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I. Introduction
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I.1. Toxicology in general
- Toxicology

◦ Application domains: Cosmetics, Drug, etc.

- Objective: Risk assessment

- Approaches (Different types of routines)

◦ In vivo test: Animal experiments

◦ Alternative methods

◦ In vitro test (Classic) - fast

◦ In vitro test (advanced): High throughput screening  - very fast

◦ In silico test: computational modelling and simulation - we are 
working on this
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High-throughput 
screening
Robotic tools

384, 1536, 3456 wells

- Fast

- Low-cost
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I.2. Project Eu-ToxRisk21
“An Integrated European ‘Flagship’ Programme Driving Mechanism-based 

Toxicity Testing and Risk Assessment for the 21st century.”

Organisation :

❖Long range 2016‐2020 research program

❖41 international research teams (40 EU + 1 USA) from 13 countries

❖14 Work packages with sub-objectives
❖WP 10 : Computational Modelling for Risk assessment

Motivation :

❖Partially replace animal experimentations

❖Improve the predictive methods based on high-throughput toxicity tests

5AIGM  - TOULOUSE - 14 DEC. 2017



15 Case studies

Liver

Kidney

Lung

Nervous system

Etc.

15 Cases are studied in the program 
Eu-ToxRisk21
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I.3. AOP and qAOP
❖EU-ToxRisk21 

◦ An Integrated European ‘Flagship’ Programme Driving Mechanism-based
Toxicity Testing and Risk Assessment for the 21st century

❖AOP : Adverse outcome pathway – qualitative tool for mechanism description

❖qAOP : quantitative AOP for risk assessment

Remark : Each case study corresponds to a set of AOPs.
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AOP and qAOP
AOP : Adverse outcome pathway

❖Knowledge Exchange

❖A qualitative tool for the structural representation of causal 
relationships (Dose-response)
❖Starting from a molecular perturbation (MIE)

❖Through key events (KE)

❖Arriving at an adverse outcome (AO)

❖In this case : AO = Steatosis (fat liver)

❖qAOP = quantitative AOP:
❖Probabilistic model

❖Predictive capacity : Decision Support Tool
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A richer version of AOP : AOP Network

9

- Each node may have 
more than one parent.

- One node can be 
involved in different 
AOPs

9 AOPs are hidden here
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I.4. Objectives of my thesis
Objectives :

❖Probabilistic modelling of AOP =: qAOP

❖=> Prediction of AO

Action plan : 

❖Fixed structure for mini AOP

❖Modelling of the strength cause-effect

❖Prediction

❖Structural learning : more ambitious
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II. Probabilistic Model
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II.1. BN : Bayesian Networks 
Def : BN : 𝒢, 𝑃𝒢 with 
◦ 𝒢 : BN Structure : DAG directed acyclic graph 𝒢(𝑉, 𝐸)

◦ 𝑉 : Set of vertices, nodes : variables 𝑉 = {𝑋𝑖|𝑖 ∈ 1:𝑁}

◦ 𝐸 : Set of directed edges : causality relationships

◦ 𝑃𝒢 : multivariate distribution over 𝑉
◦ specified as set of local conditional probability distribution (CPDs) associated with 𝒢’s nodes.

𝑃𝒢 𝑋 = ς𝑖=1:𝑁 𝑃𝒢(𝑋𝑖|Par 𝑋𝑖 )

with 𝑋 = (𝑋1 , … 𝑋𝑖 , …𝑋𝑁) system stat vector
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BN : Bayesian Networks 
𝑃𝒢 𝑋 = ς𝑖=1:𝑁 𝑃𝒢(𝑋𝑖|Par 𝑋𝑖 )

Local conditional distributions (CPD) and the DAG completely determine the joint distribution

Example : steatosis case

𝑃 𝑋,𝐿, 𝐶,𝐹, 𝑇, 𝑆 = 𝑃 𝑋 𝑃 𝐿 𝑋 𝑃 𝐶 𝐿 𝑃 𝐹 𝐿 𝑃 𝑇 𝐶, 𝐹 𝑃 𝑆 𝑇

Problem in the context of qAOP : Child node = function (Parent node(s) , time) 

13

LXR

CD36

FAS

TG Stea

AIGM  - TOULOUSE - 14 DEC. 2017



II. 2. DBN : Dynamic Bayesian 
Networks
Extension of BNs to handle temporal models

Assumptions :

- the timeline discretised into a set of time slices : 

𝑋(𝑡0), 𝑋(𝑡1),…, 𝑋(𝑡𝑚), with 𝑚 the number of observations

- Markov assumption for a dynamic system over the template 
variables 𝑋 : ∀ 𝑖 ∈ ℕ+

𝑋(𝑡𝑖+1) ⊥ 𝑋 𝑡0: 𝑡𝑖−1 |𝑋(𝑡𝑖)

Two types of dependency : 

- Inter time-slice dependency (between time-slices)

- Intra time-slice dependency (in the same time-slice)
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Time ti−1 Time ti

𝐶 child node : 𝐶𝑡 child node at time 𝑡
𝑃 parent node : 𝑃𝑡 parent node at 𝑡

AIGM  - TOULOUSE - 14 DEC. 2017



DBN : Dynamic Bayesian Networks
Markov assumption :

𝑋(𝑡𝑖+1) ⊥ 𝑋 𝑡0: 𝑡𝑖−1 |𝑋(𝑡𝑖)

