=(x y-x-y-1)+\mu_{1}^{n}+\mu_{2}^{n} .
$$

On the hyperbola $(x-1)(y-1)=q$, these eigenvalues are of the form introduced before with $a=1$ for $\left\{\mu_{1}, \mu_{2}\right\}$ and $a=q$ for the eigenvalue 1. The Tutte polynomial can be written as:

$$
T\left(B_{n}\right)=(q-2)\left[\lambda_{q}^{-}(z)\right]^{n}+\left[\lambda_{1}^{+}(z)\right]^{n}+\left[\lambda_{1}^{-}(z)\right]^{n}
$$

where $\lambda_{q}^{-}(z)=1$.

Proposition

For the family of graphs $\left(B_{n}\right)_{n \geq 0}$, the location of the degeneration of the dominant eigenvalue is described in the z-complex plane:
$-\forall q \in[1,5], q \neq 2$, when $\left|\lambda_{1}^{+}(z)\right|=\left|\lambda_{1}^{-}(z)\right|>1$ or $\left|\lambda_{1}(z)\right|=1$

$$
\Rightarrow \begin{cases}c \in[-q,-1+2 \sqrt{q-1}] & \text { and } \quad d=0 \\ \text { or } & \text { and } \quad d^{2}=-(c+q)^{2} \frac{2 c+q+5}{2 c+q+1} \\ c \in[-(q+5) / 2,-q] & \text { and }\end{cases}
$$

- $\forall q>5$, when $\left|\lambda_{1}^{+}(z)\right|=\left|\lambda_{1}^{-}(z)\right|>1$

$$
\Rightarrow c \in[-1-2 \sqrt{q-1},-1+2 \sqrt{q-1}] \quad \text { and } d=0
$$

- For $q=2$, when $\left|\lambda_{1}^{+}(z)\right|=\left|\lambda_{1}^{-}(z)\right|$

$$
\Rightarrow c \in[-3,1], d=0
$$

The q Potts Model
Strip of triangles with a double edge: $G_{\boldsymbol{n}}$ The wheel: B_{n}
Cycle with an edge of multiplicity $n: C_{n}$

Cycle with an edge of multiplicity $n: C_{n}$

The Tutte polynomial of C_{n} :

$$
T\left(G_{n, n}\right)=\frac{x y-x-y}{(x-1)(y-1)}\left[x^{n}+y^{n}-1\right]+\frac{(x y)^{n}}{(x-1)(y-1)} .
$$

On the hyperbola $(x-1)(y-1)=q$, these eigenvalues are of the form introduced before with $a=0$ for $\{x, y\}$ and with $a=q$ for $\{1, x y\}$.

$$
T\left(G_{n, n}\right)=\frac{1}{q}\left[\lambda_{q}^{+}(z)\right]^{n}+\frac{1-q}{q}\left[\lambda_{q}^{-}(z)\right]^{n}+\frac{q-1}{q}\left[\lambda_{0}^{+}(z)\right]^{n}+\frac{q-1}{q}\left[\lambda_{0}^{-}(z)\right]^{n} .
$$

Proposition

For the family of graphs $\left(G_{n, n}\right)_{n \geq 0}$, the location of the degeneration of the dominant eigenvalue is described in the complex plane using respectively variable z and v as follows:
$\forall q \geq 1$, when $\left|\lambda_{0}(z)\right|=\left|\lambda_{q}(z)\right|$

$$
\begin{aligned}
& \Longleftrightarrow\left\{(c, d) \in \mathbb{R}^{2}, c \in[-2-q / 2,-q / 2]\right. \\
& d^{2}=-(2 c+q+4)\left[\frac{(c+q)^{2}}{2 c+q}\right] \\
& \Longleftrightarrow v \in \Delta_{-\sqrt{q} / 2} \cup C((-1 / \sqrt{q}, 0), 1 / \sqrt{q})
\end{aligned}
$$

where $\Delta_{-\sqrt{q} / 2}$ is the line $\operatorname{Re}(v)=-\sqrt{q} / 2$ and $C((-1 / \sqrt{q}, 0), 1 / \sqrt{q})$ denotes the circle of center $(-1 / \sqrt{q}, 0)$ and of radius $1 / \sqrt{q}$.

Concluding remarks

- Include different class of self dual graphs.
- Find other explicit form of eigenvalues.
- Conjecture for other infinite self dual graphs?
- Deep exploration of the antiferromagnetic region.

