Recommendation for product configuration with Bayesian networks and hard constraints

Hélène Fargier Pierre-François Gimenez Jérôme Mengin

IRIT-CNRS University of Toulouse

AIGM - 14 December 2017

Context: product configuration for e-commerce (BR4CP project)

Configuration of complex, highly customizable products (combinatorial domains)

 \rightarrow cars, computers, travels, kitchens. . .

 \rightarrow number of possibilities exponential in the number of configuration variables

 \rightarrow all products aren't feasible (like a convertible car with a sunroof)

The constraints are hard : some products are infeasible

They come from :

- technical limitation (no sunroof on a convertible car)
- commercial consideration (no leather wheel on a lower-end car)
- stock variability (out-of-stock item)
- etc.

Help to choose a product: interactive configuration process

The user chooses a variable to assign and chooses a consistent value among the values proposed by the configurator

At each step, there is a partial, ongoing configuration

Recommendation = recommend, given a **partial configuration** u, a **value** for a **variable** Next

- A good recommendation is:
 - accurate

 \rightarrow the user is willing to accept

quick

 \rightarrow on-line application

In our context:

- We have a sales history, no other information \rightarrow no information about the user
- The user chooses the variables one by one \rightarrow order of the variables is unknown
- There are constraints on allowed configurations
 → the issue of computing consistent values has been
 handled by others
- The sales history products may or may not satisfy the constraints

Recommendation in interactive configuration

Two categories of tools:

- k-nearest neighbours (Coster et al., 2002)¹
- Bayesian network

Goal: experiment and compare these methods

¹Enhancing web-based configuration with recommendations and cluster-based help

Outline

Context and issue

- Algorithms
 - based on Bayesian networks
 - ② based on *k*-nearest neighbours
- Section 2 Experiments
- Conclusion

Bayesian networks represent a probability distribution on the configurations by means of direct acyclic graph (DAG) and probability tables

- Each node is a variable
- An edge between A and B means that the probability of A depends on the value of B (and vice-versa)

Almost every probability distribution can be encoded into an Bayesian network

Computing a marginal $p(a \mid b)$ ("inference") is NP-hard

Probability p(o) that a product o will be bought

Our recommendation is based on:

$$\operatorname{argmax}_{x \in \underline{\operatorname{Next}}} p(\operatorname{Next} = x \mid \operatorname{Assigned} = u)$$

Next is the variable the user chose, u the partial ongoing configuration

We assume that sales history is a representative sample of future user choices

Two phases:

- Learning from Bayesian network the sales history off-line \rightarrow constraints aren't taken into account during the learning
- The inference is done on-line
 - \rightarrow the learning isn't critical, the inference is

Naive Bayesian network: special case of Bayesian network with strong assumptions of independence

- + inference is quick
- roughly approximates the real probability distribution

3 algorithms based on k-nearest neighbours

Instead of using the whole sample, they use previous sales similar to the current one

The algorithms process differently these neighbours

Among the k-nearest neighbours of the current configuration (using the Hamming distance)

Weighted Majority Voter: each neighbours votes with a weight proportional to its similarity with the current configuration

Naive Bayes voter: uses the neighbours to learn a naive Bayesian network. In contrary to the "classical" naive Bayes, it cannot be learnt off-line

Most popular choice: computes the most probable configuration completion and recommend the value of Next in it

Most popular choice doesn't order the values of Next \rightarrow problem if the recommended value isn't allowed

12/24

Experimental protocol: 10 folds cross-validation

 \rightarrow history sales split into a training set and a test set

- Training set: Bayesian networks learning / neighbours searching
- Test set: for each item we simulate a configuration. For each recommendation for Next, we compare the recommended value with the value really chosen
 - \rightarrow Only one possible value: no evaluation
 - \rightarrow Recommanded = chosen: success, else: failure

We measure the success rate and the recommendation time w.r.t. the number of assigned variables

We have a method ("Oracle") to compute the lowest possible error rate.

13/24

Experiments made on i5 processor at 3.4GHz, using one core

All algorithms written in Java

Bayesian networks

- learning algorithm: hill climbing (hc) (R package *bnlearn*)
- inference algorithm: junction tree (*Jayes* library)

Neighbourhood size : 20

 \rightarrow has no significant impact on precision

Datasets from Renault, genuine sales history

- dataset "*Renault-44*" : 44 variables and 14786 examples including 8252 examples consistent with the constraints
- dataset "*Renault-48*" : 48 variables and 27088 examples including 710 examples consistent with the constraints
- dataset "*Renault-87*" : 87 variables and 17715 examples including 8335 examples consistent with the constraints

Datasets contain examples that don't satisfy the constraints

Should we learn these "invalid" examples or not ?

Results on Renault-44 :

Precision	All examples	Consistent examples
Naive Bayes Voter	80.10	81.87
Weighted Maj. Voter	79.86	80.76
Most Pop. Choice	79.61	80.88
Bayesian network	80.86	81.72
Naive Bayesian net	76.29	78.08

- Higher precision for Renault-44 and Renault-48
- Lower precision for Renault-87

16/24

Error rate w.r.t. the number of assigned variables

Experiment on *Renault-44* : 44 variables, 14786 examples including 8252 examples consistent with the constraints

Recommendation time w.r.t. the number of assigned variables

Experiment on *Renault-44* : 44 variables, 14786 examples including 8252 examples consistent with the constraints

Error rate w.r.t. the number of assigned variables

Experiment on *Renault-48* : 48 variables, 27088 examples including 710 examples consistent with the constraints

Recommendation time w.r.t. the number of assigned variables

Experiment on *Renault-48* : 48 variables, 27088 examples including 710 examples consistent with the constraints

Error rate w.r.t. the amount of constraints

Experiment on *Renault-44* : 44 variables, 14786 examples including 8252 examples consistent with the constraints

Error rate w.r.t. the sample size (no const.) for Naive Bayes Voter

Experiment on *Renault-44* : 44 variables, 14786 examples

22/24

Error rate w.r.t. the sample size (no const.) for Bayesian network

Experiment on *Renault-44* : 44 variables, 14786 examples

23/24

Summary

- *k*-nearest neighbours and Bayesian networks are accurate and fast enough
- Naive Bayesian network is adapted when execution time is more critical than accuracy
- Bayesian networks are most robust to smaller sample size
- Constraints reduce the accuracy
- Learning only consistent examples : may be beneficial or harmful for the precision.