Compact definition of the joint probability distribution in DBN

𝑃 𝑋 𝑡0:𝑡𝑚 = 𝑃 𝑋 𝑡0 ς𝑖=1
𝑚 𝑃 𝑋 𝑡𝑖 |𝑋 𝑡𝑖−1

Example : Linear Dynamic System

Classic linear DBN

𝔼[𝐶𝑡𝑖] = 𝛼 + 𝛽𝑝𝑟𝑒𝑣𝐶𝑡𝑖−1 + 𝛽𝑐𝑢𝑟𝑟𝑃𝑡𝑖
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Insights about qAOP
Data visualization DEMO : Real data for kidney disease case 
study

Dynamic 3D plot GSH-DCF-Time (online) (local)

❖𝑆𝐶 : Stationary state (Saturation level) of child node, denote :

❖𝑆𝐶 = 𝑓 𝑃𝑡 : Dependence of 𝑆𝐶 on 𝑃𝑡

❖𝐶𝑡 : Child node activity at time 𝑡

❖𝐶𝑡 converges to 𝑆𝐶 over time
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II.3. Model family for qAOP : Embryonic form

𝑆𝐶[𝑃𝑡] − 𝔼[𝐶𝑡] = 𝑆𝐶 𝑃𝑡 − 𝐶𝑡−ℎ 𝑒−𝜈ℎ

◦ 𝐶𝑡 : Child node activity at time 𝑡, (observed)

◦ 𝑃𝑡 : Parent node(s) activity at time 𝑡, I could be a vector (observed)

◦ 𝑆𝐶[𝑃𝑡] : stationary state of child node given its parent(s) (unobserved)

Questions : 

𝑆𝐶[𝑃𝑡] = ?

ℎ ∈ ℝ+: non regular observation ?

𝜈 > 0 : to ensure the convergence of 𝐶𝑡 towards 𝑆𝐶(𝑃𝑡)
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Model family for qAOP : Linear model

Assumption : Stationary stat of Child node is a linear function of 
parent node(s)

Remark : The classic linear DBN model is a special case of (ℳ𝐿)

◦ 𝑆𝐶[𝑃𝑡] =
𝛽𝑐𝑢𝑟𝑟

1−𝛽𝑝𝑟𝑒𝑣
𝑃𝑡 +

𝛼

1−𝛽𝑝𝑟𝑒𝑣

◦ ℎ = 1

◦ 𝑒−𝜈ℎ = 𝑒−𝜈 = 𝛽𝑝𝑟𝑒𝑣

𝔼[𝐶𝑡𝑖] = 𝛼 + 𝛽𝑝𝑟𝑒𝑣𝐶𝑡𝑖−1 + 𝛽𝑐𝑢𝑟𝑟𝑃𝑡𝑖
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Model family for qAOP : Sigmoid model

With 

◦ Sigmoid 𝑥 =
1

1+𝑒−𝑥
−

1

2

◦ Odd

◦ Bounded [−1,1]

Assumption : The stationary stat of Child node is a sigmoid 
function of parent node(s)
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III. Inference
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III.1. Input – Steatosis (real)
Real public domain databases (available before my thesis)

◦ ToxCast

◦ TG-Gate

DEMO : Steatosis real data (use online DEMO link)

Problems :

The experiments are not designed for qAOP modelling.
◦ Very few number of data : 3 endpoints 

◦ Discretization assumption may fail because the measurements of the system state taken at intervals 
that are regularly spaced with a predetermined time granularity ∆t

◦ observations on time 𝑡 = 2ℎ 8ℎ and 24ℎ
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Input – Steatosis (simulated)
Data simulated from pharmacokinetics models based on ODE

Three virtual experimentation conditions:

- One injection of chemical 𝑋, without dicreasing feature ∀𝑖 ∈ 𝐼, C𝑋
(𝑡𝑖) = C𝑋

(0)

- One injection of chemical 𝑋, with decreasing feature. ∀𝑖 ∈ 𝐼, C𝑋
𝑡𝑖 < C𝑋

𝑡𝑖−1

- Four injection of chemical 𝑋, with decreasing feature : 
C𝑋
0

4
each time

online DEMO : Steatosis Generated data
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Input – Kidney disease (real)
Data of kidney disease from Eu-ToxRisk21
◦ 5 doses

◦ 8 replicates

◦ 103 observations endpoints

◦ measured on time ti = 1+ 15 × (i − 1) minutes ∀𝑖 ∈ 1: 103
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III.2. Parameters learning : linear model

Parameter estimation based on observations 

Frequentist approach
መ𝜃𝑀𝐿 = argmax

𝜃∈Θ
𝐿 𝜃 𝒟 = argmax

𝜃∈Θ
𝑃 𝒟 𝜃

Bayesian approach
መ𝜃𝑀𝐴𝑃 = argmax

𝜃∈Θ
𝑃 𝒟 𝜃 𝜋(𝜃)

- Algorithm MCMC under the probabilistic programming language “stan”
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III.3. Implementation: Simulated data
Parameter learning for a local conditional model :

𝑃(𝐹𝐴𝑆 | 𝐿𝑋𝑅, 𝑡)

Result :

❖Sigmoid model works significantly better with small set of data

❖The linear model works as well as Sigmoid with large set of data
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Implementation : Kidney disease (real)
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IV. Conclusion
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Conclusion
❖Proposition of qAOP model family: Linear model, Sigmoid model

❖Application on Steatosis (real), steatosis (simulated), kidney disease (real).
❖Steatosis (real): Not fit well, not enough data.

❖Steatosis (simulated): 
❖ The sigmoid model fits better when only few data are available

❖ The Linear model fits as well as the sigmoid model when more data are available

❖Kidney disease (real):
❖ Linear models can well fit the database.

Future steps:

❖Test sigmoid model on Kidney disease data

❖Test model performance (behaviour) on simulated data with more nodes in AOP

❖qAOP network problems: hierarchical DBN.
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Thank you for your attention
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